
I. The Hölder Inequality

Hölder: ‖fg‖1 ≤ ‖f‖p‖g‖q for 1
p + 1

q = 1.

What does it give us?
Hölder: (Lp)∗ = Lq (Riesz Rep), also: relations between Lp spaces

I.1. How to prove Hölder inequality.

(1) Prove Young’s Inequality: ab ≤ ap

p
+ bq

q
.

(2) Then put A = ‖f‖p, B = ‖g‖q. Note: A,B 6= 0 or else trivial. Then

let a = |f(x)|
A , b = |g(x)|

B and apply Young’s:

ab = |f(x)g(x)|
AB ≤ |f(x)|p

pAp + |g(x)|q
qAq =

ap

p
+
bq

q

1
AB

∫
|f(x)g(x)|dµ ≤ 1

pAp

∫
|f |pdµ+ 1

qBq

∫
|g|qdµ

but Ap =
∫
|f |pdµ and Bq =

∫
|g|qdµ, so this is

1
‖f‖p‖g‖q

‖fg‖1 ≤ 1
p + 1

q = 1

‖fg‖1 ≤ ‖f‖p‖g‖q

I.1.1. How to prove Young’s inequality.
There are many ways.

1. Use Math 9A. [Lapidus]
Wlog, let a, b <∞ (otherwise, trivial).
Define f(x) = xp

p + 1
q − x on [0,∞) and use the first derivative test:

f ′(x) = xp−1 − 1, so f ′(x) = 0 ⇐⇒ xp−1 = 1 ⇐⇒ x = 1.

So f attains its min on [0,∞) at x = 1. (f ′′ ≥ 0).
Note f(1) = 1

p + 1
q − 1 = 0 (conj exp!).

So f(x) ≥ f(1) = 0 =⇒ xp

p + 1
q − x ≥ 0

=⇒ xp

p
+ 1

q
≥ x
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Ansatz: x = ab1/(1−p). Then xp = apbp/(1−p) = apb−q:

ab1/(1−p) ≤ apb−q

p + 1
q

p
1−p = −q

ab ≤ ap

p

(
b

p
1−p

)(
b−

p
1−p

)
+ 1

qb
− p

1−p b
1− 1

1−p = b
− p

1−p

ab ≤ ap

p + bq

q

2. Use Math 9B. [Cohn]
Consider the graph of t = sp−1:

Figure 1. The graph of t = sp−1

sa

t

b

(1)

(2)

t = s p-1

Since
1
p + 1

q = 1 =⇒ 1
p = 1 − 1

q = q−1
q =⇒ p = qq − 1 =⇒ p− 1 = 1

q−1,

this is also the graph of s = tq−1.

Now (1) =
∫ a

0 s
p−1 = sp

p

]a
0

= ap

p ,

and (2) =
∫ b

0 t
q−1 = tq

q

]b
0

= bq

q
.

Thus the area of the entire shaded region is (1)+(2) = ap

p + bq

q , which
is clearly always larger than the box of area ab:

I.1.2. A proof without Young’s inequality.
Use convexity [Rudin]:

ϕ ((1 − λ)x+ λy) ≤ (1 − λ)ϕ(x) + λϕ(y).



Real Analysis Qual Seminar 3

Figure 2. The inherent inequality

sa

t

b

t = s p-1

ab

extra

sa

t

b

t = s p-1

ab

extra

Since f ∈ Lp, g ∈ Lq, we have 0 < ‖f‖p, ‖g‖q <∞, wlog.

Define F (x) = |f(x)|
‖f‖p

and G(x) = |g(x)|
‖g‖q

so that

∫
F pdµ =

∫ |f(x)|p
‖f‖p

p
dµ =

∫
|f |pdµ∫
|f |pdµ = 1

and
∫
Gq = 1 similarly.

Now define

s(x) = log

( |f(x)|
‖f‖p

)p

, t(x) = log

( |g(x)|
‖g‖q

)q

,

so that

F (x) = es(x)/p and G(x) = et(x)/q.

Since ex is a convex function, put λ = 1
q

and get

e
s(x)
p +

t(x)
q ≤ 1

pe
s(x)
p + 1

qe
t(x)
q

=⇒ F (x)G(x) ≤ F (x)p

p + G(x)q

q .
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Now integrate the left side and get

‖FG‖1 =

∫
|FG|dµ

=

∫ |fg|
‖f‖p‖g‖q

dµ

=
1

‖f‖p‖g‖q

∫
|fg|dµ

=
‖fg‖1

‖f‖p‖g‖q
,

and we integrate the right side to get
∫ (

F (x)p

p
+
G(x)q

q

)
dµ = 1

p

∫
F pdµ+ 1

q

∫
Gqdµ

= 1
p + 1

q

= 1

Thus,
‖fg‖1

‖f‖p‖g‖q
≤ 1 =⇒ ‖fg‖1 ≤ ‖f‖p‖g‖q.

Advantage of this method? No need for Young’s!
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I.1.3. Recap - 3 good ways to prove a functional inequality.
To prove a(x) ≤ b(x):

1. Use basic calculus on a difference function:
Define f(x) := a(x) − b(x).
Use calculus to show f(x) ≤ 0 (by computing f ′, etc)

2. Use geometry.

3. Exploit another inequality. E.g., for any convex function ϕ(x),

ϕ ((1 − λ)x+ λy) ≤ (1 − λ)ϕ(x) + λϕ(y).

Candidates for ϕ: ex, xp, . . ..

I.1.4. What did we not do yet? case p = 1,∞.

|g(x)| 6
ae
‖g‖∞

|f(x)| · |g(x)| 6
ae
|f(x)| · ‖g‖∞

|f(x)g(x)| 6
ae
|f(x)| · ‖g‖∞

‖f(x)g(x)‖1 6
ae
|f(x)| · ‖g‖∞

p = ∞ is exactly the same.

I.2. How to use the Hölder inequality. Assume (X,M, µ) is a measure
space with µX ≥ 1, f : X → R is measure, and Lp = Lp(X,µ).

1. For 1 ≤ p ≤ q <∞, if |f(x)| ≥ 1, then ‖f‖p ≤ ‖f‖q. If µX = ∞, then∫
X |f |pdµ =

∫
X |g|qdµ = ∞, so let µX < ∞.

Then

|f |p ≤ |f |q
∫

X

|f |pdµ ≤
∫

X

|f |qdµ. (I.1)

If
∫

X |f |qdµ = ∞, it is trivial, so assume not.
Then

∫
X |f |qdµ <∞ =⇒ f ∈ Lq, and (I.1) =⇒ f ∈ Lp.

Now p = q =⇒ ‖f‖p = ‖f‖q and we are done trivially, so let p < q. We
would like to use Hölder with g(x) = 1 and some conjugate exponents
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α, β with 1
α + 1

β = 1.

Ansatz : Let α = q
p and β = q

q−p , so

1
α + 1

β = p
q + q−p

q = q
q = 1.

Now use Hölder with f = f p to get

‖f pg‖1 ≤ ‖f p‖α‖g‖β. (I.2)

Now remembering that g = 1, we have

‖f pg‖1 = ‖f p‖1 =

∫

X

|f |p = ‖f‖p
p, and

‖f p‖α =

(∫

X

|f p|q/p

)p/q

=

(∫

X

|f |q
)p/q

= ‖f‖p
q, and (*)

‖g‖β =

(∫

X

1β

)1/β

=

(∫

X

1

)1/β

= (µX)1/β .

So (I.2) becomes

‖f‖p
p ≤ ‖f‖p

q · (µX)
q−p
q

‖f‖p ≤ ‖f‖q · (µX)(q−p)/pq

‖f‖p ≤ ‖f‖q

2. For 1 ≤ p ≤ q <∞, |f(x)| ≤ 1 ∀x ∈ X =⇒ ‖f‖p ≥ ‖f‖q/p
q .

p = q is trivial, so take p < q.
Then

p < q, |f | ≤ 1 =⇒ |f |p ≥ |f |q
∫

|f |p ≥
∫

|f |q

(∫
|f |p
)1/p

≥
(∫

|f |q
)1/p

‖f‖p ≥ ‖f‖q/p
q .
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3. Show p ≤ q ≤ r and f ∈ Lp, f ∈ Lr =⇒ f ∈ Lq.

Let A = {|f | ≥ 1} and B = {|f | < 1} = Ã.

f ∈ Lp =⇒
∫

X

|f |p =

∫

A

|f |p +

∫

B

|f |p <∞

=⇒
∫

B

|f |p <∞ (I.3)

f ∈ Lr =⇒
∫

X

|f |r =

∫

A

|f |r +

∫

B

|f |r <∞

=⇒
∫

A

|f |r <∞. (I.4)

On A, |f |q ≤ |f |r =⇒
∫

A |f |q ≤
∫

A |f |r.
On B, |f |q ≤ |f |p =⇒

∫
B |f |q ≤

∫
B |f |p.

So

∫

X

|f |q =

∫

A

|f |q +

∫

B

|f |q

≤
∫

A

|f |r +

∫

B

|f |p

<∞ by (I.3),(I.4)

shows that f ∈ Lq.
Moral: to show

∫
X f(x) ≤

∫
X g(x), try splitting X.
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4. Show there is a bounded linear operator ϕ : Lq → (Lp)∗ given by

ϕf(g) = ϕ(f)(g) =

∫

X

fgdµ, ∀f ∈ Lq, ∀g ∈ Lp

so that ϕ : g 7→
∫
fgdµ is the functional “integration against f”.

‖ϕ‖ = sup
f∈Lq ,f 6=0

‖ϕ(f)‖
‖f‖q

= sup
f∈Lq ,f 6=0

sup
g∈Lp,g 6=0

‖ϕ(f)(g)‖
‖f‖q‖g‖p

def of ‖ϕ‖

= sup
f∈Lq ,f 6=0

sup
g∈Lp,g 6=0

|
∫

X fg dµ|
‖f‖q‖g‖p

def of ϕ(f)(g)

≤ sup
f∈Lq,f 6=0

sup
g∈Lp,g 6=0

‖fg‖1

‖f‖q‖g‖p
|
∫
fg| ≤

∫
|fg|

≤ sup
f∈Lq,f 6=0

sup
g∈Lp,g 6=0

‖f‖q‖g‖p

‖f‖q‖g‖p
Hölder

so ‖ϕ‖ ≤ 1 and ϕ is bounded.
To see ϕ is linear, let f1, f2, f ∈ Lq, g ∈ Lp, and α ∈ R: we show two
things in (Lp)∗ are equal by showing that they act the same way on
any g ∈ Lp.

ϕ(f1 + f2)(g) =

∫
(f1 + f2) g dµ

=

∫
f1g dµ+

∫
f2g dµ

= ϕ(f1)(g) + ϕ(f2)(g) = (ϕ(f1) + ϕ(f2)) (g)

shows ϕ(f1 + f2) = ϕ(f1) + ϕ(f2), and

ϕ(αf)(g) =

∫
αfg dµ = α

∫
fg dµ = αϕ(f)(g)

shows ϕ(αf) = αϕ(f).
Hence (by the linearity of the integral), ϕ is linear.
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II. The Dual of Lp

Proposition II.1. Show that ϕ : Lq → (Lp)∗ by ϕ : f 7→
∫
fgdµ is an

isometry.

Proof. So we must show ‖ϕ(f)‖ = ‖f‖, ∀f ∈ Lq. Let 1 < p, q <∞. Then

‖ϕ(f)‖ = sup
g∈Lp,g 6=0

‖ϕ(f)(g)‖
‖g‖p

def of ‖ϕ‖

= sup
g∈Lp,g 6=0

|
∫

X fg dµ|
‖g‖p

def of ϕ(f)(g)

≤ sup
g∈Lp,g 6=0

‖fg‖1

‖g‖p
|
∫
fg| ≤

∫
|fg|

≤ sup
g∈Lp,g 6=0

‖f‖q Hölder

Hence ‖ϕ(f)‖ ≤ ‖f‖. For ‖ϕ(f)‖ ≥ ‖f‖, use the fact that ‖ϕ(f)‖ is defined
as a supremum: ‖ϕ(f)‖ is the smallest number such that

‖ϕ(f)(g)‖ ≤ ‖ϕ(f)‖ · ‖g‖ holds for all g ( 6= 0).

In other words, if we can find a g for which ‖ϕ(f)(g)‖
‖g‖ ≥ ‖f‖, then

‖ϕ(f)‖ = supg∈Lp,g 6=0

{
‖ϕ(f)(g)‖

‖g‖

}
≥ ‖f‖.

Ansatz : let g = |f |q/p sgn f .
Then |g|p = |f |q = fg.1 Thus, f ∈ Lq =⇒ g ∈ Lp. Now

∫
|g|p =

∫
|f |q

(∫
|g|p
)1/p

=

(∫
|f |q
)1/p

(∫
|f |q
)1/q(∫

|g|p
)1/p

=

(∫
|f |q
)1/q (∫

|f |q
)1/p

‖f‖q‖g‖p =

(∫
|f |q
)1/q+1/p

=

(∫
|f |q
)1

= ‖f‖q
q

1 1
p + 1

q = 1 =⇒ q
p + q

q = q =⇒ q
p + 1 = q, so fg = f · |f |q/p sgn f = |f | · |f |q/p = |f |1+q/p = |f |q.
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Thus, ϕ(f)(g) =
∫
fg dµ =

∫
|f |q = ‖f‖q

q = ‖f‖q‖g‖p

=⇒ |ϕ(f)(g)|
‖g‖p

≥ ‖f‖q.

Now suppose p = 1, q = ∞.
We have

‖ϕ(f)‖ = sup
|
∫
fgdµ|
‖g‖1

≤ sup
‖g‖1 · ‖f‖∞

‖g‖1
= ‖f‖∞

as before. Now it remains to find a g ∈ L1 for which
∫
fg dµ ≥

(∫
|g|dµ

)
‖f‖∞.

We have f ∈ L∞, so note ‖f‖∞ <∞. Then fix ε > 0 and define

B = {f ≥ ‖f‖∞ − ε},
and let A be any measurable subset of B such that 0 < µA <∞.2 Define

gε := χ
A sgn f.3

Then
∫
|gε|dµ = µA and

∫
fgε dµ =

∫

A

|f |dµ ≥ (‖f‖∞ − ε)µA

∫
|fgε|dµ
µA

≥ ‖f‖∞ − ε

sup

{∫ |fgε|dµ∫
|gε|dµ

}
≥ ‖f‖∞ − ε.

Since this is true for any ε, let ε→ 0 and obtain sup
{∫

|fg|dµ∫
|g|dµ

}
≥ ‖f‖∞.

Now suppose p = ∞, q = 1.

Again, ‖ϕ(f)‖ = sup
|
∫

fgdµ|
‖g‖∞ ≤ ‖f‖1, as before. Now find g ∈ L∞ such that
∫
fg dµ ≥ ‖g‖∞

(∫
|f |dµ

)
.

Let α > 0 and define g = α sgn f be a constant function. Then
∫
fg dµ = α

∫
|f |dµ = ‖g‖∞

∫
|f |dµ.

�

2Note that if f is a constant function, µB could be ∞! µB > 0 by def of ‖f‖∞.
3Include the sgn f so that fgε = |f | instead of just f , in the following derivation.
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II.1. The Riesz Representation Theorem.

Theorem II.2. Let F be a bounded linear functional on Lp, 1 ≤ p < ∞.
Then ∃g ∈ Lq such that F (f) =

∫
fg dµ, ∀f ∈ Lp, and ‖F‖ = ‖g‖q.

There are two common proofs for this theorem. One uses step functions and
absolute continuity of functions; the other uses simple functions and absolute
continuity of measures. Both follow a similar strategy:

(1) Show F (χA) =
∫
gχA dµ =

∫
A g dµ.

• use absolute continuity of Φ : [0, 1] → R by gF (s) = F (χs); or
• use absolute continuity of νE = F (χE).

(2) Extend to a dense subspace of Lp

• use step functions for gF (s)
• use simple functions for νE

(3) Establish ‖F‖ = ‖g‖q

• extend F to bounded measurable functions, use Royden & Hölder
• define G(f) =

∫
fgdµ on Lp and use density, continuity

(4) Extend to Lp

• approx by step functions
• use G

(5) Show uniqueness of g.

Method I:

• uses step functions– only applies for Lp([a, b], λ)
• requires reference to 3 thms of Royden
• nice use of DCT, boundedness
• absolute continuity of a function is a bit more concrete

Method II:

• uses simple functions, so applies to Lp(X)
• requires reference to 1 thm of Royden
• uses Radon-Nikodym Theorem
• smooth use of general topology
• works for any σ-finite µ
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Important note: must add “µ is σ-finite” in order to do the case p = 1!

Method I (Royden)

Proof.

1. For s ∈ [0, 1], let χs := χ
[0,s]. Then F (χs) =

∫ s

0 g dλ is some real
number, so define Φ : [0, 1] → R by

Φ(s) = F (χs) =

∫ s

0

g dλ.

Claim: Φ is absolutely continuous.

Fix ε > 0 and let {(ai, bi)}n
i=1 be any finite collection of disjoint

subintervals of [0, 1] such that
∑

(bi − ai) < δ.

Then
∑

|Φ(bi) − Φ(ai)| = F (f) for

f =

n∑

i=1

(χbi
− χ

ai
) sgn (Φ(bi) − Φ(ai)) .

4

Since
∫
|f |p =

∑∫
χp

(ai,bi)
=
∑∫ bi

ai
1 dλ =

∑
(bi − ai) < δ,5

∑
|Φ(bi) − Φ(ai)| = F (f) ≤ ‖F‖ · ‖f‖p < ‖F‖δ1/p.

Thus, total variation of Φ over any finite collection of disjoint intervals
is less than ε, as long as the total length of these intervals is less than

δ = εp

‖F‖p ,

which shows that Φ is absolutely continuous.

Then Φ has an antiderivative, by some theorem: 6

Φ(s) =

∫ s

0

g.

4Note that |Φ(bi) − Φ(ai)| = |F (χai
) − F (χbi)| = (F (χai

) − F (χbi
)) sgn (Φ(χbi

) − Φ(χai
)) .

5In the first equality, use (χbi
− χ

ai
) = χ

(ai,bi) and | sgnh| = 1 ae.
6Royden, Lemma 5.14 on page 110.



Real Analysis Qual Seminar 13

Thus F (χs) =
∫ 1

0 g
χs.

2. Since every step function ϕ on [0, 1] is a linear combination

ϕ =
∑

ciχsi
(λ-ae),

we get

F (f) =

∫ 1

0

gϕ

by the linearity of F,
∫

.

3. Now extend F to the bounded measurable functions f on [0, 1].
Let f be such a function, and find a bounded sequence {ϕn} ⊆ Step
which converges λ-ae to f . This is possible by Royden, Prop 3.22.
Then {|f − ϕn|p} is uniformly bounded (∃M such that |f − ϕn|p ≤
Mp, ∀n, x) and tends to 0, λ-ae.
This bound allows us to use the DCT and get

lim
n→∞

∫
|f − ϕn|p = 0 =⇒ ‖f − ϕn‖p

n→∞−−−−→ 0.

Then the boundedness of F and the fact that

|F (f) − F (ϕn)| = |F (f − ϕn)| ≤ ‖F‖ · ‖f − ϕn‖
together imply that F (f) = limn→∞ F (ϕn).
Also, |gϕn| ≤ |g| ·Mϕ =⇒

∫
fg = lim

∫
gϕn by the DCT again.7

Putting this together,

F (f) = limF (ϕn) = lim

∫
gϕn =

∫
fg, ∀f (bdd,measurable).

Then by Proposition 5.12 on page 131 of Royden,
∣∣∣∣
∫
fg dλ

∣∣∣∣ = |F (f)| ≤ ‖F‖ · ‖f‖pN · ‖f‖p

and we have g ∈ Lq, ‖g‖q ≤ N = ‖F‖,.
Then by Prop II.1, ‖F‖ = ‖g‖q.

7Mϕ is the uniform bound on the sequence {ϕn}.
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4. Extend to f ∈ Lp.
∀ε, ∃ψ ∈ Step such that ‖f − ψ‖p < ε.
Then ψ ∈ Step =⇒ ψ bounded =⇒ F (f) =

∫
ψg, by (3).

Hence,
∣∣∣∣F (f) −

∫
fg

∣∣∣∣ =

∣∣∣∣F (f) − F (ψ) +

∫
ψf −

∫
fg

∣∣∣∣

≤ |F (f) − F (ψ)| +
∣∣∣∣
∫
fg −

∫
ψf

∣∣∣∣

= |F (f − ψ)| +
∣∣∣∣
∫

(g − ψ)f

∣∣∣∣
≤ ‖F‖ · ‖f − ψ‖p + ‖f − ψ‖p · ‖g‖q

< (‖F‖ + ‖g‖q) ε

Since ε is arbitrary, this shows F (f) =
∫
fg dλ.

5. If g1, g2 determine the same F in this way, then
∫
fg1 dλ−

∫
fg2 dλ =

∫
f(g1 − g2) dλ

gives the zero functional, and

‖g1 − g2‖q = 0 =⇒ g1 =
ae
g2.

�

Method II (Royden)
Again, given a bounded linear functional F on Lp, we must find a g ∈ Lq

such that F (f) =
∫
fg dµ.

Proof. First, consider a finite measure space (X,A, µ).
Then f bounded =⇒ f ∈ Lp(µ).

1. Define ν on A by

νE = F (χE).
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Then ν is a signed measure:
If E is the disjoint union of {En} ⊆ A, let αn = sgnF (χEn

) and define
f =

∑
αn
χ

En
. Then F is bounded, so a lemma gives

∞∑

n=1

|νEn| = F (f) <∞ and
∞∑

n=1

νEn = F (χE) = νE.

So ν is a signed measure. Also,

µ = 0 =⇒ F (χE) = 0,

so ν � µ. Then Radon-Nikodym applies and ∃g measure such that
νE =

∫
E g dµ.

Note: F bounded =⇒ F (χX) = νX <∞, so ν is finite.
Then νX =

∫
X g dµ <∞ =⇒ g ∈ L1(µ).

2. Let ϕ be a simple function. Then by linearity of F and
∫

, we have

F (ϕ) =

∫
ϕg dµ.

Now |F (ϕ)| ≤ ‖F‖ · ‖ϕ‖p =⇒ g ∈ Lq by some Lemma on page 283.

3. (&4.) Define G(f) =
∫
fg dµ for f ∈ Lp, so (G− F ) is a BLT on Lp

which vanishes on S.

(G− F ) bounded ≡ (G− F ) continuous,

so (G− F ) = 0 on Lp.
Hence, ∀f ∈ Lp, F (f) =

∫
fg dµ and ‖F‖ = ‖G‖ = ‖g‖q.

5. If g1, g2 determine the same F in this way, then∫
fg1 dµ−

∫
fg2 dµ =

∫
f(g1 − g2) dµ

gives the zero functional, and

‖g1 − g2‖q = 0 =⇒ g1 =
ae
g2.

Now consider µ σ-finite. Choose {Xn} such that

X =
⋃∞

n=1
Xn, Xn ⊆ Xn+1, µXn <∞, ∀n.
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Then the previous case gives a gn for each Xn such that gn vanishes outside
Xn and F (f) =

∫
fgn dµ for all f ∈ Lp that vanish outside Xn.

By construction, the uniqueness of gn on Xn gives

gn+1

∣∣∣∣
Xn

= gn,

so for x ∈ X, define

g(x) := gn(x), where x ∈ Xn.

Since gn differs from gm on a set of at most measure 0 (on any Xi where both
are defined), discrepancies may be safely ignored and g is well-defined.
Moreover, |gn| increases pointwise to |g|. By MCT,∫

|g|qdµ = lim

∫
|gn|qdµ ≤ ‖F‖q,

so g ∈ Lq.

For general f ∈ Lp, define

fn =

{
f on Xn

0 on X̃n

.

Then fn
pw−−−→ f and fn

Lp

−−−→ f .
Then |fng| ≤ |fg| ∈ L1, so DCT gives∫

fg dµ =
DCT

lim

∫
fng dµ

=
DCT

lim

∫
fngn dµ

= limF (fn)

= F (f).

�

Side note: if λ is Lebesgue measure and ν is the point mass at 0 (on
(R,B(R))), then what would dν

dµ be (if ν � µ)?
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II.2. (L1)∗ = L∞, but (L∞)∗ 6= L1.

Let X be [0, 1] so that we can safely consider C(X) as a subspace of L∞(X).
Define ζ : C(X) → R by ζ(f) = f(0), so ζ ∈ (C(X))∗.

By HBT, ∃ϕ ∈ (L∞)∗ such that ϕ(f) = f(0) ∀f ∈ C(X). To see that ϕ
cannot be given by integration against a function in L1, consider fn ⊆ C(X)
defined by fn(x) = max{1 − nx, 0}.

Figure 3. The functions fn.

1

f

11

n

n

0

Then ϕ(fn) = fn(0) = 1 ∀n.
But fn(x) → 0 ∀x > 0, so fng → 0 ∀g ∈ L1.
If ϕ(fn) =

∫
fng, then we would have

1 = ϕ(f) = ϕ(limfn)

= limϕ(fn) ϕ ∈ (L∞)∗ =⇒ ϕ continuous

= lim

∫
fng hypothesis

=

∫
lim fng DCT

=

∫
0

= 0

Slightly fancier version: use ζ(f) = f(p) and fn(x) = max{0, 1−n|x− p|}.
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III. The Minkowski Inequality

(X,M, µ), 1 ≤ p ≤ ∞. Then ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

What does it give us? Lp is a normed vector space (4-ineq), Lp is Banach.

III.1. How to prove Minkowski inequality.

III.1.1. Use Hölder inequality.

case i) 1 < p < ∞.
For f, g ∈ Lp, define q by 1

p + 1
q = 1, so that p+ q = pq:

1
q = 1 − 1

p = p−1
p

=⇒ q = p
p−1

=⇒ p+ q = p2−p
p−1

+ p
p−1

= p2

p−1
= p

(
p

p−1

)
= pq

Now
(
|f + g|p−1

)q
=
(
|f + g|p−1

)p/(p−1)
= |f + g|p.

Since Lp is a vector space, we have f+g ∈ Lp and hence |f+g|p−1 ∈ Lq.
We need to set up for Hölder:

|f + g|p = |f + g|p−1 · |f + g|
≤ |f + g|p−1 (|f | + |g|)
≤ |f + g|p−1|f | + |f + g|p−1|g|

∫
|f + g|p dµ ≤

∫
|f + g|p−1|f | dµ+

∫
|f + g|p−1|g| dµ

Now Hölder gives
∫

|f | · |f + g|p−1 dµ ≤ ‖f‖p‖|f + g|p−1‖q and

∫
|g| · |f + g|p−1 dµ ≤ ‖g‖p‖|f + g|p−1‖q.
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Thus
∫

|f + g|p dµ ≤ (‖f‖p + ‖g‖p) ‖|f + g|p−1‖q

= (‖f‖p + ‖g‖p)

(∫
|f + g|(p−1)qdµ

)1/q

.

If
∫
|f + g|pdµ = 0, then Minkowski is trivial, so assume not.

Then we may divide by

(∫ (
|f + g|p−1

)q
dµ

)1/q

=

(∫
|f + g|pdµ

)1/q

to get
(∫

|f + g|pdµ
)1−1/q

≤ ‖f‖p + ‖g‖p.

case ii) p = 1.
Then

|f + g| ≤ |f | + |g| 4-ineq
∫

|f + g|dµ ≤
∫

|f |dµ+

∫
|g|dµ integration

‖f + g‖1 ≤ ‖f‖1 + ‖g‖1

case iii) p = ∞.
Then define the null sets

N1 := {|f(x)| > ‖f‖∞}, N2 := {|g(x)| > ‖g‖∞}.

Then f, g ∈ L∞ =⇒ µN1 = µN2 = 0, so µ(N1 ∪N2) = 0 also. On the
complement of N1 ∪N2 we have

|f(x) + g(x)| ≤ |f(x)| + |g(x)|.

Then taking suprema gives

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.
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III.1.2. Use convexity.
Let α = ‖f‖p and β = ‖g‖p. Note: α, β 6= 0 or else trivial. Then define

f0 := 1
α |f |, g0 := 1

β |g|
so that these functions satisfy

|f | = αf0, |g| = βg0, ‖f0‖p = ‖g0‖p = 1.

Note that this implies
‖f0‖p

p = ‖g0‖p
p = 1 (III.1)

Set
λ := α

α+β
so 1 − λ = α+β

α+β
− α

α+β
= β

α+β
.

Then we have

|f(x) + g(x)|p ≤ (|f(x)| + |g(x)|)p 4-ineq

= (αf0(x) + βg0(x))
p def of f0, g0

= (α+ β)p
(

α
α+βf0(x) + β

α+βg0(x)
)p

= (α+ β)p (λf0(x) + (1 − λ)g0(x))
p def of λ

= (α+ β)p (λf0(x)
p + (1 − λ)g0(x)

p) cvxty of tp
∫

|f(x) + g(x)|p dµ ≤ (α+ β)p

∫
(λf0(x)

p + (1 − λ)g0(x)
p) dµ integrating

‖f + g‖p
p ≤ (α+ β)p

(
λ‖f0‖p

p + (1 − λ)‖g0‖p
p

)
linearity

≤ (α+ β)p (λ+ (1 − λ)) by (III.1)

= (α+ β)p

‖f + g‖p ≤ (α+ β) pth roots
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III.2. The Riesz-Fischer Theorem: Lp(X,M, µ) is complete.
Road map:
Split into the two cases 1 ≤ p <∞, p = ∞. For each case:

(1) Invoke the Banach characterization lemma.
(2) Define

f(x) =

{∑
fn(x) behaves

0 else

Use g(x) =
∑

k |fk(x)| for 1 ≤ p < ∞, use Nk = {x ... |fk(x)| > ‖fk‖∞}
for p = ∞.

(3) Use Minkowski to show f ∈ Lp and
∑n

k=1 fk
Lp

−−−→ f.

case i) 1 ≤ p <∞.
1. By the lemma, it suffices to show that every series which converges

absolutely (in R) also converges in Lp, p ∈ [1,∞).

2. Let
∑∞

k=1 ‖fk‖p < ∞ for some {fk}∞k=1 ⊆ Lp.

NTS: ‖f −∑n
k=1 fk‖p

n→∞−−−−→ 0 for some f ∈ Lp, since this is what
∑n

k=1 fk
Lp

−−−→ f means.
Define

g(x) =

∞∑

k=1

|fk(x)|

so that g ≥ 0 (g may take the value ∞). Note:

(
n∑

k=1

|fk|
)p

≥ 0 (III.2)

and since positive exponents preserve order, we also have

(
n∑

k=1

|fk|
)p

≤
(

n+1∑

k=1

|fk|
)p

. (III.3)
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Then we have

‖g‖p =

(∫
lim
n→∞

∣∣∣∣∣

n∑

k=1

|fk|
∣∣∣∣∣

p

dµ

)1/p

=

(∫
lim
n→∞

(
n∑

k=1

|fk|
)p

dµ

)1/p

by (III.2)

= lim
n→∞

(∫ ( n∑

k=1

|fk|
)p

dµ

)1/p

by MCT,(III.3)

= lim
n→∞

∥∥∥∥∥

n∑

k=1

|fk|
∥∥∥∥∥

p

def of ‖ · ‖p

≤ lim
n→∞

n∑

k=1

‖fk‖p Minkowski

=

∞∑

k=1

‖fk‖p ,

which is finite, by hypothesis. Thus g ∈ Lp, so |g| 6
ae
∞.

Hence we may define

f(x) =

{∑∞
k=1 fk(x) |g(x)| <∞

0 |g(x)| = ∞
so that f is measurable and

|f |p ≤ gp =⇒ f ∈ Lp.

Since limn→∞ |f(x)−
∑n

k=1 fk(x)| = 0 and |f(x) −
∑∞

k=1 fk(x)|p ≤
gp are both true ae, the DCT gives ‖f −

∑n
k=1 fk‖p

n→∞−−−−→ 0.
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case ii) p = ∞.
1. By the lemma, it suffices to show that every series which converges

absolutely (in R) also converges in L∞.

2. Let
∑∞

k=1 ‖fk‖∞ <∞ for some {fk}∞k=1 ⊆ L∞.

NTS: ‖f −∑n
k=1 fk‖∞ n→∞−−−−→ 0 for some f ∈ L∞.

For each k, define

Nk := {x ... |fk(x)| > ‖fk‖∞},
so that µNk = 0, ∀k =⇒ µ (∪kNk) = 0. Then if x /∈ ∪kNk,∑

k

|fk(x)| ≤
∑

k

‖fk‖∞ =⇒
∑

k

fk(x) <∞,

by what we know of R. Now we may define

f(x) =

{∑
k fk(x) x /∈ ∪kNk

0 x ∈ ∪kNk

so that f is µ-measurable and bounded, i.e., f ∈ L∞.

3. Since µ(∪kNk) = 0,∥∥∥∥∥f −
n∑

k=1

fk

∥∥∥∥∥
∞

≤
∥∥∥∥∥

∞∑

k=n+1

fk

∥∥∥∥∥
∞

≤
∞∑

k=n+1

‖fk‖∞ by Mink

Then taking limits,

lim
n→∞

∥∥∥∥∥f −
n∑

k=1

fk

∥∥∥∥∥
∞

≤ lim
n→∞

∞∑

k=n+1

‖fk‖∞ = 0.

Thus, ‖f −
∑n

k=1 fk‖∞
n→∞−−−−→ 0.



24 Real Analysis Qual Seminar

Lemma III.1. (Banach Characterization Lemma).
Suppose that (X, ‖ · ‖) is a normed vector space. Then

X is Banach ⇐⇒ every absolutely convergent series in X is convergent.

Proof.
(⇒) Suppose every Cauchy sequence converges.

Let {xk} be such that
∑ ‖xk‖ <∞ so {xk} is absolutely convergent.

Then let

sn :=
n∑

k=1

xk, ands := lim
n→∞

sn =
∞∑

k=1

xk.

NTS: {sn} is Cauchy. Wlog, let n < m.

‖sn − sm‖ =

∥∥∥∥∥

m∑

k=n+1

xk

∥∥∥∥∥

≤
m∑

k=n+1

‖xk‖ 4-ineq

m→∞−−−−−→
∞∑

k=n+1

‖xk‖

n→∞−−−−→ 0

Hence, {sn} Cauchy implies that sn
n→∞−−−−→ s = limn→∞ sn ∈ X.

(⇐) Suppose that every abs. convergent series is convergent.
Let {xn} be a Cauchy sequence.
NTS: xn → x ∈ X.
Since {xn} is Cauchy, we can find a subsequence {xnk

} which satisfies

‖xnk
− xnk+1

‖ < 1
2k .

Define

v1 = xn1
, and vk = xnk+1

− xnk
.

Then we have a telescoping sum:

N∑

k=1

vk = xn1
+ (xn2

− xn1
) + . . .+ (xnN

− xnN−1
) = xnN

,
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so ∞∑

k=1

‖vk‖ <
∞∑

k=1

1
2k = 1

shows
∑∞

k=1 ‖vk‖ converges.
Hence,

∑∞
k=1 vk converges by hypothesis to some v ∈ X. Then

∞∑

k=1

vk = v = lim
N→∞

N∑

k=1

vk = lim
N→∞

xnN

shows xnN

N→∞−−−−−→ v. Now

‖v − xn‖ ≤ ‖v − xnk
‖ + ‖xnk

− xn‖
shows that xn

n→∞−−−−→ v also.
�
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IV. Hilbert Space Review

Most material in this talk is from Reed & Simon.

Definition IV.1. A complex vector space is called an inner product space
(IPS) when

(i) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 iff x = 0,

(ii) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉,
(iii) 〈x, αy〉 = α〈x, y〉,
(iv) 〈x, y〉 = 〈y, x〉.

An inner product space is a Hilbert space iff it is complete under the norm
‖x‖ =

√
〈x, x〉.

Definition IV.2. Two vectors x 6= y are orthogonal iff 〈x, y〉 = 0.
A collection {xi} is an orthonormal set iff

〈xi, xi〉 = 1 and 〈xi, xj〉 = 0 ∀i 6= j.

Proposition IV.3. (Pythagorean Theorem)
Let {xn}N

n=1 be an orthogonal set in an IPS. Then
∥∥∥∥∥

N∑

n=1

xn

∥∥∥∥∥

2

=
N∑

n=1

‖xn‖2

Proof. ‖
∑
xn‖2 = 〈

∑
xn,
∑
xn〉 =

∑N
n,m=1 〈xn, xm〉 .

Then see that all the terms with n 6= m are 0 because of orthogonality, leaving
only

∑N
n=1 〈xn, xn〉 =

∑N
n=1 ‖xn‖2. �

Proposition IV.4. (Bessel’s Inequality)
If {xα}α∈A is an orthonormal set in an IPS, then for any x,

∑

α∈A

|〈x, xα〉|2 ≤ ‖x‖2.
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Proof. It suffices to show that
∑

α∈F |〈x, xα〉|2 ≤ ‖x‖2 for any finite F ⊆ A:

0 ≤
∥∥∥∥∥x−

∑

α∈F

〈x, xα〉xα

∥∥∥∥∥

2

=

〈
x−

∑

α∈F

〈x, xα〉xα, x−
∑

α∈F

〈x, xα〉xα

〉

= ‖x‖2 − 2 Re

〈
x,
∑

α∈F

〈x, xα〉xα

〉
+

∥∥∥∥∥
∑

α∈F

〈x, xα〉xα

∥∥∥∥∥

2

= ‖x‖2 − 2 Re
∑

α∈F

〈x, xα〉 〈x, xα〉 +

∥∥∥∥∥
∑

α∈F

〈x, xα〉xα

∥∥∥∥∥

2

= ‖x‖2 − 2
∑

α∈F

|〈x, xα〉|2 +
∑

α∈F

|〈x, xα〉|2 (IV.1)

= ‖x‖2 −
∑

α∈F

|〈x, xα〉|2

Where (IV.1) comes by the Pythagorean Thm. �

Note that this theorem indicates {α ... 〈x, xα〉 6= 0} is countable.

Proposition IV.5. (Schwartz Inequality)
If x and y are vectors in an IPS, then

‖x‖·‖y‖ ≥ |〈x, y〉| .
Proof. The case y − 0 is trivial, so suppose y 6= 0. The vector y

‖y‖ by itself

forms an orthonormal set, so applying Bessel’s inequality to any x gives

‖x‖2 ≥
∣∣∣〈x, y

‖y‖〉
∣∣∣
2

=
|〈x, y〉|2
‖y‖2

‖x‖2‖y‖2 ≥ |〈x, y〉|2

�
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Proposition IV.6. ‖x‖ =
√

〈x, x〉 really is a norm.

Proof. The first two properties of norm are clearly satisfied:

‖x‖ = 0 ⇐⇒ x = 0, ‖x‖ ≥ 0,

‖αx‖ = |α|·‖x‖.
To see the triangle inequality,

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x+ y, x〉 + 〈x+ y, y〉
= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉 linearity

= ‖x‖2 + 2 Re〈x, y〉 + ‖y‖2 z+z
2

= Re z

≤ ‖x‖2 + 2 |〈x, y〉| + ‖y‖2 Re z ≤ |z|
≤ ‖x‖2 + 2‖x‖·‖y‖ + ‖y‖2 |〈x, y〉| ≤ ‖x‖·‖y‖
= (‖x‖ + ‖y‖)2

�

Proposition IV.7. (Parallelogram Identity)

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

Proof. Add the two formulae

‖x+ y‖2 = ‖x‖2 + 2 Re〈x, y〉 + ‖y‖2

‖x− y‖2 = ‖x‖2 − 2 Re〈x, y〉 + ‖y‖2.

�

Example.

`2 :=

{
{xn}∞n=1

...
∞∑

n=1

|xn|2 <∞
}

with the inner product

〈
{xn}∞n=1, {yn}∞n=1

〉
:=

∞∑

n=1

xn yn.
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Example.

L2 :=

{
f : X → C

...

∫

X

|f |2 dµ <∞
}

with the inner product

〈f, g〉 :=

∫

X

fg dµ.

Example.

L2
H :=

{
f : X → H ...

∫

X

‖f(x)‖2
H dµ < ∞

}

with the inner product

〈f, g〉 :=

∫

X

〈f(x), g(x)〉H dµ.

IV.1. Bases.

Definition IV.8. An orthonormal basis of a Hilbert space H is a maximal
orthonormal set S (i.e., no other orthonormal set contains S as a proper
subset).

Theorem IV.9. Every Hilbert space has an orthonormal basis.

Proof. Let C be the collection of orthonormal subsets of H. Order C by
inclusion:

S1 ≺ S2 ⇐⇒ S1 ⊆ S2.

Then (C,≺) is a poset.
It is also nonempty since {x/‖x‖} is an orthonormal set, ∀x ∈ H.
Now let {Sα}α∈A be any linearly ordered subset of C.
Then ∪α∈ASα is an orthonormal set which contains each Sα and is thus an
upper bound for {Sα}α∈A.
Since every linearly ordered subset of C has an upper bound, apply Zorn’s
Lemma and conclude that C has a maximal element.
This maximal element is an orthonormal set not properly contained in any
other orthonormal set. �
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Theorem IV.10. (Orthogonal Decomposition and Parseval’s Rela-
tion)
Let S = {xα}α∈A be an orthonormal basis for a Hilbert space H. Then
∀y ∈ H:

y =
∑

α∈A

〈xα, y〉xα, and ‖y‖2 =
∑

α∈A

|〈xα, y〉|2.

Proof. Proving Bessel’s inequality, we saw that
∑

α∈A

|〈xα, y〉|2 ≤ ‖y‖2,

and that there are at most countably many nonzero summands.
Collect these α’s for which 〈xα, y〉 6= 0 to obtain a sequence {αj}∞j=1.

As a positive-term series,
∑N

j=1 |〈xαj
, y〉|2 is monotone increasing.

It is also bounded above by ‖y‖2.
Thus, it converges to a finite limit as N → ∞. Define

yn :=

n∑

j=1

〈xαj
, y〉xαj

.

We want to show lim yn = y. For n > m,

‖yn − ym‖2 =

∥∥∥∥∥

n∑

j=m+1

〈xαj
, y〉xαj

∥∥∥∥∥

2

=

n∑

j=m+1

|〈xαj
, y〉|2,

by the Pythagorean Thm. Letting n,m→ ∞ shows {yn} is Cauchy.
Since H is Hilbert, it is complete and {yn} must converge to some y′ ∈ H.
Let xα be any element of S. If ∃` α = α`, then by the continuity of norms:

〈y − y′, xα`
〉 = lim

n→∞

〈
y −

n∑

j=1

〈xαj
, y〉xαj

, xα`

〉
= 〈y, xα`

〉 − 〈y, xα`
〉 = 0

and if not,

〈y − y′, xα〉 = lim
n→∞

〈
y −

n∑

j=1

〈xαj
, y〉xαj

, xα

〉
= 0
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because

〈y − y′, xα〉 = lim
n→∞

〈
y −

n∑

j=1

〈xαj
, y〉xαj

, xα

〉

= 〈y, xα〉 − lim
n→∞

n∑

j=1

〈
〈xαj

, y〉xαj
, xα

〉

= 0 −
∞∑

j=1

〈
〈xαj

, y〉xαj
, xα

〉
〈y, xα〉 = 0 for α 6= α`

=

∞∑

j=1

〈y, xαj〉
〈
xαj , xα

〉

=

∞∑

j=1

〈y, xαj
〉 · 0 〈xαj

, xα〉 = 0 for α 6= α`

= 0

So y− y′ is orthogonal to every xα in S. Since S is a orthonormal basis, this
means we must have y − y′ = 0. Thus

y = lim
n→∞

n∑

j=1

〈xαj , y〉xαj ,

and we have shown the first part. Finally,

0 = lim
n→∞

∥∥∥∥∥y −
n∑

j=1

〈xαj
, y〉xαj

∥∥∥∥∥

2

= lim
n→∞


‖y‖2 − 2 Re

〈
y,

n∑

j=1

〈xαj
, y〉xαj

〉
+

∥∥∥∥∥

n∑

j=1

〈xαj
, y〉xαj

∥∥∥∥∥

2



= lim
n→∞

(
‖y‖2 − 2 Re

n∑

j=1

〈xαj
, y〉
〈
y, xαj

〉
+

n∑

j=1

∥∥〈xαj
, y〉xαj

∥∥2

)

= lim
n→∞

(
‖y‖2 − 2

n∑

j=1

∣∣〈xαj
, y
〉∣∣2 +

n∑

j=1

∣∣〈xαj
, y〉
∣∣2 ∥∥xαj

∥∥2

)
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= lim
n→∞

(
‖y‖2 −

n∑

j=1

|〈xαj
, y〉|2

)

= ‖y‖2 −
∑

α∈A

|〈xα, y〉|2

gives Parseval’s Relation:

‖y‖2 =
∑

α∈A

|〈xα, y〉|2.

�

Definition IV.11. The coefficients 〈xα, y〉 are the Fourier coefficients of y
with respect to the basis {xα}.

IV.2. The Riesz Representation Theorem Again.

Definition IV.12. Let M be a closed subspace of H. Then M is a Hilbert
space under the inner product it inherits as a subspace of H. Define the
orthogonal complement of M to be

M := {x ∈ H ... 〈x, y〉 = 0 ∀y ∈ M}.

Theorem IV.13. (Projection Theorem)
If M is a closed subspace of H, then H = M⊕M⊥. That is, ∀x ∈ H, x can
be uniquely expressed as x = y + z, where y ∈ M, z ∈ M⊥. Moreover, y, z
are the unique elements of M and M⊥ whose distance to x is minimal.

If y ∈ H, then ϕy(x) = 〈x, y〉 defines a functional on H.
By the linearity of inner prod, it is a linear functional.
By the Schwartz inequality8,

‖ϕy‖ = sup‖x‖≤1 ‖ϕy(x)‖ = sup‖x‖≤1 |〈x, y〉| ≤ sup‖x‖≤1 ‖x‖·‖y‖ ≤ ‖y‖
Shows that this functional is bounded/ continuous.

8Recall, the Schwartz ineq is just the Hölder ineq when p = 2.
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Theorem IV.14. (Riesz Representation Theorem for Hilbert Spaces)
If ϕ ∈ H∗, then ∃!y ∈ H such that ϕ(x) = 〈x, y〉 ∀x ∈ H. Also, ‖ϕ‖ = ‖y‖.
Proof. If ϕ is the zero functional, then y = 0 and we’re done.
Otherwise, consider the nullspace

M := {x ∈ H ... ϕ(x) = 0}.
M is a proper closed subspace of H and M⊥ 6= {0} by the Projection Thm.
Thus we can find z ∈ M⊥ with ‖z‖ = 1 and define

u := ϕ(x)z − ϕ(z)x.

Then
ϕ(u) = ϕ

(
ϕ(x)z − ϕ(z)x

)
= ϕ(x)ϕ(z)− ϕ(z)ϕ(x) = 0

shows that u ∈ M and hence that u ⊥ z. Thus,

0 = 〈z, u〉 = 〈z, ϕ(x)z − ϕ(z)x〉
= 〈z, ϕ(x)z〉 − 〈z, ϕ(z)x〉 linearity

= ϕ(x)‖z‖2 − ϕ(z)〈z, x〉 〈z, z〉 = ‖z‖2

= ϕ(x)− 〈x, ϕ(z)z〉 ‖z‖ = 1

Thus, ϕ(x) = 〈x, y〉 where y = ϕ(z)z.
As for uniqueness, if 〈x, y〉 = 〈x, y′〉 for all x, take x = y − y′ and get

‖y − y′‖2 = 〈y − y′, y − y′〉 = 〈y − y′, y〉 − 〈y − y′, y′〉 = 0 =⇒ y = y′.

�

This shows that y 7→ ϕy is a conjugate linear isometry of H onto H∗.

Definition IV.15. Isomorphisms of Hilbert spaces are those transformations
U : H1 → H2 which preserve the inner product:

〈Ux, Uy〉H2
= 〈x, y〉H1

∀x, y ∈ H1.

Such operators are called unitary.
For U : H → H, unitary operators are also characterized by U ∗ = U−1, where
T ∗ is the Hilbert space adjoint of T ∈ L(H) and is defined by

〈T ∗x, y〉 = 〈x, Ty〉.
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V. A Practical Guide to Integral Problems

This talk covers the relation between Riemann and Lebesgue integration,
when you can differentiate under an integral, and other practical applications
of Lebesgue theory to standard integral problems.

V.1. Some related theorems.

Theorem V.1. Let f : [a,∞) → R be locally R-integrable. Then

f ∈ L1[a,∞) ⇐⇒ R

∫ ∞

a

|f | dx < ∞ and R

∫ ∞

a

f dx = L

∫

[a,∞)

f dµ.

Proof. (⇒) f ∈ L1 =⇒ f+, f− ∈ L1.
Define fn = f+χ

[a,a+n) so that fn ≤ fn+1, and fn → f+ and fn ∈ L1.
Now for A := [a,∞),

R

∫ ∞

a

f+dx = lim
n→∞

R

∫ a+n

a

f+dx def of improper int

= lim
n→∞

L

∫

[a,a+n)

f+dx R = L on bounded

= lim
n→∞

L

∫

A

fn dµ def fn

= L

∫

A

lim
n→∞

fn dµ MCT

= L

∫

A

f+ dµ

Similarly, R
∫∞

a f−dx = L
∫

A f
− dµ, so

L

∫

A

f dµ = L

∫

A

(
f+ − f−) dµ = R

∫ ∞

a

(
f+ − f−) dx = R

∫ ∞

a

f dx.

(⇐) Define fn(x) = |f |χ[a,a+n] so that fn ↗ |f | and fn is R-integrable.
(support is compact)
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Then R
∫ [a+n]

a fndx exists and R
∫ [a,a+n]

a fndx = L
∫

[a,a+n] fndµ, so

L

∫

A

|f | dµ = lim
n→∞

L

∫

A

fn dµ MCT

= lim
n→∞

R

∫ a+n

a

fndx R = L on bounded

= lim
n→∞

R

∫ a+n

a

|f |dx def of fn

= R

∫ ∞

a

|f |dx def of impr int

<∞ hypothesis

shows that f ∈ L1. �

Theorem V.2. Define F (t) =
∫

X f(x, t) dµ(x) for f : X × [a, b] → C.

(1) What is sufficient for F to be continuous? lim
t→t0

F (t) = F (t0), ∀t0.

(2) What is sufficient for F to be differential? F ′(t) =

∫

X

∂f
∂t (x, t) dµ(x).

Royden:

(1) (i) ft(x) = f(x, t) is a measurable function of x for each fixed t.

(ii) ∀t, |f(x, t)| ≤ g(x) ∈ L1(X).

(iii) limt→t0 f(x, t) = f(x, t0) for each x (i.e., f(x, t) is continuous in t
for each x).

The proof follows by applying DCT to f(x, tn), where tn → t0.
(2) (i) ∂f

∂t
exists on X × [a, b],

(ii) ∂f
∂t is bounded on X × [a, b],

(iii) f is bounded on X × [a, b],

(iv) For each fixed t, f is a measurable function of x.
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(3) Alternatively:

(i) ∂f
∂t exists on X × [a, b],

(ii)
∣∣∣∂f

∂t (x, t)
∣∣∣ ≤ g(x) ∈ L1(X) on X × [a, b].

advantages: f, ∂f
∂t need not be bounded

disadvantages: need f ∈ L1.

Proof. (of the second version).
Pick any sequence {tn} ⊆ [a, b] with tn → t0. Then define

hn(x) :=
f(x, tn) − f(x, t0)

tn − t0
.

Then ∂f
∂t

(x, t0) = limn→∞ hn(x), so ∂f
∂t

(x, t0) is measurable as a limit of mea-

surable functions. It follows that ∂f
∂t (x, t) is measurable. By the mean value

theorem, there is a t between tn and t0 for which

f(x, tn) − f(x, t0) = (tn − t0)
∂f
∂t (x, t).

Then

|hn(x)| ≤ sup
t∈[a,b]

∣∣∣∂f
∂t (x, t)

∣∣∣ ≤ g(x),

since taking the supremum can only make it larger.
Invoke the dominated convergence theorem again and get

F ′(t0) = lim
F (tn) − F (t0)

tn − t0
= lim

∫
hn(x) dµ(x) =

∫
∂f
∂t (x, t)dµ(x).

Finally, exploit the compactness of [a, b] and [Rudin 4.2]:

lim
x→t

g(x) = g(t) ⇐⇒ lim
n→∞

g(xn) = g(t), ∀{xn} ⊆ X, xn → t.

�
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V.2. Solutions to the Nasty Integrals.

1. f : X → [0,∞] is measurable and
∫

X f dµ = c where 0 < c < ∞. Let
α ∈ R be a constant. Show that

lim
n→∞

∫

X

n log

[
1 +

(
f(x)

n

)α]
dµ =





∞ 0 < α < 1

c α = 1

0 α > 1

Proof.

case i) α = 1.

By basic calculus,
(
1 + f(x)

n

)n

increases to ef(x) for each x, so

gn(x) = log
(
1 + f(x)

n

)n n→∞−−−−→ f(x) ∈ L1 (increasing).

Then limn→∞
∫

X gn(x) =
∫

X f(x) = c by MCT.

case ii) α > 1.
Note that f(x) ≥ 0,

∫
X f dµ = c ≤ ∞ show f is finite µ-ae, i.e.:

∃M <∞ and ∃E ∈ M s.t. µE = 0 and
∣∣f
∣∣
Ẽ
(x)
∣∣ ≤M,

(so E is where f is bounded). Since we can always find N such

that n ≥ N =⇒ M
n < 1, f(x)

n ≤ M
n , µ-au. We’re concerned

with n → ∞, so this means f(x)
n < 1 for our purposes. Hence,

α > 1 =⇒ α − 1 > 0 implies

0 ≤
(

f(x)
n

)α−1

< 1. (V.1)

We need

n log

(
1 +

(
f(x)

n

)α)
≤ αf(x),

so define

G(t) = n log
(
1 +

(
t
n

)α)− αt.
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Then G(0) = 0. Also,

G′(t) =
(

ntα−1

nα+tα
− 1
)
α diff

≤
(

ntα−1

nα − 1
)
α drop the tα

=
((

t
n

)α−1 − 1
)
α simp

< 0 t = f(x),
(

f(x)
n

)α−1

< 1,

so G is decreasing and G(t) < 0 for t > 0, i.e.,

n log

(
1 +

(
f(x)

n

)α)
≤ αf(x).

Set

gn(x) = n log

(
1 +

(
f(x)

n

)α)
.

Since this is bounded by αf and f ∈ L1 by hypothesis, DCT gives

lim
n→∞

∫

X

gn dµ =

∫

X

lim
n→∞

gn dµ.

Now split the leading n and match the denominator:

gn(x) = n1−αnα log
(
1 +

(
f
n

)α)
= n1−α log

(
1 +

(
fα

nα

))nα

,

so that

lim
n→∞

(
1 + fα

nα

)nα

= ef
6

ae
eM

shows

lim
n→∞

log
(
1 + fα

nα

)nα

nα−1
= 0.

case iii) α < 1.

f > 0 =⇒ log
(
1 + fα

nα

)
> 0,

and if we define A := {f > 0}, then µA > 0 because
∫

X f dµ > 0.
Thus

∫
A f dµ =

∫
X f dµ, and

log
(
1 + fα

nα

)
> 0 on A.
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But then

log
(
1 + fα

nα

)nα

nα−1

n→∞−−−−→ ∞
because α < 1 =⇒ α − 1 < 0.
Thus, lim gn = ∞, so by Fatou’s Lemma,

lim

∫
gn dµ ≥

∫
lim gn = ∞ =⇒ lim

n→∞

∫
gn dµ = ∞.

�
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2. Define F (t) =

∫ ∞

0

e−xt

1 + x2
dx, for t > 0.

a) Show that F is well-defined as an improper Riemann integral and
as a Lebesgue integral.

Riemann: e−xt

1+x2 is continuous ∀t, so it is R-integrable on any bounded
interval (a, b). So only remains to show the convergence of

lim
a→∞

∫ a

0

e−xt

1+x2dx.

Since the integrand is nonnegative,9

b ≥ a =⇒
∫ a

0

e−xt

1+x2dx ≤
∫ b

0

e−xt

1+x2dx.

Thus, it suffices to consider a dominating function g(x):

e−xt

1+x2 ≤ 1
1+x2 ≤ 1

x2 ∀t > 0.

Since ∫ a

1

1
x2dx =

[
− 1

x

]a
1

= −1
a + 1

a→∞−−−−→ 1

and the integrand is bounded by 1, ∀t > 0, we have
∫ a

0

e−xt

1+x2dx ≤ 2 ∀a,

and thus it converges as a → ∞.

Lebesgue:
∫

R+

∣∣∣ e−xt

1+x2

∣∣∣ dµ exists because we can bound the integrand

as above.

b) Show F ′′(t) exists on (0,∞).

We have ϕ(t) = e−xt

1+x2 ∈ L1, so just need ∂ϕ
∂t

(t) = −xe−xt

1+x2 ∈ L1 in
order to use the theorem and get

F ′(t) = −
∫ ∞

0

xe−xt

1 + x2
dx.

9f(x) ≥ 0 =⇒ g(x) =
∫ x

0 f(t) dt is increasing.
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Fix t > 0 and pick ε > 0 such that t− ε > 0.
Observe: x ≤ eεx for large enough x. Thus we pick M large enough
that x ≥M =⇒ x ≤ eεx, and split the integral:

∫ ∞

0

−xe−xt

1 + x2
dx =

∫ M

0

−xe−xt

1 + x2
dx+

∫ ∞

M

−xe−xt

1 + x2
dx.

Then we have

∫ M

0

∣∣∣∣
xe−xt

1 + x2

∣∣∣∣ dx ≤
∫ M

0

∣∣xe−xt
∣∣ dx,

which as a continuous function over a compact space is clearly
finite, and hence the integrand is in L1(0,M). Also,

∫ ∞

M

∣∣∣∣
−xe−xt

1 + x2

∣∣∣∣ dx ≤
∫ ∞

M

∣∣∣∣
eεxe−xt

1 + x2

∣∣∣∣ dx by choice of M

=

∫ ∞

M

∣∣∣∣
e(ε−t)x

1 + x2

∣∣∣∣ dx

=

∫ ∞

0

e(ε−t)x

1 + x2
dx positive integrand

So ε− t < 0 =⇒ e(ε−t)x

1+x2 ∈ L1 by (a).

Thus −xe−tx

1+x2 ∈ L1. Now if ∂
∂t

(
−xe−tx

1+x2

)
= x2e−tx

1+x2 ∈ L1, we’ll have

F ′′(t) =

∫ ∞

0

x2e−tx

1 + x2
dx.

To show this, find N such that x ≥ N =⇒ x2 ≤ eεx, and proceed
as before.
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c) (Extra credit) Show F (t) satisfies F ′′(t)+F (t) = 1
t . Compute F (t).

We have F ′′(t) =
∫∞

0
x2e−tx

1+x2 dx from (b), so

F ′′(t) + F (t) =

∫ ∞

0

x2e−tx + e−tx

1 + x2
dx

=

∫ ∞

0

(1 + x2)e−tx

1 + x2
dx

=

∫ ∞

0

e−tx dx

=
[
−1

t
e−tx

]∞
0

= 0 − (−1
t
) = 1

t
.

Now solve the differential equation F ′′(t) + F (t) = 1
t .

3. Let I be an open interval of R and suppose f : R → R such that
x 7→ extf(x) is integrable for each fixed t ∈ I. Define F : I → R by

F (t) =

∫

R

extf(x) dx.

Show that F is differentiable with derivative F ′(t) =
∫

R
xextf(x) dx at

each t ∈ I.

Note: xetxf(x) may not be in L1! We would like to compute F ′(t)
by

F ′(t0) = lim
n→∞

∫ (
etnx − et0x

tn − t0

)
f(x) dx, (V.2)

where {tn} is a sequence in I with tn → t0.
To use DCT, we need to find g ∈ L1 such that

∣∣∣∣
etnx − et0x

tn − t0

∣∣∣∣ ≤ g(x) ∀n.

Choose t′ ∈ I such that tn < t′, ∀n. This is possible, since otherwise
there would be a subsequence of {tn} converging to sup{t ∈ I}.

<↙I is open and tn → t0 ∈ I.
By MVT,

∣∣etnx − et0x
∣∣ ≤ |xesx| · |tn − t0| for some s ∈ [tn, t0].
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Since s < t′,
∣∣∣∣
etnx − et0x

tn − t0

∣∣∣∣ ≤
∣∣∣xet′x

∣∣∣ =⇒
∣∣∣∣
etnx − et0x

tn − t0
f(x)

∣∣∣∣ ≤
∣∣∣xet′xf(x)

∣∣∣ , (V.3)

and we have a bound which no longer depends on n.

To see that g(x) =
∣∣xet′xf(x)

∣∣ is integrable, split the integral: pick
ε > 0 such that t′ + ε ∈ I and choose M be such that

x ≥M =⇒ x ≤ eεx.

Now

∫ M

0

∣∣∣xet′xf(x)
∣∣∣ dx ≤M

∫ M

0

∣∣∣et′xf(x)
∣∣∣ dx < ∞ t′ ∈ I, and

∫ ∞

M

∣∣∣xet′xf(x)
∣∣∣ dx ≤

∫ ∞

M

∣∣∣e(t′+ε)xf(x)
∣∣∣ dx <∞ t′ + ε ∈ I.

Thus we have
∫∞

0

∣∣xet′xf(x)
∣∣ dx <∞. For

∫ 0

−∞ g(x) dx, pick ε > 0 such
that t′ − ε ∈ I and let M be such that

x ≥M =⇒ x ≤ eεx,

and proceed as for
∫∞

0 g(x) dx.
Together, this gives g ∈ L1. By (V.3), we can use the DCT in (V.2) to
obtain the result.

4. [2003] Let f be a bounded measurable function on [0,∞). Show that

F (t) =

∫ ∞

0

f(x)e−xt

√
x

dx, t > 0

is continuously differentiable on (0,∞).

Let us denote the integrand by ϕ(x, t) := f(x)e−xtx−1/2.
We would like to find F ′(t) by choosing any sequence {tn} such that
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tn → t0 and computing

F ′(t0) = lim
n→∞

∫ ∞

0

(
f(x)e−xtn

tn
√
x

− f(x)e−xt0

t0
√
x

)
dx

= lim
n→∞

∫ ∞

0

f(x)
e−xtn − e−xt0

tn − t0
x−1/2 dx

Since f is bounded, |f(x)| ≤M . Then

∣∣∣∣f(x)
e−xtn − e−xt0

tn − t0
x−1/2

∣∣∣∣ ≤ M

∣∣∣∣
e−xtn − e−xt0

tn − t0
x−1/2

∣∣∣∣ .

Since t ranges over (0,∞) and tn → t0 < ∞, we can certainly pick a
strict lower bound τ of {tn}, i.e. a number τ such that inf{tn} > τ .
By MVT,

∣∣e−tnx − e−t0x
∣∣ ≤

∣∣xe−sx
∣∣ · |tn − t0| for some s ∈ [tn, t0].

Since s > τ ,

∣∣∣∣
e−tnx − e−t0x

tn − t0
x−1/2

∣∣∣∣ ≤
∣∣∣xe−sxx−1/2

∣∣∣ ≤ e−τxx1/2 ∈ L1.

To verify the integrability of the dominating function, note that

u = x1/2 dv = e−xdx

2du = x−1/2dx v = −e−x

gives

∫
e−xx1/2 =

[
−e−xx1/2

]∞
0

+ 2

∫
−e−xx−1/2dx

= (0 − 0) + 4

∫ ∞

0

e−u2

du put u =
√
x

= 4 ·
√

π
2

= 2
√
π.
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Further,
∫∞

0 e−xx−1/2dx = 2
√
π =⇒

∫∞
0 e−τxx−1/2dx = 2

√
π
τ . Thus

F ′(t0) = lim
n→∞

∫ ∞

0

f(x)
e−xtn − e−xt0

tn − t0
x−1/2 dx

=

∫ ∞

0

lim
n→∞

f(x)
e−xtn − e−xt0

tn − t0
x−1/2 dx by DCT

=

∫ ∞

0

f(x) lim
t→t0

(
e−xt − e−xt0

t− t0

)
x−1/2 dx

=

∫ ∞

0

f(x)
(

∂
∂te

−xt
)
x−1/2 dx

=

∫ ∞

0

f(x)
(
−xe−xt

)
x−1/2 dx

= −
∫ ∞

0

f(x)e−xtx1/2 dx.

Let us denote this function

G(t) = −
∫ ∞

0

f(x)e−xtx1/2 dx.

Since we are required to show that F is continuously differential, we
must show that G is continuous.

Notice that another u-substitution with u = (tx)1/2, 2
t
u du = dx

allows us to rewrite

G(t) = −2
t

∫ ∞

0

f(x)xe−x2

dx.

Thus, all we need to do is show the integral to be finite. Since f is
bounded by M , it suffices to show

∫ ∞

0

xe−x2

dx < ∞.
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Next, putting u = x2, 1
2du = x dx,

∫ ∞

0

xe−x2

dx = 1
2

∫ ∞

0

e−u du

= 1
2

[
−e−u

]∞
0

= 1
2
(0 − (−1))

= 1
2

which is as finite as it gets.

5. [2000] Show F (t) =

∫ ∞

−∞

sin(x2t)

1 + x2
dx is continuous on R.

First, note that | sinx| ≤ 1 gives
∣∣∣∣
sin(x2t)

1 + x2

∣∣∣∣ ≤
1

1 + x2
∈ L1,

where the final inclusion is clear from
∫ ∞

−∞

dx

1 + x2
= [arctanx]∞−∞ = π

2 −
(
−π

2

)
= π.

Pick any {tn} ∈ R with tn → t0. Then

lim
n→∞

F (tn) = lim
n→∞

∫ ∞

−∞

sin(x2tn)

1 + x2
dx def of F

=

∫ ∞

−∞
lim
n→∞

sin(x2tn)

1 + x2
dx DCT

=

∫ ∞

−∞

sin(x2 limn→∞ tn)

1 + x2
dx contin of sinx, mult by x2

=

∫ ∞

−∞

sin(x2t0)

1 + x2
dx tn → t0

= F (t0).

Since this is true for all sequences tn → t0, we have limt→t0 F (t) = F (t0).
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6. [1998] f ∈ C[0, 1] is such that
∫ 1

0 x
nf(x) dx = 0 for n = 0, 1, 2, . . ..

Show that f ≡ 0.

By the Stone-Weierstraß Theorem, there is a sequence of polynomials

{Pk(x)} such that Pk(x)
unif−−−→ f(x). Then

∫
Pk(x)f(x) dx

k→∞−−−−→
∫

[f(x)]2 dx by uniformity.

But since any polynomial may be written

P (x) =
m∑

i=0

aix
i = a0 + a1x+ a2x

2 + · · · + amx
m,

the linearity of the integral and the hypothesis
∫ 1

0 x
nf(x) dx = 0 give

∫ 1

0

P (x)f(x) dx = a0

∫ 1

0

dx+ a1

∫ 1

0

x dx+ · · · + am

∫ 1

0

xm dx

= a0 · 0 + a1 · 0 + a2 · 0 + · · · + am · 0
= 0

So

∫
Pk(x)f(x)dx = 0 ∀k

∫
f 2dx = 0

f 2 ≡ 0 f 2 ≥ 0

f ≡ 0

7. Compute the limits

a) lim
n→∞

∫∞
0

(
1 + x

n

)−n
sin
(

x
n

)
dx

Note that

∣∣sin
(

x
n

)∣∣ ≤ 1 and
(
1 + x

n

)−n n→∞−−−−→ e−x.
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Then
∣∣∣
(
1 + x

n

)−n
∣∣∣ ≤

(
1 + x

2

)−2 ∀n ≥ 2, so the DCT gives

lim
n→∞

∫ ∞

0

(
1 +

x

n

)−n

sin
(x
n

)
dx =

∫ ∞

0

lim
n→∞

(
1 +

x

n

)−n

sin
(x
n

)
dx

=

∫ ∞

0

e−x sin(0) dx

= 0.

b) lim
n→∞

∫∞
a n(1 + n2x2)−1 dx

We do a u-substitution with u = nx, du = n dx:

lim
n→∞

∫ ∞

a

n(1 + n2x2)−1 dx = lim
n→∞

∫ ∞

na

du

1 + u2

= lim
n→∞

[arctanu]∞na

= lim
n→∞

(
π
2 − arctanna

)
=





π
2

a = 0

0 a > 0

π a < 0

.

8. a) Find the smallest constant c such that log(1 + et) < c + t for
0 < t <∞.
First, observe that

1 + et < ecet =⇒ 1+et

et < ec.

Note that

lim
t→0

1+et

et = 2 and lim
t→∞

1+et

et = 1.

Since 1+et

et is monotonic, it is evidently monotonically decreasing:

d
dt

1+et

et = d
dt

(
1
et + 1

)
= d

dte
−t = −e−t.

Thus, let e2 = 2 or c = log 2.
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b) Does lim
n→∞

1
n

∫ 1

0 log(1 + enf(x)) dx exist for every real f ∈ L1[0, 1], if

f > 0?

From part (a), we get 1 < 1+enf(x)

enf(x) < 2, which gives

enf(x) < 1 + enf(x) < 2enf(x)

nf(x) < log
(
1 + enf(x)

)
< nf(x) + c (c = log 2)

n

∫ 1

0

f(x) dx <

∫ 1

0

log
(
1 + enf(x)

)
dx < n

∫ 1

0

f(x) dx+ c

(since integration is a pos linear functional and f ∈ L1.)
∫ 1

0

f(x) dx < 1
n

∫ 1

0

log
(
1 + enf(x)

)
dx <

∫ 1

0

f(x) dx+ c
n

Then taking the limit as n→ ∞, we get
∫ 1

0

f(x) dx ≤ lim
n→∞

1
n

∫ 1

0

log
(
1 + enf(x)

)
dx ≤

∫ 1

0

f(x) dx.

Since f is integrable by hypothesis, the Sandwich Theorem gives

lim
n→∞

1
n

∫ 1

0

log
(
1 + enf(x)

)
dx =

∫ 1

0

f(x) dx.
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VI. The Hahn-Banach Theorem and applications

[Folland] It is not obvious that there are any nonzero bounded functionals
on an arbitrary normed vector space. That such functionals exist in great
abundance is one of the fundamental theorems of functional analysis.

[Reed & Simon] In dealing with Banach spaces, one often needs to construct
linear functionals with certain properties. This is usually done in two steps:
first one defines the linear functional on a subspace of the Banach space where
it is easy to verify the desire properties; second, one appeals to (or proves) a
general theorem which says that any such functional can be extended to the
whole space while retaining the desired properties. One of the basic tools the
second step is the following theorem,

Theorem VI.1. Let X be a vector space and p : X → R such that

(i) p(αx) = αp(x), ∀α ≥ 0, and

(ii) p(x+ y) ≤ p(x) + p(y), ∀x, y ∈ X.

If S is a subspace of X and there is a linear functional
f : S → R such that f(s) ≤ p(s), ∀s ∈ S, then f may be extended to
F : X → R with F (x) ≤ p(x), ∀x ∈ X, with F (s) = f(s) ∀s ∈ S.

Proof. The idea of the proof is to first show that if x ∈ X but x /∈ S, then
we can extend f to a functional having all the right properties on the space
spanned by x and S. We then use a Zorn’s Lemma / Hausdorff Maximality
argument to show that this process can be continued to extend f to the whole
space X.

(Sketch)

1. Consider the family

G := {g : D → R
... g is linear; g(x) ≤ p(x), ∀x ∈ D; g(s) = f(s), ∀s ∈ S},

where D is any subspace of X which contains S. So G is roughly the
collection of “all linear extensions of f which are bounded by p”.
Now G is a poset under

g1 ≺ g2 ⇐⇒ Dom(g1) ⊆ Dom(g2) and g2

∣∣∣
Dom(g1)

= g1.
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2. Use Hausdorff maximality Principle (or Zorn) to get a maximal lin-
early ordered subset {gα} ⊆ G which contains f . Define F on the union
of the domains of the {gα} by F (x) = gα(x) for x ∈ Dom(gα).

3. Show that this makes F into a well-defined linear functional which
extends f , and that F is maximal in that F ≺ G =⇒ F = G.

4. Show F is defined on all of X using the fact that F is maximal. Do
this by showing that a linear functional defined on a proper subspace
has a proper extension. (Hence F must be defined on all of X or it
wouldn’t be maximal.)

�

Proposition VI.2. (Hausdorff Maximality Principle)
(A,≺) is a poset =⇒ ∃B ⊆ A such that B is a maximal linearly ordered
subset. I.e., if C is linearly ordered, then B ≺ C ≺ A =⇒ C = B or C = A.

Of course, the HBT is also readily extendable to the complex case:

Theorem VI.3. Let X be a complex vector space and p a real-valued func-
tion defined on X satisfying

p(αx+ βy) ≤ |α|p(x) + |β|p(y) ∀x, y ∈ X, ∀α, β ∈ C with |α| + |β| = 1.

If S is a subspace of X and there is a complex linear functional
f : S → R such that |f(s)| ≤ p(s), ∀s ∈ S, then f may be extended to
F : X → R with |F (x)| ≤ p(x), ∀x ∈ X, with F (s) = f(s) ∀s ∈ S.
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VI.1. Principle Applications of the HBT.

Most often, p(x) is taken to be the norm of the Banach space in question.

1. M is a closed subspace of X and x ∈ X\M =⇒ ∃f ∈ X∗ such that
f(x) 6= 0, f

∣∣
M

= 0. In fact, if δ = infy∈M ‖x − y‖, f can be taken to
satisfy ‖f‖ = 1 and f(x) = δ.

Define f on M + Cx by f(y + λx) = λδ for y ∈M,λ ∈ C. Then

f(x) = f(0 + ·x) = 1 · δ = δ

but for m ∈M ,

f(m) = f(m+ 0) = 0 · δ = 0.

For λ 6= 0, we have

|f(y + λx)| = |λ|δ ≤ |λ| · ‖λ−1y + x‖ = ‖y + λx‖
because δ = inf ‖y + x‖ ≤ ‖λ−1y + x‖ (putting in λ−1 for y). Using
p(x) = ‖x‖, apply the HBT to extend f from M + Cx to all of X.

2. If x 6= 0, x ∈ X, then ∃f ∈ X∗ such that ‖f‖ = 1 and f(x) = ‖x‖.

M = {0} is trivially a closed subspace, so apply (1) with δ = ‖x‖.

3. The bounded linear functionals on X separate points.

If x 6= y, then (2) shows ∃f ∈ X∗ such that f(x − y) 6= 0. I.e.,
f(x) 6= f(y). This result indicates that X∗ is BIG.

4. If x ∈ X, define x̂ : X∗ → C by x̂(f) = f(x), so x̂ ∈ X∗∗. Then
ϕ : x 7→ x̂ is a linear isometry from X into X∗∗.

x̂(αf + βg) = (αf + βg)(x) = αf(x) + βg(x) = x̂(αf) + x̂(βg),

so x̂ is linear. This verifies that x̂ ∈ X∗∗.
For ϕ(x) = x̂, ϕ(ax+ by) is defined by

ˆax+ by(f) = f(ax+ by) = af(x) + bf(y) = ax̂(f) + bŷ(f),
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so ϕ(ax+by) = ˆax+ by = ax̂+bŷ = aϕ(x)+bϕ(y) shows that ϕ : x 7→ x̂
is linear. Finally,

|x̂(f)| = |f(x)| ≤ ‖f‖ · ‖x‖

shows that

‖x̂‖ = sup
‖f‖≤1

|x̂(f)|
‖f‖ = sup

‖f‖≤1

|f(x)|
‖f‖ ≤ sup

‖f‖≤1

‖f‖ · ‖x‖
‖f‖ = ‖x‖.

To get the reverse inequality, note that (2) provides a function f0 for
which |x̂(f0)| = |f0(x)| = ‖x‖ and ‖f‖ = 1. Then

‖x̂‖ = sup
‖f‖=1

|x̂(f)| ≥ |x̂(f0)| = ‖x‖.

We saw this for Hilbert spaces, but this example is applicable to
general Banach spaces and requires none of the Hilbert space machinery
(orthonormal basis, projection theorem, etc.) as the HBT takes care
of a lot.

VI.2. Corollaries to the HBT.

1. If X is a normed linear space, Y a subspace of X, and f ∈ Y ∗, then
there exists F ∈ X∗ extending f and satisfying ‖F‖X∗ = ‖f‖Y ∗.

Proof. Apply HBT with p(x) = ‖f‖Y ∗‖x‖X∗. �

2. Let X be a Banach space. If X∗ is separable, then X is separable.

Proof. Let {fn} be a dense set in X∗. Choose xn ∈ X, ‖xn‖ = 1 so
that

|fn(xn)| ≥ ‖fn‖/2.
Let D be the set of all finite linear combinations of the ‖xn‖ with
rational coefficients. Since D is countable, we just need to show that
D is dense in X.

If D is not dense inX, then there is a y ∈ X\D and a linear functional
f ∈ X∗ such that f(y) 6= 0 but f(x) = 0 for all x ∈ D, by application
(1).
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Let {fnk
} be a subsequence of {fn} which converges to f . Then

‖f − fnk
‖ ≥ |(f − fnk

)(xnk
)|

= |(fnk)(xnk)|
≥ ‖fnk

‖/2
which implies ‖fnk

‖ → 0 as k → ∞. Thus f = 0. <↙
Therefore D is dense and X is separable. �

The example of `1 and `∞ shows that the converse of this theorem
doesn’t hold. In fact, this corollary offers a proof that `1 is not the
dual of `∞, provided you can show `∞ is not separable.
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VII. The Baire Theorem and Consequences

Definition VII.1. D is dense in X iff D̄ = X, equivalently, iff ∀U open in
X, U ∩D 6= ∅.

Definition VII.2. E is nowhere dense iff
(
Ē
)∼

is dense in X.

Definition VII.3. X is meager 10 iff X is a countable union of nowhere dense
sets.

Theorem VII.4. Let (X, d) be a complete metric space. (Note: can substi-
tute LCH for complete, using f.i.p. def of compactness). Then

a) If {On}∞n=1 are open dense subsets of X, then
⋂∞

n=1On is dense in X.

b) No nonempty open subset of X is a countable union of nowhere dense
sets. In particular, X is not.

Proof. The idea of the proof is straightforward: Suppose that X is a com-
plete metric space and X =

⋃∞
n=1An with each An nowhere dense. We will

construct a Cauchy sequence {xm} which stays away from each An so that
its limit point x (which is in X by completeness) is in no An, thereby contra-
dicting the statement X =

⋃∞
n=1An.

Since A1 is nowhere dense, we can find x1 /∈ Ā1 and an open ball B1 about
x1 such that B1 ∩A1 = ∅, with the radius of B1 smaller than 1.

Since A2 is nowhere dense, we can find x2 ∈ B1\Ā2. Let B2 be an open ball
about x2 such that B2 ∩A2 = ∅, with the radius of B2 smaller than 1

2.

Proceeding inductively, we obtain a sequence {xn} where xn ∈ Bn−1\Ān,
B̄n ⊆ Bn−1, and Bn ∩An = ∅.

This sequence is Cauchy because n,m ≥ N implies that for xn, xm ∈ BN ,

ρ(xn, xm) ≤ 21−N + 21−N = 22−N N→∞−−−−−→ 0.

Let x = limn→∞ xn. Since xn ∈ BN for n ≥ N , we have

x ∈ B̄N ⊆ BN−1.

Thus x /∈ AN−1 for any N , which contradicts X =
⋃∞

n=1An. �

10Formerly called “of first category”.
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VII.1. Applications of Baire.

1. Q is NOT a Gδ.

Proof. Suppose it were. Then Q =
⋂∞

n=1On, where the On are open.

Note: Q ⊆ ⋂On =⇒ Q ⊆ On, ∀n, so Q dense in R =⇒ On dense
in R, ∀n.

Let {qk}∞k=1 be an enumeration of Q.
Consider the singleton set (not the sequence!) {qn}.

Then {qn} closed =⇒ {qn}∼ open. Also, {qn}∼ is dense in R. (It
contains all but 1 of the rationals, so, e.g. the sequence {qn− 1

m
}∞m=1 ⊆

{qn}∼ and has qn as a limit point.)

Then On ∩ {qn}∼ is open and dense. To see dense, note that

On ∩ {qn}∼ = Q ∼ {qn}.
Then⋂

(On ∩ {qn}∼) = (
⋂

On) ∩
(⋂

{qn}∼
)

= Q ∩ (R ∼ Q) = ∅,

So ∅ is dense in R, by Baire’s Theorem. <↙ �

However, Q is an Fσ: Q =
⋃∞

n=1{qn}.

2. A meager set with Lebesgue measure 1.
We start by constructing a nowhere dense set with positive measure.

Let Cα be the Cantor set formed by removing an open interval of
length α

3n+1 from each of the remaining 2n pieces, where 0 < α < 1.

Then Cα =
⋂∞

n=0 Cn
α is closed as an intersection of closed sets and

Cα = Cα. To show Cα is nowhere dense, it suffices to show that Cα

contains no nonempty open set.11 If O 6= ∅ is open, then it contains

11If a closed set F contains no open set, then it is nowhere dense: we use contrapositive. Suppose (F )∼

is not dense. Then ∃x ∈ F which is not a limit point of F̃ . If no sequence in F̃ converges to x, every point

of F̃ must be at least ε > 0 away from x. Thus F contains Bε(x). The conditions are actually equivalent.
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Figure 4. Construction of the Cantor set with measure α.
_


C �
0

C �
1

C �
2

C �
3

3

C �
4

�

an interval A of positive length ε > 0. Each of the 2n intervals of Cn
α

(nth step of construction) are of length ` < 2−n, so for large enough
N , we have ` < 2−N < ε. Thus A is longer than any component of
CN

α and hence cannot be contained in CN
α or Cα. So Cα is nowhere dense.

Now we use the measure lemma12 to compute the measure of Cα:

µCα = 1 −
∞∑

n=0

α2n

3n+1 = 1 − α
3

∞∑

n=0

(
2
3

)n
= 1 − α

3

(
1

1−2/3

)
= 1 − α.

Thus, every singleton {Cα} is a trivially a countable union of nowhere
dense sets which have positive Lebesgue measure.

12The Measure Lemmae.

Proposition VII.5. Let (X,A, µ) be a measure space.

a) If {Ak} is an increasing sequence (Ak ⊆ Ak+1) of sets of A, then µ(∪Ak) = lim µAk.

b) If {Ak} is a decreasing sequence (Ak+1 ⊆ Ak) of sets of A, and µAn < ∞ for some n, then µ(∩Ak) =
lim µAk.

(µAn < ∞ is necessary, else let Ak = (k,∞).)

Proposition VII.6. Let (X,A) be a measurable space and let µ be a finitely additive function µ : A → [0,∞]
such that µ(∅) = 0. Then µ is a measure if either

a) lim µAk = µ(∪Ak) for each increasing sequence {Ak} ⊆ A; or

b) lim µAk = 0 holds for each decreasing sequence {Ak} ⊆ A with
⋂

Ak = ∅.
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However, to complete this in the manner suggested by Royden, we
now consider P =

⋃∞
k=1 C1/k.

µP = µ

( ∞⋃

k=1

C1/k

)
= lim

k→∞
(1 − 1

k) = 1.

So P is a union of a countable infinite collection of nowhere dense sets,
and P has Lebesgue measure 1.

VII.2. Consequences of Baire.

Theorem VII.7 (Open Mapping Theorem). X, Y are Banach spaces, T ∈
L(X, Y ). Then T surjective =⇒ T open.

Proof. Nasty. (technical and longish) �

Corollary VII.8. If X, Y are Banach and T ∈ L(X, Y ) is bijective, then T
is an isomorphism.

Proof.

T is an isomorphism ⇐⇒ T−1 ∈ L(X, Y )

⇐⇒ T−1 is continuous

⇐⇒ T is open

But this last condition is exactly the result of the OMT;

T bijective =⇒ T surjective =⇒ T open.

�

Definition VII.9. The graph of T is the set

Γ(T ) = {(x, y) ∈ X × Y
... y = Tx}.

Definition VII.10. T ∈ L(X, Y ) is closed iff Γ(T ) is a closed subspace of
X × Y .
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Theorem VII.11 (Closed Graph Theorem). If X, Y are Banach spaces, and
the linear map T : X → Y is closed, then T is bounded.

Proof. Let π1, π2 be the projections of

Γ(T ) = {(x, y) ∈ X × Y
... y = Tx}

to X and Y respectively:

π1(x, Tx) = x and π2(x, Tx) = Tx.

Obviously, π1 ∈ L(Γ(T ), X) and π2 ∈ L(Γ(T ), Y ).
Since X, Y are complete, so is X × Y . Hence T closed implies Γ(T ) is a

closed subspace (by definition), and a closed subspace of a complete space is
complete, so Γ(T ) is also complete.

Now π1 : Γ(T ) → X is a bijection, hence an isomorphism by the corollary
to OMT, i.e., π−1

1 is bounded.
But then T = π2◦π−1

1 is bounded. �

Figure 5. T as a composition of projections

Y

T

X

�

1

�

2

�

1
-1

CGT restated: Let X, Y be Banach spaces, and T : X → Y be linear.

(1) Then T is bounded ⇐⇒ Γ(T ) is closed.
(2) Then T is continuous ⇐⇒ (xn → x, Txn → y =⇒ y = Tx).

Note. For X, Y be Banach spaces, and S : X → Y unbounded ,

(a) Γ(S) is not complete,
(b) T : X → Γ(S) is closed but not bounded, and
(c) T−1 : Γ(S) → X is bounded and surjective but not open.
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Theorem VII.12 (Uniform Boundedness Principle, aka Banach-Steinhaus
Theoreom). Suppose X, Y are normed vector spaces and and A ⊆ L(x, y).

a) If supT∈A ‖Tx‖ < ∞ for all x in some nonmeager set D ⊆ X, then
supT∈A ‖T‖ <∞.

b) If X is Banach and supT∈A ‖Tx‖ < ∞∀x ∈ X, then supT∈A ‖T‖ <
∞.

Proof of (a). Let

En = {x ∈ X
... sup

T∈A
‖Tx‖ ≤ n} =

⋂

T∈A
{x ∈ X

... ‖Tx‖ ≤ n}.

Thus the En are closed as intersections of preimages of closed sets under con-
tinuous maps. Since supT∈A ‖Tx‖ ≤ N, ∀x ∈ D by hypothesis, EN contains
a nontrivial closed ball

B(x0, r), r > 0.

But then

‖x‖ < R =⇒ (x− x0) ∈ EN

=⇒ ‖Tx‖ ≤ ‖T (x− x0)‖ + ‖Tx0‖ ≤ 2N,

so ‖x‖ ≤ r =⇒ ‖Tx‖ ≤ 2N ∀T ∈ A, which implies that

‖T‖ ≤ 2N
r <∞.

�

Proof of (b). X is a nonempty Banach space, so X is nonmeager by Baire.
(Baire’s Theorem says that every complete metric space is nonmeager.) Then
just apply (a). �

Rephrase of the UBP:
Either ∃M <∞ such that ‖T‖ ≤M, ∀T ∈ A,
or else supT∈A ‖Tx‖ = ∞, ∀x in some dense Gδ ⊆ X.

Geometrically, either there is a ball B ⊆ Y (with radius M , center 0) such
that every T ∈ A maps the unit ball of X into B, or there exists an x ∈ X
(in fact, a whole dense Gδ of them) such that no ball in Y contains Tx, for
all T ∈ A simultaneously.
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VII.3. Related Problems.

1. Find a Banach space X, a normed linear space Y , and a continuous
linear bijection f : X → Y such that f−1 is not continuous. (Note: Y
better not be Banach!)

Let X :=
(
L2[0, 1], ‖ · ‖2

)
and Y :=

(
L2[0, 1], ‖ · ‖1

)
, and define f :

X → Y by f(x) = x.
f is clearly bijective and linear. To see f is continuous, it suffices to

show f is continuous at 0:

Let ϕ ∈ X and fix ε > 0. Since X, Y are finite measure spaces,
p < q =⇒ ‖ϕ‖p ≤ ‖ϕ‖q.

Thus, ‖ϕ‖1 ≤ ‖ϕ‖2 shows ‖ϕ‖2 ≤ ε =⇒ ‖f(ϕ)‖1 = ‖ϕ‖1 ≤ ε.
To see f−1 is not continuous, consider {ϕn} ⊆ Y defined by

ϕn(x) =
1√

x+ 1/n
.

Now ϕn(x) ≤ ϕn+1(x) ≤ ϕ(x) = 1√
x
, ∀n, x. Since

∫ 1

0
1√
x
dx = 2 =⇒

ϕ ∈ L1, the MCT gives

lim ‖ϕ‖1 = lim

∫ 1

0

dx√
x+ 1/n

=

∫ 1

0

(limϕn)dx

=

∫ 1

0

dx√
x

= 2 = ‖ϕ‖1.

However,

‖ϕn‖2 =

(∫ 1

0

dx

x+ 1/n

)1/2

= (log[1 + n])1/2 n→∞−−−−→ ∞

shows that lim f−1(ϕn) does not converge.

Indeed,
∫ 1

0 ϕ
2 dx =

∫ 1

0
dx
x

= ∞. Hence, lim f−1(ϕn) 6= f−1(ϕ) shows
that f−1 is not continuous.
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2. Let V be a Banach space.

a) If V is infinite-dimensional, construct an unbounded linear operator
f : V → V .

b) If V is finite-dimensional, show that every linear operator on it is
bounded.

Since V is a vector space, it has some basis {eλ}λ∈Λ. Then if {cλ}λ∈Λ

is any sequence (or net) in R, ∃!f : V → V such that for every element
v =

∑
vλeλ of V , we have

f(v) =
∑

cλvλeλ.

(Just define f(eλ) = cλeλ.)

a) For V infinite-dimensional, {cλ} unbounded implies f unbounded.

b) For V finite-dimensional, ‖f‖ ≤ k ·max{cλ} for some k. (Basically,
Λ finite =⇒ max{cλ} exists.)

See any book on Quantum Dynamics or Functional Analysis for
the examples of the position & momentum operators (which are un-
bounded), e.g., Reed & Simon.


