V. FIELDS AND GALOIS THEORY

V.4. Galois Group of a Polynomial.

- 2. Suppose K is a subfield of \mathbb{R} and that f is irreducible of degree 3. Let D(f) be the discriminant of f. Then
 - a) $D > 0 \iff f$ has three real roots.
 - b) $D < 0 \iff f$ has precisely one real root.

First, note by basic calculus or complex analysis, that the roots of a polynomial with real coefficients always occur in conjugate pairs. This implies that f must have either 1 or 3 real roots. Since the discriminant is defined only in terms of the distinct roots, $D(f) \neq 0$. In sum, (a) and (b) are essentially equivalent statements, and it suffices to prove only (b).

 \implies f has odd degree, so f has at least one real root u_1 , by exercise III.6.16, or by the statement above. Let u_2, u_3 be the other two roots of f. Then

$$u_2, u_3 \in \mathbb{R} \implies (u_1 - u_2), (u_1 - u_3), (u_2 - u_3) \in \mathbb{R}$$
$$\implies (u_1 - u_2) (u_1 - u_3) (u_2 - u_3) = \Delta \in \mathbb{R}$$
$$\implies D = \Delta^2 > 0.$$

So it must be the case that $u_2, u_3 \in \mathbb{C} \setminus \mathbb{R}$

 \subseteq Let $f = (x - u_1) (x - u_2) (x - u_3)$ with $u_1 \in \mathbb{R}$ and $u_2, u_3 \in \mathbb{C} \setminus \mathbb{R}$. Note that $u_3 = \overline{u_2}$, so we get

$$\Delta = (u_1 - u_2) (u_1 - u_3) (u_2 - u_3)$$

= $(u_1 - (a + bi)) (u_1 - (a - bi)) (2bi)$
= $2bi (u_1 - a - bi) (u_1 - a + bi)$
= $2bi ((u_1 - a) - bi) ((u_1 - a) + bi)$
= $2bi ((u_1 - a)^2 + b^2)$,

which is clearly purely imaginary. Hence, $D = \Delta^2 < 0$.

3. f is a separable cubic with Galois group S_3 and roots $u_1, u_2, u_3 \in F$. Then the distinct intermediate fields of F : K are $F, K(\Delta), K(u_1), K(u_2), K(u_3), K$, and the corresponding subgroups of the Galois group are $1, A_3, T_1, T_2, T_3, S_3$, where $T_i = \{(1), (jk)\}$ for $j, k \neq i$.

Note that if F is the splitting field of f over K, then $1, A_3, T_1, T_2, T_3, S_3$ are all the distinct subgroups of $\operatorname{Aut}_K F$. By the Fundamental Theorem of Galois Theory, there is a bijective correspondence between these subgroups and the intermediate fields of the extension F : K. We know by Corollary 4.7 that $\operatorname{Aut}_{K(\Delta)} F = \operatorname{Aut}_K F \cup A_3 = A_3$, so it only remains to check that $\operatorname{Aut}_{K(u_i)} F = T_i$. But we have by the definition of T_1 that $T_1 = \{\tau_1, \tau_2\}$, where

$$\tau_1 = \begin{pmatrix} u_1 & u_2 & u_3 \\ u_1 & u_2 & u_3 \end{pmatrix} \text{ and } \tau_2 = \begin{pmatrix} u_1 & u_2 & u_3 \\ u_1 & u_3 & u_2 \end{pmatrix},$$

and similarly for T_2, T_3 . So clearly, the elements of T_i are precisely those automorphisms which fix u_i and thus $K(u_i)$.

6. Over any base field K, $f(x) = x^3 - 3x + 1$ is either irreducible or splits over K. First note that $f' = (x^3 - 3x + 1)' = 3x^2 - 3$, so

f has multiple roots $\iff 3x^2 - 3 = 0 \iff \text{char } K = 3.$

case i) char $K \neq 3$.

Suppose f has roots u_1, u_2, u_3 . Suppose f neither is irreducible nor splits in K. Then f is reducible $\implies u_1 \in K$. Then $f(x) = (x - u_1)g(x)$, where $g(x) \in K[x]$ is irreducible. Note: deg g = 2, so [F:K] = 2.

Let F be the splitting field of g over K (so F is also the splitting field of f). Since we are considering the case that $u_2 \neq u_3$, g is a separable polynomial. Hence, F is the splitting field of a separable polynomial, and thus Galois over K.

Now we consider $\sigma \in \operatorname{Aut}_K F$. $\sigma(u_1) = u_1$ because σ fixes K and $u_1 \in K$. Since σ permutes the roots of f, $\sigma(u_2) = u_2$ or u_3 . Consider the case $\sigma(u_2) = u_3$. We compute

$$\sigma(\Delta) = \sigma \left((u_1 - u_2) (u_1 - u_3) (u_2 - u_3) \right)$$

= $(\sigma(u_1) - \sigma(u_2)) (\sigma(u_1) - \sigma(u_3)) (\sigma(u_2) - \sigma(u_3))$
= $(u_1 - u_3) (u_1 - u_2) (u_3 - u_2)$
= $-\Delta$

But we can also compute Δ directly; application of 4.8 shows that the discriminant of f is

$$D(f) = -4(-3)^3 - 27(1)^2 = 81$$

This implies that $\Delta = \pm 9$. Since $\pm 9 \in K, \forall K, \Delta \in K$. However, $\sigma \in Aut_K F \implies \sigma(\Delta) = \Delta$. But then $9 = -9 \implies 9 \equiv 0 \implies char K = 3$, $5 char K \neq 3$ was our hypothesis for case (i).

case ii) char K = 3.

In this case,

$$f(x) = x^{3} + 1 = (x - 2) (x^{2} + 2x + 1) = (x - 2)^{3},$$

so f is clearly reducible.

10. Determine the Galois groups of the following polynomials over the fields indicated.

b)
$$f(x) = (x^3 - 2)(x^2 - 3)(x^2 - 5)(x^2 - 7)$$
 over \mathbb{Q} .

deg f = 9, so f has 9 roots u_1, u_2, \ldots, u_9 . If u_i is a root of f, it is a root of exactly one of the irreducible factors of f. For example,

$$u^{3} - 2 = 0 \implies u^{2} - 3, u^{2} - 5, u^{2} - 7 \neq 0.$$

 $(x^3 - 2)$ has Galois group $A_3 = \mathbb{Z}_3$,¹ and each of the other factors has Galois group \mathbb{Z}_2 , so

$$\operatorname{Gal}_{\mathbb{Q}}(f) = \mathbb{Z}_3 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2.$$

c) $f(x) = x^3 - x - 1$ over \mathbb{Q} ; over $\mathbb{Q}(i\sqrt{23})$.

f is irreducible over \mathbb{Q} by the rational roots test (III.6.8): the only possible roots would be ± 1 , but f(1) = -1 and f(-1) = -1. Since the field is \mathbb{Q} , fis obviously separable, so $\operatorname{Gal}_{\mathbb{Q}}(f)$ is either S_3 or A_3 , by Corollary 4.7. Then using Proposition 4.8 (with b = 0), we get $g(x) = f(x) = x^3 + px + q$, where p = -1, q = -1, so that

$$D(f) = -4p^3 - 27q^2 = 4 - 27 = -23.$$

Since D(f) = -23 is not the square of any rational number, $\operatorname{Gal}_{\mathbb{Q}}(f) = S_3$, by Corollary 4.7 again.

Then if we consider $\mathbb{Q}(i\sqrt{23})$, note that f is irreducible over $\mathbb{Q}(i\sqrt{23})$ because it is irreducible over \mathbb{Q} and $i\sqrt{23}$ is not a root of f. Then f is separable since char $\mathbb{Q} = 0$, and we get $\operatorname{Gal}_{\mathbb{Q}(i\sqrt{23})}(f) = A_3$, for the same reasons as above. \Box

h) $f(x) = (x^3 - 2)(x^2 - 5)$ over \mathbb{Q} .

By arguments identical to part (b), $\operatorname{Gal}_{\mathbb{Q}}(f) = \mathbb{Z}_3 \oplus \mathbb{Z}_2$.

¹See #11 for justification.

11. Determine all the subgroups of the Galois group and all of the intermediate fields of the splitting field of $f(x) = (x^3 - 2)(x^2 - 3) \in \mathbb{Q}[x]$ over \mathbb{Q} .

Denote the roots of f by $u_1 = \sqrt[3]{2}e^{2\pi i/3}, u_2 = \sqrt[3]{2}e^{4\pi i/3}, u_3 = \sqrt[3]{2}, v_1 = \sqrt{3}, v_2 = \sqrt[3]{2}e^{2\pi i/3}, u_3 = \sqrt[3]{2}e^{2\pi i/3}, u_4 = \sqrt[3]{2}e^{2\pi i/3}, u_5 = \sqrt[3]{2}e^{2\pi i/3}, u_6 = \sqrt[3]{2}e^{2\pi i/3}, u_7 = \sqrt[3]{2}e^{2\pi i/3}, u_8 = \sqrt[3]{2}e^{2$ $-\sqrt{3}$, and note that the splitting field of f over \mathbb{Q} is $\mathbb{Q}(u_1, v_1)$. We know that $\operatorname{Gal}_{\mathbb{Q}}(f)$ will be $\mathbb{Z}_3 \oplus \mathbb{Z}_2$ or $A_3 \oplus \mathbb{Z}_2$, according as $\operatorname{Gal}_{\mathbb{Q}}(x^3 - 2)$ is $S_3 = \mathbb{Z}_3$ or A_3 . We use 4.8 to find the discriminant of $\varphi(x) = x^3 - 2$:

$$\varphi(x - \frac{b}{3}) = g(x) = x^3 - 2 = \varphi(x)$$

because b = 0, c = 0, so the discriminant of φ is

$$D(\varphi) = -27(-2)^2 = -108$$

by 4.8. Since -108 is not the square of any rational number, $\operatorname{Gal}_{\mathbb{Q}}(\varphi) = A_3$, by 4.7. Thus, $\operatorname{Gal}_{\mathbb{Q}}(f) = A_3 \oplus \mathbb{Z}_2$. Now, $A_3 = \mathbb{Z}_3$ has no nontrivial proper subgroups, so the subgroup lattice of $\operatorname{Aut}_{\mathbb{Q}}\mathbb{Q}(u_1, v_1)$ is ...

and the intermediate field lattice is ...

So the only subgroups of $\operatorname{Gal}_{\mathbb{Q}}(f)$ are $\mathbb{Z}_3 \oplus 1$ and $1 \oplus \mathbb{Z}_2$, and the corresponding subfields of $\mathbb{Q}(u_1, v_1)$ are $\mathbb{Q}(u_1)$ and $\mathbb{Q}(v_1)$.