I. THE HOLDER INEQUALITY

Holder: || fgll < [[f1,llglly for 2 +1 =1.

What does it give us?
Holder: (L?)" = L% (Riesz Rep), also: relations between LP spaces

[.1. How to prove Holder inequality.

(1) Prove Young’s Inequality: ab < & + bq

(2) Then put A = ||fl,, B = ||gll, Note A, B # 0 or else trivial. Then
let a = |f( I p= |g( )l and apply Young’s:

_ @@ — @ | @l _ @’ b
b AB S pAP +quq = — + —

p q
3 [15@gte)dn < 3 [ 1Pdu+ ok [ lotan
but A? = [|f[Pdp and B? = [ |g|%du, so this is

1 1 1 _
ol <5 +5=1
1 falln < W flpllgllg

[.1.1. How to prove Young’s inequality.
There are many ways.

1. Use Math 9A. [Lapidus]
Wlog, let a,b < oo (otherwise, trivial).
Define f(x) = &

JZJ + % — 2 on [0,00) and use the first derivative test:
flix)y=a""1 1,50 fl(2) =0 <= 2" =1 <= 2=1

So f attains its min on [0,00) at x = 1. (f” > 0).
Note f(1) = ]% + % — 1 =10 (conj exp!).

So f(z) > f(1)=0 = £
—_—
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Ansatz: z = ab1=?) Then 2P = a?b?/(1=P) = qPp4:

abl/ (= p)<apbq_|_é %——q
o i o
ab < ( >(b1p) 5 1-p b 1-p —p I-p
abé?_'_q

2. Use Math 9B. [Cohn]
Consider the graph of t = sP~1:

FIGURE 1. The graph of t = sP~1

A
t=s""
b
(1)
(2)
>
a S
Since
1,1 _ 1_ 1 _1_g-1 — g0 — _1=_L
5+5_1:>p_1 ¢~ ¢ — 7 P=d 1= l_qfl’
this is also the graph of s = t77 1,
a
p—1 _ 2| _ a
Now ( fos 7|, = P
b
b1 e
and (2) —fo t4 = E:|O— E

Thus the area of the entire shaded region is (1) + (2) = % + %q, which
is clearly always larger than the box of area ab:

[.1.2. A proof without Young’s inequality.
Use convexity [Rudin]:

e (1 =Nz +Ay) < (1= Np(x)+ Ap(y).
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F1GURE 2. The inherent inequality

A LA
r=st" r=st!
b +«——extra b /7 extra
ab ab
> >
a S a S

Since f € LP, g € L%, we have 0 < || f||,, ||g]l4 < o0, wlog.

Define F(x) = ||{/(f|c|i| and G(z) = |ﬁ;3|c|i| so that

] pd = d = G =

and [ G? =1 similarly.

Now define
-2 (55

F(z) = e*@/? and G(z) = e'@/4,

so that

Since e’ is a convex function, put A = % and get

s(z)  tx) s(z) t(z)
e]9+ a <

er +oed

=
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Now integrate the left side and get
176l = [ 1FGldy

| fyl
1 f1lpllgllq

1
- d
anpuguq/ Foldn

ISl
1 Tlgl,

and we integrate the right side to get
/ FPdp + 1 / Gldpu
_|_

dp

[ n

=

_1
p
1
p
=1

Thus,

/g1l
e < L= lfgll < b llgll-

£ 1pllgllq
Advantage of this method? No need for Young’s!
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[.1.3. Recap - 3 good ways to prove a functional inequality.
To prove a(x) < b(z):

1. Use basic calculus on a difference function:
Define f(x) := a(x) — b(x).
Use calculus to show f(z) < 0 (by computing f’, etc)

2. Use geometry.

3. Exploit another inequality. E.g., for any convex function ¢(z),

(1 =Nz +My) < (1= Np(z) + Ap(y).

Candidates for ¢: e*, 2P, .. ..

[.1.4. What did we not do yet? case p =1, 00.
l9(2)] <, l9lls

[f (@) |g(@)] <, [f(@)] 9]l
[f(@)g(@)] <, 1f(@)] - llgll
1f(2)g(2)ll <, [F(@)] - llgllo

p = oo is exactly the same.

[.2. How to use the Holder inequality. Assume (X, M, u) is a measure
space with uX > 1, f : X — R is measure, and LP = LP(X, u).
1. For 1 <p < g <oo,if |f(x)| > 1, then || f]|, < ||fllq If nX = oo, then
[x [fIPdp = [ 1g|%dp = oo, so let pX < oo.
Then

< 1]
/X Py < /X Flidp. (1L1)

If [\ |f]%dp = oo, it is trivial, so assume not.

Then [, |f|%dp < oo = fe L4 and (1) = f e L

Nowp =g = || fll, = || fll; and we are done trivially, so let p < q. We
would like to use Holder with g(x) = 1 and some conjugate exponents
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a, B with & + 5 =1.

Ansatz: Let a = 2 and = -, so
P g—p

1,1 _pyap_9q_
tET ¢t T =L

ESEES

Now use Holder with f = f? to get

179l < 177 lallglls (L.2)

Now remembering that g = 1, we have

D — || fP|]. — p_ P and
174l = 1771 /X P =171

1. =( /. \fp|q/p)p/q -(/ |f|q)p/q — £, and (%)
bl = ([ 1) " (/ 1)”5 _ ()

So (1.2) becomes

qa—p

LI < [1£1G - (nX) 9
1l < I1flg - (uX)taP/ea
11, < [1£1lq

Forl<p<g<oo |f()|<1VzeX = |f],> | fI4"
p = q is trivial, so take p < q.
Then

p<qlfl<1 = |f| > | f|*

/ |J:/|p2 I 1/
(fur) "= (fine)

1l = N1
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3. Showp<g<rand fell fel" = fel
Let A={|f|>1} and B={|f| <1} = A.

rer — 1= [ [ 1r <o
— [ 1<

rer = [ifr=[ur+ [ 1<

— [ <

On A, [fI" < |fI" = [, IfI" < [4If]".

gnB, 1< P = [plf17< [plfIP
(0]

/X /17 = /A 19+ / £
< / I+ / 7P
< 0

by (1.3),(1.4)

shows that f € LY.
Moral: to show [y f(z) < [y g(x), try splitting X.
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4. Show there is a bounded linear operator ¢ : LY — (LP)" given by

wr(g) = o(f)g) = /ngdu,vf € LI Vg e LP

so that ¢ : g — [ fgdu is the functional “integration against f”.

ol ()]
feLa, f4£0 Hf”q
— s swp (S (Il def of |||
feLa,f+0 geLP,g#0 HfH HQHp
d
= sup sup ‘fo—gM def of ¢(f)(9)
feLa, f+0 geLP,g#0 HquHng
Jgll
< sup  sup gl | [ fal < [ |fg]
fELY, f#0 geLr ,g#0 HquHng
< sup sup M Holder

feLa,f£0 geLP,g#£0 1 llgllgllp

so [[¢]| <1 and ¢ is bounded.

To see ¢ is linear, let fi, fo, f € LY, g € LP, and o € R: we show two
things in (L?)" are equal by showing that they act the same way on
any g € LP.

o(fr+ f2)(g) = /f1+fz gdu

~ [ ngdu+ [ pgdn

= o(f1)(9) + ¢(f2)(9) = (p(f1) + ¢(f2)) (9)
shows ¢(f1 + f2) = ¢(f1) + ¢(f2), and

plaf)g) = /afgdu = a/fgdu = ap(f)(g)

shows p(af) = ap(f).
Hence (by the linearity of the integral), ¢ is linear.
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II. THE DuAL OF LP

Proposition IL.1. Show that ¢ : L? — (LP)" by ¢ : f — [ fgdu is an
isometry.

Proof. So we must show ||o(f)|| = ||f]l,Vf € L. Let 1 < p,q < oo. Then

o(f)(g
le(Hl = sup 12D def of [o]
geLP,g#0 Hng
d
[Jx fodul def of o(f)(g)
geLP,g#0 Hng
fg
< sup I3y | fal < [ |fd]
geLP g#0 Hng
< sup |fll, Holder
geLPr,g#0

Hence [|o(f)[| < [[f][- For [|o(f)[| = [[f]l, use the fact that [[p(f)] is defined
as a supremum: ||¢(f)]| is the smallest number such that

le(H) DI < lle(HI - llgll - holds for all g (# 0).
In other words, if we can find a g for which |\<p(||g” I > | 1|, then

[ = by g0 { L > 7]

Ansatz: let g = | f|9?sgn f.
Then |g|? = |f|? = fg.! Thus, f € LY = g € L*. Now

1= [ 15
()"~ (i
(o (fa)" () ()"
et = ([150)"" = (f1) =1

=g = S+1=g,50 fg=f|f|"Psgnf =|f|-|fo/7 = | f|"/r = |f]s.

+
Q=
I
[
I

+

NS

3 =
S S
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Thus, ¢(f ]ﬁfg(hi JUAT=1£1E = 11 fllallglls
= Hgllp L [aipe
Now suppose p =1, = 00
We have
| J fgdul gl - 11/ 1oc
o) = sup KL < up Db AT gy

as before. Now it remains to find a g € L' for which [ fgdu > ([ |gldp) || f]lso-
We have f € L™, so note || f||oc < 00. Then fix ¢ > 0 and define

B={fZlfllc =€},
and let A be any measurable subset of B such that 0 < A < 00.? Define

ge = XASgnf-3
Then [ |g:|du = nA and
[ foedn= [ 17ldn = (17 - 2) 4

[ 1 fg:ldu
L e -

[ 1fg:ldu
S“p{m}z”f”w‘a

Since this is true for any ¢, let ¢ — 0 and obtain sup {ff| ||chL} > fllso-

Now suppose p = o0, q = 1.

Again, ||p(f)]| = sup |f|§”gi”| < ||fll1, as before. Now find g € L> such that

[ faau=lal< ([ 111dn).

Let @ > 0 and define ¢ = asgn f be a constant function. Then
[ fodu=a [ Iflau= sl [ I71dn

ZNote that if f is a constant function, B could be co! pB > 0 by def of 1l oo-
3Include the sgn f so that fg. = |f| instead of just f, in the following derivation.
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II.1. The Riesz Representation Theorem.

Theorem 11.2. Let F' be a bounded linear functional on LP, 1 < p < oc.
Then Jg € L% such that F(f) = [ fgdu,Vf € LP, and || F|| = ||gll,-

There are two common proofs for this theorem. One uses step functions and
absolute continuity of functions; the other uses simple functions and absolute
continuity of measures. Both follow a similar strategy:

(1) Show F(X4) = [ gXadu = ngd,u.

e use absolute continuity of ® : [0,1] — R by ¢gF(s) = F(X;); or
e use absolute continuity of vFE = F(Xg).

(2) Extend to a dense subspace of L?
e use step functions for gF(s)
e use simple functions for vE

(3) Establish [|F'[| = {|gll,
e extend F' to bounded measurable functions, use Royden & Holder
e define G(f) = [ fgdp on LP and use density, continuity

(4) Extend to L?
e approx by step functions
o use G

(5) Show uniqueness of g.

Method I:

e uses step functions— only applies for L?([a, b, \)

e requires reference to 3 thms of Royden

e nice use of DCT, boundedness

e absolute continuity of a function is a bit more concrete

Method II:

e uses simple functions, so applies to LP(X)
e requires reference to 1 thm of Royden

e uses Radon-Nikodym Theorem

e smooth use of general topology

e works for any o-finite
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Important note: must add “u is o-finite” in order to do the case p = 1!

Method I (Royden)
Proof.

1. For s € [0,1], let Xy := Xjoq. Then F(X;) = [; gdX is some real
number, so define @ : [0,1] — R by

O(s) = F(Xs) = /Osgd)\.

Claim: @ is absolutely continuous.

Fix ¢ > 0 and let {(a;,b;)}?_; be any finite collection of disjoint
subintervals of [0, 1] such that

Z(bZ — CLZ‘) < 0.

Then > [®(b;) — ®(a;)| = F(f) for

J= Z (sz - Xai) Sgn ((I)(bl) - (I)(al)) .

Sincef\f\p:Zpr; 4 :chzildA:Z(bi—ai)<5,5
D 120) — @) = F(f) < IFI- I fllp, < [1F)167.

Thus, total variation of ® over any finite collection of disjoint intervals
is less than ¢, as long as the total length of these intervals is less than

6_

IIF [
which shows that ® is absolutely continuous.

Then ® has an antiderivative, by some theorem: °

O(s) = /Osg.

Note that [@(b;) — ®(a;)] = |F(Xa,) = FXb)| = (F(X,) = F(Xy,)) sgn (D(X,) = B(X,,)).
SIn the first equality, use (Xp, = Xa;) = X(q,,,) and |sgnh| =1 ae.
6Royden7 Lemma 5.14 on page 110.
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Thus F(X f 0 9Xs:

2. Since every step function ¢ on [0, 1] is a linear combination

Q= ZC’ (\-ae),

we get

by the linearity of F, [.

3. Now extend F' to the bounded measurable functions f on [0, 1].

Let f be such a function, and find a bounded sequence {p,} C Step
which converges A-ae to f. This is possible by Royden, Prop 3.22.
Then {|f — ¢n|'} is uniformly bounded (IM such that |f — ¢, [P <
MP ¥/n,x) and tends to 0, A-ae.

This bound allows us to use the DCT and get

lim [|f=¢ufP =0 = |f =l ——0.

n—oo

Then the boundedness of F' and the fact that

[E(f) = Fen)| = [F(f =) < [F]-[[f = ¢nll

together imply that F(f) = lim, . F'(©n).
Also, |gon| < |g|- My, = [ fg =1im [ gp, by the DCT again.”
Putting this together,

F(f)=lmF(p,) = lim/ggon = /fg, Vf (bdd,measurable).

Then by Proposition 5.12 on page 131 of Royden,

/ fgdx‘ DI<IEL-UF1N - 161,

and we have g € L4, ||g|l, < N = ||F||..
Then by Prop IL.1, ||F|| = ||g]|,-

7M¢ is the uniform bound on the sequence {¢,}.
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4. Extend to f € LP.

Ve, 3 € Step such that ||f — ], < e.

Then ¢ € Step = 1 bounded = F(f) = [ g, by (3).
Hence,

‘ﬂn—/}4=P%ﬂ—ﬂw+/@f3/m‘
<P - F)+| [ 1= [od]

—IF =)+ o= ]

< [E- 1 =l + 1 =l - llglly
< (1F[] +llgllq) €

Since ¢ is arbitrary, this shows F(f) = [ fgd\.

5. If g1, go determine the same F' in this way, then

t/mmxi/mmx=/ﬂm—mMA

gives the zero functional, and

g1 —g2llg=0 = g1 = o

Method II (Royden)
Again, given a bounded linear functional F' on LP, we must find a g € L4
such that F(f) = [ fgdu.

Proof. First, consider a finite measure space (X, A4, u).
Then f bounded = f € LP(u).

1. Define v on A by
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Then v is a signed measure:
If E is the disjoint union of {E,} C A, let o, = sgn F'(Xg,) and define
f=>a,Xg,. Then F is bounded, so a lemma gives

n=1

Y |VE.| = F(f)<oo and > vE,=F(Xg)=vE.
n=1

So v is a signed measure. Also,
p=0 = F(Xg)=0,

so v < p. Then Radon-Nikodym applies and dg measure such that

vl = ngdu.
Note: F bounded = F(Xx) = vX < o0, so v is finite.
Then vX = [, gdu < o0 = g€ L' (p).

2. Let ¢ be a simple function. Then by linearity of F' and [, we have

Flp) = /sog dp.

Now |F(¢)| < ||[F] - ll¢ll, = ¢ € L? by some Lemma on page 283.

3. (&4.) Define G(f) = [ fgdu for f € LP, so (G — F) is a BLT on L?
which vanishes on S.

(G — F) bounded = (G — F) continuous,

so (G—F)=0on L
Hence, Vf € L?, F(f) = [ fgdp and |[F| = |G]| = llgl4-

5. If g1, go determine the same F' in this way, then

/fg1du—/fgzdu=/f(g1—gz)du

gives the zero functional, and

g1 —g2ll;=0 = g1 = o

Now consider p o-finite. Choose {X,,} such that
—| 7 C
X=J Xi X0CXun, pXy<oo,Va.
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Then the previous case gives a g, for each X,, such that g, vanishes outside
X, and F(f) = [ fgndp for all f € LP that vanish outside X,.

By construction, the uniqueness of g, on X,, gives

9n+1 L = Gn,

so for x € X, define
g(z) := gn(x), where z € X,,.

Since g, differs from g,,, on a set of at most measure 0 (on any X; where both
are defined), discrepancies may be safely ignored and ¢ is well-defined.
Moreover, |g,| increases pointwise to |g|. By MCT,

[laltd =i [ g, < 17
so g € LY.

For general f € LP, define

f— f on X,
"o on X,

Then f, —— f and f, RGN f.
Then |f.g| < |fg| € L', so DCT gives

/fgduD:CT lim/fngdu

2T Jim / Fagn i
= lim F(f,)

= F(/)
L]

Side note: if A is Lebesgue measure and v is the point mass at 0 (on
(R, B(R))), then what would Z—Z be (if v < p)?
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11.2. (LY)* = L™, but (L®)* # L.

Let X be [0, 1] so that we can safely consider C'(X) as a subspace of L>(X).
Define ¢ : C(X) — R by ¢(f) = f(0), s0 ¢ € (C(X))".

By HBT, Jp € (L>)* such that ¢(f) = f(0)Vf € C(X). To see that ¢
cannot be given by integration against a function in L!, consider f, C C(X)
defined by f,(z) = max{1 — nx,0}.

FiGure 3. The functions f,.
A

1

sHh

v

:3|>—I
'_\

Then @(fn) - fn(o) =1Vn.
But f.(x) — 0Vx >0, so f,g — 0Vg € L1
If o(fn) = [ fug, then we would have

1= @(f) = (lim f,)
= lim p(f,,) ¢ € (L*)" = ¢ continuous

= lim / fng hypothesis

DCT

I I
——
o =
=
"
S

Slightly fancier version: use ((f) = f(p) and f,(z) = max{0,1 —n|z — p|}.
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III. THE MINKOWSKI INEQUALITY

(X, M, ), 1 < p < oo. Then [|f +gll, <[l +[lgllp-

What does it give us? LP is a normed vector space (A-ineq), L? is Banach.

ITI.1. How to prove Minkowski inequality.

IT1.1.1. Use Holder inequality.

case i) 1 < p < o0.
For f,g € L?, deﬁneqby%%—%:l,Sothatp+q=pq:

Now
(1f + ") = (1F + g )" =1f + g

Since L? is a vector space, we have f+¢g € LP and hence |f+g|P~! € LY.
We need to set up for Holder:

f+glP=f+gP " |f+g|
<|f+glP(If1+ 9]
<|f+gP " fI+|f+ 9P Mgl

/ gl du < / o+ gl et / £+ gl gl di

Now Holder gives

/\f\ Af gl dp < FILIS 4+ glP Ml and

/ gl - 1f + gl dia < gl f + g,
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Thus

[ 15+ gt dis (U7l + ol 107 + g1
1/q
= (1F1 + gll) ( s +g!<p—1>%zﬂ) |

If [|f+ gPdp =0, then Minkowski is trivial, so assume not.
Then we may divide by

(/ (If +g|p1)qdu) " </ |f+9|pdu) "

1-1/q
( / \f+g\pdu> < 171l + gl

to get

case ii) p = 1.
Then

|f+gl <|fl+1dl A-ineq
/|f+g|d,u</|f|d,u+/|g]d,u integration
1f+ gl < 11l + llglh

case iii) p = oc.
Then define the null sets

Ny=A{lf @) > Ifll}, Noi={lg(2)] > llglloc}-

Then f,g € L™ = uNy; = uNy =0, so u(N; U Ny) = 0 also. On the
complement of Ny U Ny we have

/(@) + g(x)] < [f(@)| + |g(2)].

Then taking suprema gives

1+ glloe < 1 lloe + [lglloo-
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IT1.1.2. Use convexity.
Let a = || f]|, and 8 = ||g||,- Note: a, 3 # 0 or else trivial. Then define

for=31fl, g0:= 39l
so that these functions satisfy

[fI=cafo, gl =Bgo, Ifolly=llgoll, =1.
Note that this implies

1 foll; = llgolly =1 (IIL.1)
Set
A= sol— A= e
Then we have
|f(z) + g(@) " < (If(@)] + |g(2)])? A-ineq
= (afo(z) + Bgo(x))" def of fo, go
= (a+ 8 (25 hol@) + 500())
= (a+ B) (A fo(z) 4+ (1 — N)go(z))" def of A
= (a+B)P (Mo(x)? + (1 = XN)go(z)?) cvxty of t?
/ |f(x) + g(@)[P dp < (a + B) / (Afo(x)? + (1 — XN)go(x)P) du  integrating
If + gl < (a4 B (Al follh 4 (1 = N)llgol D) linearity
< (a+ B (A+(1-N) by (ITL1)
~ (ot By
If+gll, < (a+5) pth roots
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[I1.2. The Riesz-Fischer Theorem: LP(X, M, ) is complete.
Road map:
Split into the two cases 1 < p < oo, p = 0o. For each case:

(1) Invoke the Banach characterization lemma.
(2) Define

0 else

Fa)— {Z fa(z) behaves

Use g(z) = >, | fu(x)] for 1 < p < oo, use N, = {x i | fu(x)] > || felloo}
for p = oo.

(3) Use Minkowski to show f € L and > ) fx , f.

case i) 1 <p < 0.
1. By the lemma, it suffices to show that every series which converges
absolutely (in R) also converges in LP, p € [1,00).

2. Let Y021 || fell, < oo for some { fx}72, C LP.

NTS: ||f = >0, fell, ——— 0 for some f € L”, since this is what
n Lr

> i1 Jt — f means.

Define

g(@) =Y | fi(2)
k=1
so that g > 0 (¢ may take the value co). Note:
n p
(Z ka> >0 (IT1.2)
k=1
and since positive exponents preserve order, we also have

(i: fk|>p < (ni fk|>p- (IIL3)

k=1 k=1
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Then we have

p 1/p
lall, = ( [ jim du)
n p 1/p
= </ lim (Zm) du> by (II1.2)
n— 00 1
n p 1/p
= lim ( / <Z| fk> du> by MCT,(II1.3)
n— 00 1
> I
k=1 P
< lim Z [ fll, Minkowski
k=1

o0
=> IJll,.
k=1

which is finite, by hypothesis. Thus g € L?, so |g| <__ oo.
Hence we may define

{zz‘n fi(z) |g(@)] < oo
0

n

> 1l

k=1

def of || - |,

= lim
n—oo

f(x) =

so that f is measurable and
P <g¢" = fel”

Since lim, oo |£(2) = Sy fylw)] = 0 and [£(z) = 532, filw)P <
g” are both true ae, the DCT gives || f — >, fill, ——=0.
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case ii) p = oo.
1. By the lemma, it suffices to show that every series which converges
absolutely (in R) also converges in L*.

2. Let >0 | fillo < oo for some {fi}72, C L™.
NTS: ||f — >, frlloo ——— 0 for some f € L™.
For each k, define

Ni=Az | fr(@)] > || fello
so that uNy = 0,Vk = pu (UrNi) = 0. Then if x ¢ U Ny,

DIR@I<Y fille = D fil2) <o,
k k

k
by what we know of R. Now we may define

fla) = {OZ fil@) @ ¢ Ui

17€leA@
so that f is p-measurable and bounded, i.e., f € L*.
3. Since p(UrNy) = 0,

Wzﬁ

k=1

Then taking limits,
F=>

k=1

Thus, || = Sy fille =20,

< Y il by Mink

00 k=n+1

YN

k=n-+1

<

oo

<lim Y fille =00

lim
n—od
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Lemma III.1. (Banach Characterization Lemma).
Suppose that (X, || - ||) is a normed vector space. Then

X is Banach <= every absolutely convergent series in X is convergent.

Proof.

(=) Suppose every Cauchy sequence converges.
Let {x;} be such that > ||zx|| < oo so {x}} is absolutely convergent.

Then let
Sp 1= Zm, ands := lim s, = Zxk
k=1 B k=1
NTS: {s,} is Cauchy. Wlog, let n < m.

m

> o

k=n+1

m
<3 fal pvineq

k=n+1

o0
=== >

k=n+1

|80 — sml| =

n—00
— 50

Hence, {s,} Cauchy implies that s, I s =limy e Sy € X

(<) Suppose that every abs. convergent series is convergent.
Let {z,} be a Cauchy sequence.
NTS: z, — z € X.

Since {z,} is Cauchy, we can find a subsequence {x,,} which satisfies
‘ktnk __:tnk+1H < %Z'
Define
V1 = Tp,, and vy =T, — Tp,.
Then we have a telescoping sum:
N

ka = Tn, + (T, — Tny) + -+ (Tny — Tuy ) = Ty,
k=1
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SO
o0 o0
2 Ml < 3 =1
k=1 k=1

shows Y1 | ||vk|| converges.
Hence, >~ v), converges by hypothesis to some v € X. Then

00 N

ve=v = 1i v = lim x
Z N—o00 F N—o00 n
k=1 k=1

shows x,,, Ay, Now
[v = 2all < flv = @n | + |20, — 2

n—oo
shows that x,, ——— v also.
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IV. HILBERT SPACE REVIEW

Most material in this talk is from Reed & Simon.

Definition IV.1. A complex vector space is called an inner product space
(IPS) when

(i) (z,z) >0, and (z,x) =0 iff x =0,

(i) {z,y + 2) = (z,y) + (2, 2),

(iil) (z, ay) = oz, y),

(iv) (z,9) = {y,2).
An inner product space is a Hilbert space iff it is complete under the norm
]| = v/, z).

Definition IV.2. Two vectors x # y are orthogonal iff (x,y) = 0.
A collection {z;} is an orthonormal set iff

(i, z;) =1 and (x;,x;) =0 Vi#j.

Proposition IV.3. (Pythagorean Theorem)
Let {x,})Y_, be an orthogonal set in an IPS. Then

N 2 N
>_wnl =2 el
n=1 n=1
N
Proof. HZ$nH2 = (22 Tn, 2. Tn) = Zn,m:l (Tn, Tm) -

Then see that all the terms with n # m are 0 because of orthogonality, leaving
N N
only >y (w0, @) = Dy [zl [

Proposition IV.4. (Bessel’s Inequality)
If {x4}aca is an orthonormal set in an IPS, then for any x,

Dl o) <l

acA
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Proof. 1t suffices to show that ). |(z, 20)? < ||z||? for any finite F C A:

2
0< ||z — Z(x,xa)xa
ackF
= <x — Z(x, To)Toy T — Z(m, xa>xa>
o€l acl
2
= ] — 2Re <x,z<x,xa>xa> 11>, wade
o€l acl
2
= [lz)* = 2Re > (z,20) (z,2a) + || D (2, Ta)Ta
ack ack
=[lz? =2 o, za) P+ ) [z, 2) (IV.1)
ack ack
= [l = > Kz, za)?
ack
Where (IV.1) comes by the Pythagorean Thm. O

Note that this theorem indicates {« : (z,x,) # 0} is countable.

Proposition IV.5. (Schwartz Inequality)
If x and y are vectors in an IPS, then

-1yl = [z, ).

Proof. The case y — 0 is trivial, so suppose y # 0. The vector W by itself
forms an orthonormal set, so applying Bessel’s inequality to any x gives

el > | 2. |

)l
[yl

2
[ lyl* > [{z, )l
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Proposition IV.6. |z|| = \/(z, z) really is a norm.
Proof. The first two properties of norm are clearly satisfied:
2] =0 <= 2=0, [z] =0,
loz]] = [ ]].
To see the triangle inequality,

lz+ylP=(@+y.z+y)={t+y,2)+{x+yy)

= (z, @) + (z,y) + (y,2) + (4, 9) linearity
= [|lz|* + 2 Re(z, y) + ||y’ % =Rez
< ll® + 2 [, v)| + llyll® Rez < 7]
< llf® + 2]yl + [yl ()| < lzll-llyl
2
= (lz[l + [»[l)
L]
Proposition IV.7. (Parallelogram Identity)
2+ yl* + [z =yl = 2 (I=]* + [ly]1°) -
Proof. Add the two formulae
lz +yll* = ll=[* + 2 Re(z, y) + [lyl*
lz = ylI* = [l2]* = 2 Re(z, y) + [ly[|.
(]

Example.

= {{:Un}zol : Z |z, < OO}
n=1

with the inner product

(it i) = ST



REAL ANALYSIS QUAL SEMINAR 29

L? = X —-C: 2d }
{1 [ 18 <

with the inner product

Example.

(f.9) :=/X?gdu-
Example.
L= {£:x =20 [ 1@ < oo}

with the inner product

(f ) = /X (F(), 9(x) ) dp.

IV.1. Bases.

Definition IV.8. An orthonormal basis of a Hilbert space H is a maximal
orthonormal set S (i.e., no other orthonormal set contains S as a proper
subset).

Theorem 1V.9. Every Hilbert space has an orthonormal basis.

Proof. Let C be the collection of orthonormal subsets of H. Order C by
inclusion:

S; <S5y = S C08,.

Then (C, <) is a poset.

It is also nonempty since {z/||x||} is an orthonormal set, Vx € H.

Now let {S,}aca be any linearly ordered subset of C.

Then UyeaS, is an orthonormal set which contains each S, and is thus an
upper bound for {S,}aea.

Since every linearly ordered subset of C has an upper bound, apply Zorn’s
Lemma and conclude that C has a maximal element.

This maximal element is an orthonormal set not properly contained in any
other orthonormal set. [
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Theorem IV.10. (Orthogonal Decomposition and Parseval’s Rela-
tion)

Let S = {zs}aca be an orthonormal basis for a Hilbert space H. Then
Yy € H:

y=> (ta,y)xa, and |ly|* = [(za,y)].

a€A acA

Proof. Proving Bessel’s inequality, we saw that

Z |<x067 y>|2 S HyH27

acA

and that there are at most countably many nonzero summands.
Collect these a’s for which (x,,y) # 0 to obtain a sequence {a;}52;.
As a positive-term series, Zj\le |(%a,,y)|? is monotone increasing.
It is also bounded above by ||y||%.

Thus, it converges to a finite limit as N — oco. Define

n

Yn = Z(xaj7 y>x04j'

j=1
We want to show limy, = y. For n > m,

n 2

> (o, Y)xa,

j=m+1

n

= > lzapu)l

j=m+1

Y — ?JmH2 =

by the Pythagorean Thm. Letting n,m — oo shows {y,} is Cauchy.
Since H is Hilbert, it is complete and {y,} must converge to some y’ € H.
Let x, be any element of S. If 3¢ a = ay, then by the continuity of norms:

n—oo

<y - y',xa) = lim <y - Z<x%7y>$%’xaé> - (y,xaﬁ - <y7x04€> =0

J=1

and if not,

(y =y @a) = lim <y = {Taps ¥)a,. :ca> =0
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because

(y =y wa) = lim <y = {0, ¥, xa>

j=1

= ) = Jim 3 (3, )

=0- Z<xa,yxa,xa> (y,Tq) = 0 for a # ay
7=1

(Y, Ta,) (way Ta)

<
I
—

e 1l

(Y, Tay) - 0 (Ta,, o) = 0 for a # oy
1

I
S o

So y — 3/ is orthogonal to every x, in S. Since S is a orthonormal basis, this
means we must have y — ¢y’ = 0. Thus

y = lm Z;@%" Y)Tays
]:

and we have shown the first part. Finally,

n 2
0= lim ||y — Y (Ta,, ¥)70,
j=1
n n 2
= lim | [ly||* —2Re <y > (a,, y>fﬂaj> + 11> (@0, y)Ta,
j=1 j=1
= nhm <|?J|2 - 2R’ez<x0¢j7 y) <y, xaj> + Z H<x04j7 y>x%’2>
j=1 j=1

= <|y|2—22<waﬂy>\+2\%w WH)
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= Jim <y|2—2<xaj,y>2>
j=1
= [l = 3" (e, )

acA
gives Parseval’s Relation:

Iyll? = Ko y)*

acA

U

Definition IV.11. The coefficients (z,,y) are the Fourier coefficients of y
with respect to the basis {x,}.

IV.2. The Riesz Representation Theorem Again.

Definition IV.12. Let M be a closed subspace of H. Then M is a Hilbert
space under the inner product it inherits as a subspace of H. Define the
orthogonal complement of M to be

M:={zeH:(x,y) =0y € M}.

Theorem IV.13. (Projection Theorem)

If M is a closed subspace of H, then H = M @ M. That is, Vo € H, x can
be uniquely expressed as ¢ = y + 2, where y € M,z € M=*. Moreover, v, z
are the unique elements of M and M~ whose distance to x is minimal.

If y € H, then ¢, (z) = (z,y) defines a functional on H.
By the linearity of inner prod, it is a linear functional.
By the Schwartz inequality?®,

[yl = supgpy<i loy (@)l = supj<i (@, 9| < suppy<i llzll-llyll < Iyl

Shows that this functional is bounded/ continuous.

8Recall7 the Schwartz ineq is just the Holder ineq when p = 2.
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Theorem I'V.14. (Riesz Representation Theorem for Hilbert Spaces)
If ¢ € H*, then 3ly € H such that p(z) = (z,y) Vo € H. Also, |l¢|| = ||y]|.

Proof. If ¢ is the zero functional, then y = 0 and we’re done.
Otherwise, consider the nullspace

M :={zeH:ip() =0}
M is a proper closed subspace of H and M # {0} by the Projection Thm.
Thus we can find 2 € M+ with [|z|| = 1 and define
u:=p(r)z — p(z)z.
Then
plu) = ¢ (90(35)2 - 90(2)33) = p(@)p(2) = p(2)p(r) = 0
shows that ©u € M and hence that v L z. Thus,

0= (z,u) = (z,0(x)z — p(2)z)

= (z,0(x)2) — (2, 0(2)x) linearity
= p(@)||2[I* — p(2)(z, z) (z.2) = |12|I”
= () — (z,0(2)2) Izl =1

Thus, ¢(z) = (x,y) where y = p(2)z.
As for uniqueness, if (x,y) = (x,y’) for all x, take z = y — ¢/ and get

/

ly—vIP=w—-v.y—y)=Ww—-9,y)—y—y,y) =0 = y=y.
O

This shows that y — ¢, is a conjugate linear isometry of H onto H".

Definition I'V.15. Isomorphisms of Hilbert spaces are those transformations
U : 'Hi — Hs which preserve the inner product:

Uz, Uy)n, = (x,y)n, Yx,y € H.

Such operators are called unitary.
For U : H — H, unitary operators are also characterized by U* = U~!, where
T* is the Hilbert space adjoint of T" € L(H) and is defined by

(T"z,y) = (x, Ty).
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V. A PrRAcCTICAL GUIDE TO INTEGRAL PROBLEMS

This talk covers the relation between Riemann and Lebesgue integration,
when you can differentiate under an integral, and other practical applications
of Lebesgue theory to standard integral problems.

V.1. Some related theorems.

Theorem V.1. Let f : [a,00) — R be locally R-integrable. Then

f € L'a,00) <= 7 |f|dx<ooand7 fdx = fdp.
a a [avoo)
Proof. (=) fe L' = f*,f e L.
Define f, = X[ atn) s0 that f, < foy1, and f, — f* and f, € L.
Now for A := [a, 00),

00 a+n
7 ftdr = lim ftdx def of improper int
= lim ftdx R = L on bounded
n—oo [a,a+n)
= lim 9 f,du def f,
n—oo A
= f lim f,du MCT
A n—oo

Similarly, ¥ f~dx = Y, f~ dp, so

gan= =y au= 5y ar= " sae

(¢<=) Define f,(z) = |f[Xjaa+n s0 that f, / |f| and f, is R-integrable.
(support is compact)
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Then ®f a[aw] fndx exists and Rfa[a’am] fodx = Lf[a o] Sndit; SO

f |fldp = lim fndu MCT
A n—oo
a+n
= lim fndx R = L on bounded
aa+n
= lim | f|dx def of f,
= 7 | fldx def of impr int
< 00 hypothesis
shows that f € L!. O

Theorem V.2. Define F(t) = [ f(z,t) du(x) for f: X x [a,b] — C.
(1) What is sufficient for F' to be continuous? lim F'(t) = F(ty), Vto.

f,—)to

(2) What is sufficient for F' to be differential? F'(t) = /X %(m, t) du(x).

Royden:
(1) (i) fi(z) = f(z,t) is a measurable function of z for each fixed t.
(i) ¥t, |f (2, 8)] < g(w) € LI(X).

(iii) limyy, f(x,t) = f(x,ty) for each x (i.e., f(x,t) is continuous in ¢
for each x).
The proof follows by applying DCT to f(x,t,), where t,, — t.
(2) (1) 3 af exists on X X [a, b],

(ii) aat is bounded on X X [a, b],
(iii) f is bounded on X X [a, b],

(iv) For each fixed t, f is a measurable function of z.
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(3) Alternatively:
(1) % exists on X X [a, b],
(ii) ‘%(m)‘ < g(x) € LY(X) on X x [a, ].

advantages: f, % need not be bounded
disadvantages: need f € L',

Proof. (of the second version).
Pick any sequence {t,} C [a,b] with t,, — t;. Then define

f(xatn) B f(.’ﬂ,to).

hp(x) = P—

Then %(:U, to) = limy, .o hy(x), SO %(m, tp) is measurable as a limit of mea-
surable functions. It follows that %(aj, t) is measurable. By the mean value

theorem, there is a t between t,, and ¢, for which

f(%,tn) - f(x7t0) - (tn - to)%(lB,t).
Then

|hin ()| < sup
tefa,b)

Y1) < g(a),

since taking the supremum can only make it larger.
Invoke the dominated convergence theorem again and get

E(ty)

n

F'(tp) = lim :f;(to) = lim/hn(:v) dp(x) = /%(z,t)du(x).

Finally, exploit the compactness of [a, b] and [Rudin 4.2]:

limg(z) =¢g(t) <= lim g(x,) =g(t), Yz,} C X, z, —t

r—t n—00
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V.2. Solutions to the Nasty Integrals.

1. f: X —[0,00] is measurable and [ fdu = ¢ where 0 < ¢ < co. Let
a € R be a constant. Show that

x O<ax<l

lim [ nlog [1_1_(@)0‘] dp=<c a=1
X n

n—oo
0 a>1

Proof.

case i) a = 1.

n
By basic calculus, (1 + %) increases to e/® for each z, so

gn(x) = log (1 4 @) )n (x) € ! (increasing).

n

Then lim, .« [y gn(z) = [y f(z) = ¢ by MCT.

case ii) a > 1.
Note that f(z) >0, [, fdp = c < oo show f is finite pi-ae, i.e.:
M < oo and IE € M s.t. pE =0 and |f [(z)] < M,

(so E is where f is bounded). Since we can always find N such
that n > N — % < 1, @ < %, p-au.  We're concerned
)

with n — 00, so this means % < 1 for our purposes. Hence,
a>1 = a—1>0 implies

0 < (M>a_1 <1. (V.1)

n

vt (1 (1)) < asr

G(t) =nlog (1+ (£)) — at.

We need

so define



38 REAL ANALYSIS QUAL SEMINAR

G'(t) = (;ﬁfitl — 1) o diff
< (”’;(:;1 — 1) o drop the t“

= ((%)a_l — 1) e simp
<0 L= f(2). (@)‘“ <1,

so GG is decreasing and G(t) < 0 for t > 0, i.e.,

vios (1 (1)) < atte
s =i (1 (1)),

Since this is bounded by af and f € L! by hypothesis, DCT gives

Set

lim [ g,du= / lim g, du.
X X n—oo

n—oo

Now split the leading n and match the denominator:

on(w) = '~ log (1+ (£)7) = n'~lox (1+ ()

so that
(6% na
lim (1+5) =ef < e
n—oo
shows
« na
log (1+ L)
lim = 0.
n—00 no—1

case iii) a < 1.
F>0 — 1og(1+£—j> >0,

and if we define A := {f > 0}, then pA > 0 because [, fdu > 0.
Thus fAfd,u: fodu, and

log<1+£—z) >0 on A
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But then o
log (1 + 7{—:)

na—l
because a <1 — a—1<0.
Thus, lim g,, = 00, so by Fatou’s Lemma,

li_m/gnduz/li_mgn:oo —  lim [ gn,dp = oo,

n—oo

n—oo

0@

39
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xt

2. DeﬁneF(t):/ %dm, for t > 0.
0 1+

a) Show that F' is well-defined as an improper Riemann integral and
as a Lebesgue integral.

Riemann: % is continuous V¢, so it is R-integrable on any bounded
interval (a,b). So only remains to show the convergence of

a
—xt

€
T dzx.

lim
a—0o0 0

Since the integrand is nonnegative,’

a b
e—wt e—;ct
b>a — /0 1+x2d$§/0 ngdx.

Thus, it suffices to consider a dominating function g(x):

e 1 1
T2 Sne Sz >0

Since
‘/.am:[_q?:__+1éiﬁ%1
1

and the integrand is bounded by 1, V¢ > 0, we have

/o f+x2dx < 2 Va,

and thus it converges as a — o0.

Lebesgue: fR+ du exists because we can bound the integrand

1+x2
as above.

b) Show F"(t) exists on (0, 00).

We have p(t) = { Hg
order to use the theorem and get

o0 —xt
F@:—/ T da.
0

1+ 22

e L', so just need 2 So(t) = 1+3:2 € L'in

U@2) 20 = g(a = [, f(t)dt is increasing.
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Fix ¢t > 0 and pick € > 0 such that t —e > 0.
Observe: z < e for large enough x. Thus we pick M large enough
that t > M — x < e**, and split the integral:

X _ge ! M _ge—at * _ge !
/ 2d$:/ 2d$+/ 2dw.
0 1 + x 0 1 + x M 1 + x
Then we have
M
/

which as a continuous function over a compact space is clearly
finite, and hence the integrand is in L1(0, M). Also,

$6f:ct

1+ 22

M
dxﬁ/ ‘xe‘xt‘ dx,
0

00 _xe—xt 00 egme—xt
/ dr < / dx by choice of M
M 1 + .CCQ M 1 + .CCQ
00 e(s—t)x
= d
/M 1+ 22|
00 e(sft)x
= / [T 22 dx positive integrand
0 i

Soe—t<0 = 61(;;); € L' by (a).

Thus %;;z € L'. Now if % (_ffx;x) = % € L', we’ll have
o0 x267t:v
F"(t) :/ dr.
0 1 + 5172

To show this, find N such that z > N = 22 < e*, and proceed
as before.
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¢) (Extra credit) Show F(t) satisfies F'(¢)+ F(t) = ;. Compute F(¢).

We have F"(t) = [ 2 dz from (b), so

0 1422
o) x2€—tm + e—ta:
F'(t)+ F(t) = d
W+F0 - [
(14 2%)e
= d
/0 1+ 22 ’

3. Let I be an open interval of R and suppose f : R — R such that
x — e f(x) is integrable for each fixed ¢t € I. Define F': I — R by

F(t) = /R e f(z) da.

Show that F is differentiable with derivative F'(t) = [, ze™ f(x) dx at
each t € I.

Note: xe' f(x) may not be in L'l We would like to compute F'(t)
by

etnlﬂ _ et()l'
n—0o n — U0

where {t,,} is a sequence in I with ¢,, — to.
To use DCT, we need to find g € L! such that

etnl' . et()SC

tn - tO
Choose t' € I such that t,, < t/, Vn. This is possible, since otherwise
there would be a subsequence of {t,} converging to sup{t € I}.

>I is open and ¢, — ty € I.
By MVT,

e — 97| < |z - [t, — to| for some s € [t,, ty).

<g(z) Vn.
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Since s < t/,

etnl' _ et()SC

t, — 1o

etnl' _ et()iﬂ

& @

/
S ‘$et$

<|eef@)], (V)
and we have a bound which no longer depends on n.

To see that g(x) = ‘$et'xf(x)| is integrable, split the integral: pick
e > 0 such that ¢’ + ¢ € I and choose M be such that

xr>M = x<e.

Now
M !/ M !/

/ ‘xe”f(x)‘dmﬁM/ ‘etmf(x)‘dx<oo t' eI, and
0 0

/oo‘xet'xf(x)‘dxg/oo‘e(tf+s)xf(x)‘dx<oo Vel

M M

Thus we have [~ |xet/xf(x)| dr < oo. For ff)oo g(z) dx, pick € > 0 such
that ' — e € I and let M be such that

r>M = x<e,
and proceed as for [, g(x) dz.

Together, this gives g € L. By (V.3), we can use the DCT in (V.2) to
obtain the result.

4. [2003] Let f be a bounded measurable function on [0, c0). Show that

0 —xt
F(t):/ de, t>0
0 VT
is continuously differentiable on (0, 00).

Let us denote the integrand by ¢(z,t) := f(z)e "z ~1/2.
We would like to find F'(t) by choosing any sequence {t,} such that
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t, — tp and computing

F'(ty) = lim N (f(x)extn — f(x)ezto> dz
0

n—00 tn /T tov/T
00 e—xtn . e—a:to
= lim f(x) 12 dx
n—ao0 Jo t, — to

Since f is bounded, |f(z)| < M. Then
—tho

tn_tO

e—a:tn _ e—a:to

‘f(w) — x

<M -1z

X

Since t ranges over (0,00) and t, — ty < oo, we can certainly pick a
strict lower bound 7 of {t¢,}, i.e. a number 7 such that inf{¢,} > 7.
By MVT,

e~® — e < |we | - |t, — to| for some s € [t,, to].

Since s > T,

tnlﬂ _ 715()1‘

e
212
t, —to

e

< ‘xe—sxx—l/Q‘ < e TTl2 e L

To verify the integrability of the dominating function, note that

u = /2 dv =e "dx

2du = v YV%dx v=—e "

gives

/e”‘"xl/2 = [—exxl/ﬂ;o +2/—e"”x1/2dx
:(O—O)—|—4/ e du  putu=+z
0

:4.@
— 27
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Further, fooo e Tx 2y =21 = fooo e T2y = 2\/? Thus

o0 e*iﬂtn _ e*lﬂt()

F'(ty) = lim f(x) V2 dy
n—a0 Jo ty — tO
o0 e*iﬂtn _ e*lﬂt()
= / lim f(z) P V2 dx by DCT
n—oo — g

/ J(@ }g%) ( t— teoxto) v
=/ f(x) (%e_”) 2 dy

0

RIS

:I:e*xt) Y2 dy

= (2)
0
—/ f(:v)e_mxl/2 dx.
0

Let us denote this function

—/ f(x)e a2 dx.
0

Since we are required to show that F' is continuously differential, we
must show that G is continuous.

Notice that another u-substitution with v = (tz)/2, 2udu = dx
allows us to rewrite

G(t)= -2 /OOO flz)ze " dz.

Thus, all we need to do is show the integral to be finite. Since f is
bounded by M, it suffices to show

o0 2
/ re ¥ dr < oo.
0
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2

Next, putting v = z~, %du = xdz,

o 2
/ e ¥ dx =
0

D=
o\,‘
13
aQ
&
Q
I~

1 —u]
=35 [—e"],
5 (0—(=1))
1
2
which is as finite as it gets.
> sin(x?t)

dx 1s continuous on R.

5. [2000] Show F(t) = / o

First, note that |sinz| < 1 gives

1
1+ a2

sin(z%t)
1+ a?

where the final inclusion is clear from

> dr 5 - -
/_OO i larctanz|™_ =% — (-3) = .

Pick any {t,} € R with ¢, — t;. Then

> sin(x?t,,)

o 1+ a2
00 . 2

- / li S0 DCT

on—oo 1+ x?

> gin(2? i t
_ / sin(z® lim,, o0 ) g
s 1+ a2
o0 2t
— / m dr t, — to
oo 1+ a?
= F(to).

lim F(t,) = lim

n—00 n—oo f

dx def of I

contin of sin z, mult by z?

Since this is true for all sequences t,, — ty, we have lim;_,, F'(t) = F(to).
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6. [1998] f € C0,1] is such that fol 2" f(x)dx = 0 forn = 0,1,2,....
Show that f = 0.

By the Stone-Weierstral Theorem, there is a sequence of polynomials
{Py(z)} such that Py(x) LN f(x). Then

/Pk(:v)f(:c) dx &/[f(:v)]z dx by uniformity.

But since any polynomial may be written

m
P(x) = Z ar' = ag+ a1z + asx® + - + apz™,
i=0

the linearity of the integral and the hypothesis fol 2" f(x)dr =0 give

1 1 1 1
/ P(x)f(sc)dxza()/ dm+a1/ xdm+---+am/ ™ dx
0 0 0 0

:aO'O—I—al-O—I—ag-O—I—-'--l—am'O
=0

So /Pk(x)f(x)da:: 0 Vk

7. Compute the limits
a) lim [;* (14 %) "sin (%) do

n—oo

Note that

‘sin(%)‘gl and (1—1—%)%&6_”0.
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Then ‘(1 +57 < (1+ %)72 Vn > 2, so the DCT gives

oo

lim (1—|—£> sm( )dx—/ lim (1—|—£)_HSID( >dx
n—oo Jo n n 0 N n n
/ e “sin(0) dx

0

0.

b) lim [ n(l+ n®z?)tde

n—oo

We do a u-substitution with v = nx, du = n dx:

0 0 d
lim n(1+4n*2x?)"'dr = lim “

n—oo [, n—oo .. 1—|—’LL2

= lim [arctanu] .

n—oo
s _
2 4=
= lim (ﬂ — arctanna) =<0 a>0.
n—oo 2
T a<0

8. a) Find the smallest constant ¢ such that log(1 + ¢') < ¢ + ¢ for
0<t<oo.
First, observe that

1+ el < efel _— He < €e°.

Note that
limEe =2 and lim Lft =1.
t—0 ef t—o0
Since H is monotonic, it is ev1dently monotonically decreasing:
d1t+et _ ot —t
dt ete ( + 1) =—€ .

Thus, let €2 = 2 or ¢ = log 2.
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b) Does lim %fol log(1 + e"@) dg exist for every real f € L'[0,1], if

n—oo

f>07
From part (a), we get 1 < lif,ff(];(;) < 2, which gives
1I@) o 4 ) < genl@)

nf(x) < log (1+e”f(x)) <nf(x)+c (c =log?2)

n/olf(x)dx</Ollog(lJre”f("”)) dx<n/01f(x)dsc+c

(since integration is a pos linear functional and f € L'.)

/Olf(x)dx< %/Ollog<1—|—enf(x)> dw</01f(x)dx+§

Then taking the limit as n — oo, we get

1 1 1
/ f(z)dz < lim L [ log (1 +e”f<=’v>) dz g/ fl@) dz.
0 e Jo 0
Since f is integrable by hypothesis, the Sandwich Theorem gives
1 1
lim L [ log (1 + e”f(x)> dx = / f(x)dx.
0

n—oo " 0
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VI. THE HAHN-BANACH THEOREM AND APPLICATIONS

[Folland] It is not obvious that there are any nonzero bounded functionals
on an arbitrary normed vector space. That such functionals exist in great
abundance is one of the fundamental theorems of functional analysis.

[Reed & Simon] In dealing with Banach spaces, one often needs to construct
linear functionals with certain properties. This is usually done in two steps:
first one defines the linear functional on a subspace of the Banach space where
it is easy to verify the desire properties; second, one appeals to (or proves) a
general theorem which says that any such functional can be extended to the
whole space while retaining the desired properties. One of the basic tools the
second step is the following theorem,

Theorem VI.1. Let X be a vector space and p : X — R such that
(i) p(ax) = ap(z), Va > 0, and

(ii) p(z +y) < p(z) + p(y), Vo,y € X.
If S is a subspace of X and there is a linear functional

f S — R such that f(s) < p(s), Vs € S, then f may be extended to
F: X — R with F(x) < p(x), Vx € X, with F(s) = f(s)Vs € S.

Proof. The idea of the proof is to first show that if z € X but x ¢ S, then
we can extend f to a functional having all the right properties on the space
spanned by x and S. We then use a Zorn’s Lemma / Hausdorff Maximality
argument to show that this process can be continued to extend f to the whole
space X.

(Sketch)
1. Consider the family
G:={g: D — R:gislinear; g(z) < p(x), Vo € D; g(s) = f(s), Vs € S},

where D is any subspace of X which contains S. So G is roughly the
collection of “all linear extensions of f which are bounded by p”.
Now G is a poset under

g1 <92 <= Dom(g;) € Dom(gs) and go L> = 7.

om(g1)
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2. Use Hausdorff maximality Principle (or Zorn) to get a maximal lin-
early ordered subset {g,} C G which contains f. Define F' on the union
of the domains of the {g.} by F(x) = go(x) for x € Dom(g,).

3. Show that this makes F' into a well-defined linear functional which
extends f, and that F' is maximal in that F < G — F = G.

4. Show F'is defined on all of X using the fact that F' is maximal. Do
this by showing that a linear functional defined on a proper subspace
has a proper extension. (Hence F must be defined on all of X or it
wouldn’t be maximal.)

U

Proposition VI.2. (Hausdorff Maximality Principle)
(A, <) is a poset = IB C A such that B is a maximal linearly ordered
subset. lL.e., if C' is linearly ordered, then B < (C <A = C = Bor C = A.

Of course, the HBT is also readily extendable to the complex case:

Theorem VI.3. Let X be a complex vector space and p a real-valued func-
tion defined on X satisfying

plax + By) < |alp(z) + [Blp(y) Y,y € X,Va, 5 € C with |af +[5] = 1.

If S is a subspace of X and there is a complex linear functional
f S — Rsuch that |f(s)] < p(s), Vs € S, then f may be extended to
F: X — Rwith |F(z)] <p(x), Ve € X, with F(s) = f(s)Vs € S.
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VI.1. Principle Applications of the HBT.

Most often, p(x) is taken to be the norm of the Banach space in question.
1. M is a closed subspace of X and x € X\M = 3df € X* such that

f(x) #0,f|, =0. In fact, if § = infyep ||z — y|, f can be taken to
satisfy || f|| = 1 and f(x) = 6.
Define f on M + Cx by f(y + Ax) = AJ for y € M, A\ € C. Then

fle)=fO0+2)=1-0=6

but for m € M,
f(m)=f(m+0)=0-5=0.

For A\ # 0, we have

[y +A2)[ = A6 < A Iy + 2l = lly + Az

because § = inf ||y + x| < [[A 'y + z|| (putting in A~! for y). Using
p(x) = |||, apply the HBT to extend f from M + Cz to all of X,

2. If v # 0,2 € X, then 3f € X* such that ||f|| =1 and f(z) = ||z

M = {0} is trivially a closed subspace, so apply (1) with § = ||z||.

3. The bounded linear functionals on X separate points.

If x # y, then (2) shows 3f € X* such that f(z —y) # 0. Le,
f(z) # f(y). This result indicates that X* is BIG.

4. If v € X, define 2 : X* — C by z(f) = f(x), so £ € X**. Then
@ : x +— & is a linear isometry from X into X™**.

T(af + Bg) = (af + Bg)(z) = af(z) + Bg(x) = Z(af) + 2(Bg),
so Z is linear. This verifies that z € X**.
For ¢(x) = 2, p(ax + by) is defined by

ax +by(f) = flax +by) = af (x) + bf(y) = ad(f) + bj(f),
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VI.2.

s0 p(az+by) = azx + by = ai—+bj = ap(x)+bp(y) shows that ¢ : z — &
is linear. Finally,

(A = 1f @) <A - D=

shows that
) 1Z(f)] | f ()] [l e A
|Z|| = sup = sup < sup ———— = ||z
Tl i< I i< LS

To get the reverse inequality, note that (2) provides a function f; for
which [(fo)] = |fo(x)| = ||| and || f]| = 1. Then

2] = sup [Z2(f)] = [2(fo)] = =]
1f1I=1
We saw this for Hilbert spaces, but this example is applicable to
general Banach spaces and requires none of the Hilbert space machinery
(orthonormal basis, projection theorem, etc.) as the HBT takes care
of a lot.

Corollaries to the HBT.

. If X is a normed linear space, Y a subspace of X, and f € Y*, then

there exists F' € X* extending f and satisfying || F||x+ = || f]|y~
Proof. Apply HBT with p(z) = || f||y ||| x+- O

. Let X be a Banach space. If X* is separable, then X is separable.

Proof. Let {f,} be a dense set in X*. Choose z, € X, ||z,]| = 1 so
that

[fu(@a)| = [ fall /2-

Let D be the set of all finite linear combinations of the ||z,| with
rational coefficients. Since D is countable, we just need to show that
D is dense in X.

If D is not dense in X, then thereisay € X\D and a linear functional
f € X* such that f(y) # 0 but f(x) = 0 for all x € D, by application

(1).
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Let {f,.} be a subsequence of {f,} which converges to f. Then

= | (fu) (zn,)]
> || frll/2

which implies || .|| = 0 as K — oo. Thus f =0. >
Therefore D is dense and X is separable. ]

The example of ¢; and ¢, shows that the converse of this theorem
doesn’t hold. In fact, this corollary offers a proof that ¢; is not the
dual of /., provided you can show /. is not separable.
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VII. THE BAIRE THEOREM AND CONSEQUENCES

Definition VII.1. D is dense in X iff D = X, equivalently, iff VU open in
X, UND +# @.

Definition VII.2. F is nowhere dense iff (E)N is dense in X.

Definition VII.3. X is meager'’ iff X is a countable union of nowhere dense
sets.

Theorem VII.4. Let (X, d) be a complete metric space. (Note: can substi-
tute LCH for complete, using f.i.p. def of compactness). Then

a) If {O,}>° | are open dense subsets of X, then (72, O, is dense in X.

b) No nonempty open subset of X is a countable union of nowhere dense
sets. In particular, X is not.

Proof. The idea of the proof is straightforward: Suppose that X is a com-
plete metric space and X = [J~; A, with each A, nowhere dense. We will
construct a Cauchy sequence {x,,} which stays away from each A, so that
its limit point x (which is in X by completeness) is in no A,,, thereby contra-
dicting the statement X = J 7 A,.

Since A; is nowhere dense, we can find x; ¢ A, and an open ball B; about
x1 such that By N A; = @, with the radius of By smaller than 1.

Since A, is nowhere dense, we can find zo € B]_\A2. Let Bs be an open ball
about xs such that By N Ay = @, with the radius of By smaller than %

Proceeding inductively, we obtain a sequence {z,} where z,, € B,_1\A,,
B, CB,_1,and B,NA, = 3.

This sequence is Cauchy because n,m > N implies that for x,, x,, € By,
p(T, 0y) < 28N 4 217N = 92N SR INY))
Let x = lim,,_,o x,. Since z,, € By for n > N, we have
r € By C By_1.
Thus © ¢ Ay for any N, which contradicts X = (J~ | Ay. H

1OForrnerly called “of first category”.
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VII.1. Applications of Baire.

1. Q is NOT a G.

Proof. Suppose it were. Then Q = ()_; O,,, where the O, are open.

Note: Q € (10O, = Q C O,, Vn, so Q dense in R = O,, dense
in R, Vn.

Let {gx}?2, be an enumeration of Q.
Consider the singleton set (not the sequence!) {g,}.

Then {g,} closed = {¢,}~ open. Also, {¢,}"~ is dense in R. (It
contains all but 1 of the rationals, so, e.g. the sequence {g, — = =1 ©
{¢,}~ and has ¢, as a limit point.)

Then O, N {¢,}"~ is open and dense. To see dense, note that
O, N {Qn}N =Qn~ {Qn}

Then
N0 {a}™) = (1000 (Nia}™) =@N R~ Q) =
So @ is dense in R, by Baire’s Theorem. > O

However, Q is an F,: Q =~ {q.}.

2. A meager set with Lebesgue measure 1.
We start by constructing a nowhere dense set with positive measure.
Let C, be the Cantor set formed by removing an open interval of
length 7%= from each of the remaining 2" pieces, where 0 < o < 1.

Then C, = (),—,C" is closed as an intersection of closed sets and
C. = C,. To show C, is nowhere dense, it suffices to show that C,
contains no nonempty open set.'! If O # @ is open, then it contains

M1t 4 closed set F contains no open set, then it is nowhere dense: we use contraposmve Suppose (F )~
is not dense. Then dx € F which is not a limit point of F. If no sequence in F converges to x, every point
of F must be at least & > 0 away from z. Thus F contains B(z). The conditions are actually equivalent.
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FI1GURE 4. Construction of the Cantor set with measure «.
[0

3

CO

«

c; __ __ . __

Ch o __ ____  ____ ____

an interval A of positive length ¢ > 0. Each of the 2" intervals of C}
(n'™ step of construction) are of length ¢ < 27", so for large enough
N, we have £ < 2=V < e. Thus A is longer than any component of
CY and hence cannot be contained in C or C,. So C, is nowhere dense.

Now we use the measure lemma'? to compute the measure of C,:

pCo =1 — 3?;24:;:1_ Z(

n=0 n=0

w|2
wino

) :1_%(1—12/3):1_O"

Thus, every singleton {C,} is a trivially a countable union of nowhere
dense sets which have positive Lebesgue measure.

12The Measure Lemmae.

Proposition VIL.5. Let (X, A, u) be a measure space.
a) If {Ax} is an increasing sequence (A, C Agy1) of sets of A, then u(UAy) = lim pAy.

b) If {Ax} is a decreasing sequence (Ai+1 C Ag) of sets of A, and pA, < oo for some n, then pu(NAy) =
lim pAyg.

(uAy, < 0o is necessary, else let Ay = (k, 0).)

Proposition VIL.6. Let (X, A) be a measurable space and let i be a finitely additive function y : A — [0, 00]
such that u(@) = 0. Then p is a measure if either

a) lim pAy = p(UAg) for each increasing sequence {Ax} C A; or

b) lim Ay = 0 holds for each decreasing sequence {A} C A with (Ax = @.
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However, to complete this in the manner suggested by Royden, we
now consider P = J;—; Cy s

: 1
pl = pu (H&/k> = lim(1-¢)=1.
So P is a union of a countable infinite collection of nowhere dense sets,
and P has Lebesgue measure 1.

VII.2. Consequences of Baire.

Theorem VII.7 (Open Mapping Theorem). X, Y are Banach spaces, T €
L(X,Y). Then T surjective => T open.

Proof. Nasty. (technical and longish) O

Corollary VIL.8. If XY are Banach and T' € L(X,Y) is bijective, then T
is an isomorphism.

Proof.

T is an isomorphism <= T ' € L(X,Y)
<= T !is continuous
<= T is open

But this last condition is exactly the result of the OMT;

T bijective =— T surjective =— T open.

Definition VII.9. The graph of T is the set
I(T)={(z,y) e X xY iy =Tz}

Definition VIL.10. T € L(X,Y) is closed iff I'(T") is a closed subspace of
X xY.
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Theorem VII.11 (Closed Graph Theorem). If X, Y are Banach spaces, and
the linear map 7' : X — Y is closed, then 7' is bounded.

Proof. Let w1, m be the projections of
I(T)={(z,y) e X xY iy=Txz}
to X and Y respectively:
m(x,Tx) ==z and  mo(x,Tx)="Tx.

Obviously, m € L(I'(T'), X) and m € L(I'(T),Y).

Since X,Y are complete, so is X x Y. Hence T closed implies I'(T) is a
closed subspace (by definition), and a closed subspace of a complete space is
complete, so I'(T") is also complete.

Now 7 : I'(T") — X is a bijection, hence an isomorphism by the corollary

to OMT, i.e., Wfl is bounded.
But then T' = mo7; ! is bounded. L]

FIGURE 5. T as a composition of projections
Y

T

™

X

CGT restated: Let X,Y be Banach spaces, and T : X — Y be linear.

(1) Then T is bounded <= I'(T) is closed.
(2) Then T is continuous <—= (z, — ¢, Tz, -y = y="Tx).

Note. For X,Y be Banach spaces, and S : X — Y unbounded ,
(a) T'(.S) is not complete,
(b) T : X — T'(9) is closed but not bounded, and
(c) T71:T(S) — X is bounded and surjective but not open.
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Theorem VII.12 (Uniform Boundedness Principle, aka Banach-Steinhaus
Theoreom). Suppose X, Y are normed vector spaces and and A C L(zx,y).

a) If suppe 4 ||Tz]| < oo for all  in some nonmeager set D C X, then
supreq || T]| < oo.

b) If X is Banach and suppcy [|[Tx| < coVa € X, then suppey ||T] <
0.

Proof of (a). Let

E,={zeX:isup|Tz| <n}=(){zeX:|Tz| <n}
TeA TeA

Thus the E, are closed as intersections of preimages of closed sets under con-
tinuous maps. Since supyc 4 ||7z|| < N, Vo € D by hypothesis, Ey contains
a nontrivial closed ball

m,r > 0.
But then
|z]| < R = (v —x0) € En
= || Tzl < [|T(z — zo)|| + [|Txo|| < 2N,

so ||z]| <r = ||Tz|| < 2N VT € A, which implies that
1Tl < 5F < co.
[l

Proof of (b). X is a nonempty Banach space, so X is nonmeager by Baire.
(Baire’s Theorem says that every complete metric space is nonmeager.) Then

just apply (a). o
Rephrase of the UBP:

Either 3M < oo such that ||T'|| < M, VT € A,
or else suppe 4 ||Tz|| = oo, Va in some dense G5 C X.

Geometrically, either there is a ball B C'Y (with radius M, center 0) such
that every T' € A maps the unit ball of X into B, or there exists an x € X
(in fact, a whole dense Gy of them) such that no ball in Y contains Tz, for
all T' € A simultaneously.
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VIIL.3. Related Problems.

1. Find a Banach space X, a normed linear space Y, and a continuous
linear bijection f : X — Y such that f~! is not continuous. (Note: YV
better not be Banach!)

Let X := (L%0,1], |- [l2) and Y := (L?[0,1],] - |l1), and define f :
X =Y by f(z) ==z

f is clearly bijective and linear. To see f is continuous, it suffices to
show f is continuous at 0:

Let o € X and fix € > 0. Since X,Y are finite measure spaces,

p<q = lellp < el
Thus, [|¢]l1 < [l¢lla shows [lplls <& = [If ()l = llel <e.

To see f~1 is not continuous, consider {¢,} C Y defined by
1

pn(z) = \/ﬁ

Now ¢, () < pnyi(x) < p(x) = \%, Vn,x. Since fol ﬁdx — 92 —
@ € L', the MCT gives

lim [y = i /1 dx
im[|¢|l; =lim | ——
: 0 Vr+1/n
1
:/ (lim ¢, )dx
0

_ [
0 VT
=2=lels
However,
1 1/2
o= ([ 5) = Goglt 42 2 o

shows that lim f~1(¢,) does not converge.
Indeed, fol ordr = fol ¢ — oo. Hence, lim f~1(p,) # f~(¢) shows
that f~! is not continuous.
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2. Let V be a Banach space.

a) If V is infinite-dimensional, construct an unbounded linear operator

f:V-=V.
b) If V is finite-dimensional, show that every linear operator on it is

bounded.

Since V' is a vector space, it has some basis {e)} ea. Then if {c)}rea
is any sequence (or net) in R, 3!f : V' — V such that for every element
v =>Y wyey, of V, we have

flv) = ZCXU)\e)\.
(Just define f(ey) = cren.)

a) For V infinite-dimensional, {c)} unbounded implies f unbounded.

b) For V finite-dimensional, || f|| < k-max{c,} for some k. (Basically,
A finite = max{c,} exists.)

See any book on Quantum Dynamics or Functional Analysis for
the examples of the position & momentum operators (which are un-
bounded), e.g., Reed & Simon.



