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A characterization of simplicial polytopes with g2 = 1
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Abstract

Kalai proved that the simplicial polytopes with g
2

= 0 are the stacked
polytopes. We characterize the g

2
= 1 case.

Specifically, we prove that every simplicial d-polytope (d ≥ 4) which
is prime and with g

2
= 1 is combinatorially equivalent either to a join

of two simplices whose dimensions add up to d (each of dimension at
least 2), or to a join of a polygon with a (d − 2)-simplex. Thus, every
simplicial d-polytope (d ≥ 4) with g

2
= 1 is combinatorially equivalent to

a polytope obtained by stacking over a polytope as above. Moreover, the
above characterization holds for any homology (d−1)-sphere (d ≥ 4) with
g
2

= 1.

1 Introduction and results

Let fi(K) denote the number of i-dimensional faces in a simplicial complex
K. In particular, f0 counts vertices and f1 counts edges. Let g2(K) := f1(K)−
d f0 +

(

d+1
2

)

where d is the maximal size of a face of K. (This notation is standard
in face-vector theory, see e.g. [23] for details.) The well known Lower Bound
Theorem (LBT) proved by Barnette [6, 7, 5], asserts that if K is the boundary
complex of a simplicial d-polytope, or more generally a finite triangulation of
a connected compact (d − 1)-manifold without boundary, where d ≥ 3, then
g2(K) ≥ 0. Kalai considered several generalizations of this result, including
to homology manifolds, and characterized the case of equality [14]. To state
his result, define stacked polytopes: a stacking is the operation of adding a
pyramid over a facet of a given simplicial polytope. A polytope is stacked if
it can be obtained from a simplex by repeating the stacking operation (finitely
many times, may be zero). We will make use of the following result:

Theorem 1.1. [6, 5] and [14, Theorems 6.2 and 7.1] Let d ≥ 4, and let K be
the boundary complex of a simplicial d-polytope, or more generally a homology
(d − 1)-manifold. Then g2(K) ≥ 0 and equality holds iff K is combinatorially
isomorphic to the boundary complex of a stacked d-polytope.
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Kalai’s proof is based on results from rigidity theory, to be discussed later;
see also Gromov [12] for a proof of the nonnegativity of g2.

A subset F of the vertices of a simplicial complex K is called a missing face
of K if F /∈ K and all proper subsets of F are in K. A simplicial d-polytope
is called prime if its boundary complex contains no missing (d − 1)-faces and
is not the simplex. Similarly, prime homology spheres are defined. In [16,
Theorem 3.10] Kalai claimed that there exists a function u(d, b) such that if
the boundary complex K of a prime d-polytope (d ≥ 4) satisfies g2(K) ≤ b
then f0(K) ≤ u(d, b). We provide a counterexample (Example 1.2). First, some
notation: the boundary complex of a simplicial polytope P is denoted by ∂(P ),
or simply by ∂P . The join of two polytopes P,Q, denoted by P ∗Q, is defined as
the convex hull of their union when P and Q are embedded in orthogonal spaces
with the origin in the interior of both. Indeed, the combinatorial type of P ∗Q is
well defined: its boundary complex is ∂P ∗∂Q, where the join of two simplicial
complexes K,L is the collection of disjoint unions {A ⊎ B : A ∈ K, B ∈ L}.
A direct computation shows:

Example 1.2. Let Cn be a convex 2-polytope with n vertices and let σm be
the m-simplex. Then for every d ≥ 4 and any n ≥ 3, Cn ∗ σd−2 is a prime
d-polytope with g2(∂(Cn ∗ σd−2)) = 1.

Our main result is that this example is the only counterexample for b = 1
in Kalai’s [16, Theorem 3.10]:

Theorem 1.3. Let d ≥ 4, and let K be the boundary complex of a prime d-
polytope, or more generally a homology (d−1)-sphere. Assume that g2(K) = 1.
Then K is combinatorially isomorphic to either the join of boundary complexes
of two simplices whose dimensions add up to d (each simplex of dimension
at least 2), or the join of the boundary complexes of a convex polygon and a
(d − 2)-simplex.

Note that any simplicial polytope, can be (uniquely) presented as a con-
nected sum of prime polytopes and simplices, and similarly for homology spheres,
and that g2 of a connected sum is the sum of g2’s of its components. (Recall
that the connected sum of two disjoint simplicial complexes of equal dimen-
sion is the operation of identifying by a bijection the vertices in a facet of one
with the vertices in a facet of the other, identifying the faces they form ac-
cordingly, and later deleting the identified facet. Thus, the connected sum of
homology spheres is a homology sphere, by an easy Mayer-Vietoris argument
and Alexander duality. For polytopes, after suitable projective transformations
of each, which of course preserve their combinatorial structure, the connected
sum, which is gluing along a facet of each, can be made convex too.) Thus, by
Theorems 1.1 and 1.3 we conclude that

Corollary 1.4. Let d ≥ 4, and let K be the boundary complex of a d-polytope,
or a homology (d − 1)-sphere, with g2(K) = 1. Then K is combinatorially
isomorphic to the boundary complex of a polytope obtained by repeated stacking,
starting from either the join of two simplices whose dimensions add up to d, or
from the join of a polygon and a (d − 2)-simplex.
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This result can be compared with Perles’ characterization of polytopes with
2 ≥ g1 := f0 −(d + 1) [13, Chapter 6] and with Mani’s result that triangulated
spheres with g1 ≤ 2 are polytopal [17].

The proof of Theorem 1.3 is based on rigidity theory for graphs, introduced
in [1, 2]. Basic properties of polytopes are also used, and in the homology
spheres case Alexander duality plays a role.

It would be interesting to know whether the following corrects the above
miss-statement of Kalai:

Problem 1.5. Let P be the family of prime polytopes, of dimension ≥ 4, which
are not the join of a polygon with a simplex. Does there exist a function u(d, b)
such that for each P ∈ P with g2(P ) = b and dim(P ) = d, f0(P ) ≤ u(d, b)?

This paper is organized as follows: in Section 2 we give the necessary back-
ground for polytopes and homology spheres, and develop the needed results in
rigidity theory of graphs. In Section 3 we prove Theorem 1.3 and discuss some
extensions of it and related open problems.

2 Background

Polytopes and homology spheres. For unexplained terminology we refer
to textbooks on polytopes, e.g. [13, 28], and on simplicial homology, e.g. [19].
The i-skeleton of a simplicial complex K is K≤i = {F ∈ K : |F | ≤ i + 1}, and
Ki := {F ∈ K : |F | = i+1}. The link of a face F in a K is lk(F ) = lk(F,K) =
{T ∈ K : T ∩ F = ∅, T ∪ F ∈ K}, its closed star is st(F ) = st(F,K) = {T ∈
K : T ∪ F ∈ K}, its antistar is ast(F ) = ast(F,K) = {T ∈ K : T ∩ F = ∅};
they are simplicial complexes as well. The (open) star of F is the collection of
sets st(F ) = st(F,K) = {T ∈ K : F ⊆ T}.

Note that for a vertex v in a simplicial polytope P , its vertex figure P/v
satisfies ∂(P/v) = lk(v, ∂P ).

A homology sphere is a simplicial complex K such that for every face F in K
(including the empty set), and for every 0 ≤ i there is an isomorphism of reduced
homology groups H̃i(lk(F,K);Z) ∼= H̃i(S

dim(K)−|F |;Z) where Sm denotes the
m-dimensional sphere and Z the integers (actually any fixed coefficients ring
works for Theorem 1.3). In particular, a boundary complex of a simplicial
polytope is a homology sphere; however there are many non-polytopal examples
of homology spheres, e.g. [15]. Alexander Duality holds for homology spheres,
e.g. [19, Chapter 8, §71]:

Theorem 2.1. (Alexander Duality) Let A be a proper nonempty subcomplex of
a homology n-sphere K. Then for every k, H̃k(A) ∼= H̃n−k−1(|K| − |A|). (Here
H̃k denotes reduced cohomology, |K| a geometric realization of K, and |A| is
the subset of |K| induced by A ⊆ K).

In particular (we will use only these facts in the sequel), for A an m-
homology sphere, K − A is homologic to Sn−m−1. If m = n − 1 then A is
the common boundary of the two connected components of K − A.

3



Rigidity. The presentation here is based mainly on Kalai’s [14]. Let G =
(V,E) be a simple graph. Let d(a, b) denote Euclidian distance between points
a and b in Euclidian space. A d-embedding is a map f : V → R

d. It is called
rigid if there exists an ε > 0 such that if g : V → R

d satisfies d(f(v), g(v)) < ε
for every v ∈ V and d(g(u), g(w)) = d(f(u), f(w)) for every {u,w} ∈ E, then
d(g(u), g(w)) = d(f(u), f(w)) for every u,w ∈ V . Loosely speaking, f is rigid
if any perturbation of it which preserves the lengths of the edges is induced
by an isometry of R

d. G is called generically d-rigid if the set of its rigid
d-embeddings is open and dense in the topological vector space of all of its
d-embeddings. Given a d-embedding f : V → R

d, a stress w.r.t. f is a function
w : E → R such that for every vertex v ∈ V

∑

u:{v,u}∈E

w({v, u})(f(v) − f(u)) = 0.

G is called generically d-stress free if the set of its d-embeddings which have a
unique stress (w = 0) is open and dense in the space of all of its d-embeddings.

Rigidity and stress freeness can be related as follows: Let V = [n], and let
Rig(G, f) be the dn × |E| matrix associated with a d-embedding f of V (G)
defined as follows: for its column corresponding to {v < u} ∈ E put the
vector f(v)− f(u) (resp. f(u)− f(v)) at the entries of the rows corresponding
to v (resp. u) and zero otherwise. G is generically d-stress free if the kernel
Ker(Rig(G, f)) = 0 for a generic f (i.e. for an open dense set of embeddings). G
is generically d-rigid if the images Im(Rig(G, f)) = Im(Rig(KV , f) for a generic
f , where KV is the complete graph on V = V (G). The dimensions of the kernel
and image of Rig(G, f) are independent of the generic f we choose; Rig(G, f) is
the rigidity matrix of G, denoted by Rig(G, d) for a generic f . For the complete
graph, one computes rank(Rig(KV , d)) = dn −

(

d+1
2

)

(see Asimov and Roth [1]
for more details). In particular, if G is generically d-rigid then g2(G) is the
dimension of Ker(Rig(G, d)). We say that en edge {u, v} participates in a stress
w if w({u, v}) 6= 0, and that a vertex v participates in w if there exists a vertex
u such that the edge {u, v} participates in w.

We need the following known results for the proof of Theorem 1.3:

Lemma 2.2. (Cone Lemma [27, Teorem 5], also [26, Theorem 1.3]) Let C(G)
be the graph of the cone over a graph G, i.e. C(G) = ({u} ∗ G)≤1 where
u /∈ G. Then for every d > 0, Ker(Rig(C(G), d + 1)) ∼= Ker(Rig(G, d)) as
real vector spaces. Moreover, u participates in a stress of C(G), provided that
Ker(Rig(G, d)) 6= {0}.

Remark 2.3. The ‘moreover part’ does not appear explicitly in [27, 26] but is
clear for generic embeddings from the isomorphism constructed there.

Lemma 2.4. (Gluing Lemma [2]) Let Gi = (Vi, Ei) be generically d-rigid
graphs, i = 1, 2, such that G1 ∩ G2 has at least d vertices. Then G1 ∪ G2

is generically d-rigid.

By Cauchy’s rigidity theorem, (resp. Gluck’s rigidity result for triangulated
2-sphere [11]), the following holds:
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Lemma 2.5. Let G be the graph of a convex 3-polytope (or of a homology
2-sphere. They coincide). Then G is generically 3-rigid and 3-stress free.

Using this fact as the base of induction, and the Cone and Gluing Lemmata
for the induction step, Kalai [14] proved:

Lemma 2.6. Graphs of homology (d − 1)-spheres are generically d-rigid for
d ≥ 3.

Lemma 2.7. ([14, Theorems 7.1 and 9.3]) Let d ≥ 4, and let K be the boundary
complex of a d-polytope, or a homology (d−1)-sphere. If for every vertex v ∈ K
the link lk(v) is the boundary of a stacked polytope, then K is the boundary of
a stacked polytope.

The following proposition seems to be new:

Proposition 2.8. Let d ≥ 4 and K be the boundary complex of a prime d-
polytope, or a prime homology (d− 1)-sphere. Then every vertex u ∈ K partic-
ipates in a generic d-stress of the graph of K.

Proof. Let u ∈ K be a vertex. If lk(u) is not stacked, then by Theorem 1.1 and
the Cone Lemma u participates in generic d-stress of the graph of K. Similarly,
if there exists an edge in ast(u) − lk(u) whose two vertices are in lk(u)0, then
by Lemma 2.6 and the Cone Lemma u participates in generic d-stress of the
graph of K.

Thus, assume that lk(u) is stacked and that ast(u)− lk(u) contains no edges
with both ends in lk(u)0. We now show that ast(u) − lk(u) contains a vertex
and that each vertex in lk(u)0 is contained in a facet of ast(u) with a vertex in
ast(u) − lk(u). Indeed, otherwise there is a (d − 2)-face F in ast(u) which is a
missing face in lk(u). Thus, F ∪ {u} is a missing facet of K, contradicting the
assumption that K is prime.

By Lemma 2.6 and the Cone and Gluing Lemmata, ∪v∈(ast(u)−lk(u))0st(v)
has a generically d-rigid graph, and by the above, so has ast(u). Adding the
edges with u can increase the rank of the rigidity matrix of ast(u)≤1 by at
most d. As K is prime, u has at least d + 1 neighbors, hence the edges with u
contribute to the kernel of the rigidity matrix, i.e. u participates in a generic
d-stress of K≤1.

3 Proof of Theorem 1.3

In each of the following lemmata we first prove the assertion for polytopes, then
indicate the needed modification for homology spheres. Theorem 1.3 is then
proved for both polytopes and homology spheres in tandem, by induction on
dimension. The following proposition allows the inductive step:

Proposition 3.1. Let d > 4 and K be the boundary complex of a prime d-
polytope, or homology (d − 1)-sphere, with g2(K) = 1. Then, there exists a
vertex u ∈ K such that lk(u) satisfies:

(a) g2(lk(u)) = 1.
(b) lk(u)0 = K0 − {u}.
(c) lk(u) is prime.
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Proof. As g2(K) > 0, by Lemma 2.7 there exists a vertex u ∈ K whose link is
not stacked. By Theorem 1.1, g2(lk(u)) > 0. By the Cone Lemma and Lemma
2.6, g2(lk(u)) = dim Ker Rig((st(u))≤1, d) ≤ dim Ker Rig(K≤1, d) = g2(K) = 1.
Hence g2(lk(u)) = 1, proving (a).

By (a) and the Cone Lemma, there is a generic d-stress in K in which only
vertices in st(u) participate. As g2(K) = 1, no other vertex in K participate in
any non trivial stress. By Proposition 2.8, K0 = (st(u))0, proving (b).

Assume by contradiction that lk(u) is not prime, hence inserting all of its
missing facets cuts lk(u) into at least two parts, one of which is prime and the
others must be simplices (it follows from Proposition 2.8, as otherwise one gets
two independent generic (d − 1)-stresses in the graph of lk(u). Alternatively
use the fact that g2(L♯Q) = g2(L) + g2(Q) for a connected sum L♯Q). Hence
there exists a missing facet F of lk(u) whose insertion cuts lk(u) so that the
boundary of a simplex σ forms one side (for homology spheres we conclude the
existence of such F by Alexander duality, the separation statement in Theorem
2.1).

Note that F /∈ K, otherwise F ∪ {u} would be a missing facet of K. By
(b), ast(u) − lk(u) := {T ∈ ast(u) : T /∈ lk(u)} contains no vertices, and by (a)
and the fact that st(u) is d-rigid, it contains no edges (otherwise g2(K) ≥ 2,
a contradiction). Thus, a (d − 1)-face S of ∂σ ∩ lk(u) is not contained in any
d-face of ast(u). But such S must be contained in (exactly) one d-face of ast(u),
a contradiction proving (c).

The following two propositions establish the base of induction, namely the
case d = 4.

Proposition 3.2. Let K be the boundary complex of a prime 4-polytope, or a
homology 3-sphere, with g2(K) = 1 and with a missing triangle T . Then K is
combinatorially isomorphic to the join of the boundary complexes of T and a
polygon.

Proof. Let T = {a, b, c}. First we show that lk(a)0 = K0 − {a}. lk(a)≤1 is
generically 3-rigid, as it is the 1-skeleton of a convex 3-polytope (clearly true
for K the boundary complex of a polytope, and note that any homology 2-sphere
is a topological 2-sphere and hence can be realized as the boundary of a convex
3-polytope by Steinitz’ theorem [24]). This graph together with the edge {b, c}
has a generic 3-stress. By the Cone Lemma, G := ({a} ∗ (lk(a) ∪ {b, c}))≤1

has a generic 4-stress. G is contained in K≤1. Assume by contradiction the
existence of a vertex v ∈ K0 − G0. By Proposition 2.8, v participates in a
generic 4-stress of K≤1. Such a stress is independent of the former stress that
we found, resulting in g2(K) ≥ 2, a contradiction.

By the Cone Lemma and Lemma 2.6, the graph of st(a) is generically 4-rigid
and 4-stress free. This graph contains K0, hence there exists exactly one edge
in ast(a) − lk(a), which must be {b, c}.

Let C denote the cycle lk({b, c},K), and ΣC denote the suspension of C
by b and c, namely ΣC = {b} ∗ C ∪ {c} ∗ C. Next we show that lk(a) contains
ΣC. We have already seen that lk(a)≤1 ⊇ (ΣC)≤1. If a triangle F ∈ ΣC is
not contained in lk(a) then F ∪ {a} is missing in K, contradicting that K is
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prime. Thus ΣC ⊆ lk(a), hence L := {a} ∗ΣC ∪ΣC st({b, c}) = C ∗ ∂(T ) is the
boundary of a 4-polytope such that L ⊆ K. Note that by Alexander duality
a homology d-sphere cannot strictly contain another homology d-sphere, hence
K = L = C ∗ ∂(T ) for K a homology sphere.

Proposition 3.3. If K is the boundary complex of a prime 4-polytope, or a
homology 3-sphere, with g2(K) = 1, then K has a missing triangle.

Proof. Assume by contradiction that K has no missing triangles. As K is
prime, all of its missing faces are edges (a complex with this property is called
clique complex ), and K has a missing edge, say {u, u′}. Note that for every
vertex w ∈ lk(u), lk(w, lk(u)) is a cycle of length at least 4, as lk(u) contains no
missing triangle, otherwise K would not be a clique complex. Similarly, there
is a vertex in ast(w, lk(u)) − lk(w, lk(u)), otherwise w would form a missing
triangle with the vertices of an edge in ast(w, lk(u)) − lk(w, lk(u)).

Let v ∈ lk(u) and I := ast(v, lk(u))0 − lk(v, lk(u))0. Then 0 < |I| ≤
| lk(u)0| − 5. Note that K contains no face of the form {v} ∪ F where F ∈
ast(v, lk(u)) − lk(v, lk(u)), as K is a clique complex. Thus K ′ := (K − st(u)) ∪
{v} ∗ ast(v, lk(u)) has the same topology as K. In fact, K and K ′ are piece-
wise linear (PL for short) homeomorphic [21, Theorem 1.4] (and its proof, for
the case of 3-homology spheres). If K is any homology 3-sphere then K ′ is a
homology 3-sphere as well. To see this, recall that being a homology sphere is
a topological property [20]. Alternatively, use a a Mayer-Vietoris argument.

Next, let us verify that K ′ is prime. Any face in K ′ − K contains an edge
{v, i} for some i ∈ I 6= ∅ and is contained in lk(u,K)0. Together with the fact
that K is prime, this implies that all the vertices of a missing tetrahedron of
K ′ must lie in lk(u,K)0. However, the induced complex in K ′ on lk(u,K)0 is
a cone (over v), hence contains no missing tetrahedra. In particular, K ′ is not
stacked (clearly K ′ is not the 4-simplex).

On the other hand, g2(K
′) = g2(K)− | lk(u,K)0|+ |I| + 4 ≤ 1− 5 + 4 = 0.

This contradicts Theorem 1.1.

Remark 3.4. Alternatively, Proposition 3.3 can be proved via the Charney-
Davis conjecture [9] which was proved for homology 3-spheres by Davis and
Okun [10]. It asserts that for a homology clique 3-sphere K, g2(K)− (f0(K)−
5) + 1 ≥ 0. In our case (g2(K) = 1) we get f0(K) ≤ 7. As K is a clique
sphere, it contains at least as many vertices as the octahedral 3-sphere, e.g.
[18, Theorem 1.1], i.e. 8 vertices; a contradiction.

Proof of Theorem 1.3: By Propositions 3.2 and 3.3 the assertion holds for
d = 4. For d > 4, by Proposition 3.1 there exists a vertex u ∈ K such that K0 =
{u}∪ lk(u)0 and the conditions of Theorem 1.3 hold for lk(u), thus by induction
also the conclusion of Theorem 1.3 holds for lk(u). Clearly, ast(u) − lk(u) is
nonempty, and any face in ast(u) − lk(u) must contain a missing face of lk(u).
By the Cone Lemma, g2(st(u)) = 1 = g2(K), hence all the edges in ast(u) are
already in lk(u). Note that the missing faces in a join are the faces which are
missing in one of its components.
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Case 1: lk(u) = ∂σ ∗C for a (d− 3)-simplex σ and a cycle C. Then σ ∈ K.
As lk(σ,K) is a cycle and is contained in C, lk(σ,K) = C and ast(u,K) = σ∗C.
Thus, K = ∂(σ ∪ {u}) ∗ C.

Case 2: lk(u) = ∂σ ∗ ∂τ for simplices σ and τ whose dimensions add up
to d − 1. Then σ ∈ K or τ ∈ K, and we show now that exactly one of them
is in K. If σ ∈ K, then as lk(σ,K) is a boundary of a (dim τ)-polytope /a
homology (dim τ − 1)-sphere and is contained in ∂τ we must have lk(σ,K) =
∂τ . Similarly, if τ ∈ K then lk(τ,K) = ∂σ, hence K strictly contains the
boundary of a d-polytope, which is in particular a (d − 1)-homology sphere,
namely ∂(σ ∗ τ) = σ ∗ ∂τ ∪ ∂σ ∗ τ ; a contradiction. W.l.o.g. let us assume
σ ∈ K. Then K = ∂(σ ∪ {u}) ∗ ∂τ . �

Remark 3.5. Let d ≥ 4 and K be a (d−1)-dimensional combinatorial manifold
without boundary and with g2(K) = 1. Then K is homeomorphic to a sphere,
and hence Theorem 1.3 applies to K.

Proof. If K is not prime then either it has a connected sum decomposition
K = L♯Q such that g2(L) = 1 and g2(Q) = 0 or it is obtained by handle
forming from another combinatorial manifold without boundary K ′ (i.e. by
combinatorially identifying two disjoint closed facets of K ′ and deleting their
interior). Here we used the fact that d ≥ 4; see [3] for a proof of this fact.

In the first case, by Theorem 1.1 Q is a stacked sphere and by induction on
the number of vertices L is homeomorphic to a sphere, and we are done. In the
second case, g2(K

′) = g2(K) −
(

d+1
2

)

< 0 contradicting Theorem 1.1.
Assume that K is prime. If there exists another simplicial complex M which

is PL-homeomorphic to K, and with smaller g2 value, then M is a stacked
sphere, hence K is a PL-sphere. Otherwise, Swartz [25] showed that K has at
most d + 2 vertices and hence K is a PL-sphere [4].

It is natural to ask for a characterization of (prime) simplicial polytopes
with a given g2. First, observe the following:

Observation 3.6. Let g be the g-vector of a simplicial d-polytope with d ≥ 4
and g2 > 0. Then there exists a prime d-polytope whose g-vector agrees with g
except maybe in the g1 entry.

Proof. The connected sum L♯Q of two d-polytopes L and Q satisfies g2(L♯Q) =
g2(L)+g2(Q) and g1(L♯Q) = g1(L)+g1(Q)+1 (where g1(L) := f0(L)−d−1).
There exists a unique positive integer c such that

(

c
2

)

< g2 ≤
(

c+1
2

)

. By the
sufficiency part of the g-theorem [8] there exists a simplicial polytope P with
g1(P ) = c and gi(P ) = gi for any 2 ≤ i. By the necessity part of the g-theorem
[22] any simplicial polytope P with g2(P ) = g2 satisfies g1(P ) ≥ c. In particular,
the minimality of c implies that if P = L♯Q then non of L,Q is a simplex, hence
w.l.o.g. g1(L), g1(Q) > 0. The necessity part again implies g2(L) ≤

(g1(L)+1
2

)

and g2(Q) ≤
(

g1(Q)+1
2

)

, hence g2(P ) = g2(L) + g2(Q) <
(

g1(L)+g1(Q)+1
2

)

=
(

c
2

)

,
a contradiction.

Problem 3.7. Characterize the prime polytopes with g2 = 2.
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