
I. The Hit List

• contin on compact ≡ unif contin
• contin on compact =⇒ attains max
• equivalent definitions of compact-

ness:
– limit-point compact
– sequentially compact
– open cover def
– finite intersection def

• Intermediate Value Thm, Mean
Value Thm

• FTOC
• Stone-Weierstrass
• Convergence theorems

– Fatou’s Lemma
– Monotone Convergence
– Dominated Convergence
– how each implies the others

• Hahn & Lebesgue Decomposition
• Radon-Nikodym Theorem
• Riesz Representation
• Hahn-Banach Theorem
• Baire Category

– Open Mapping
– Closed Graph
– Uniform Boundedness

• Arzela-Ascoli (s&a only1)
• Fubini-Tonelli (s&a only)
• Inverse & Implicit Function Theo-

rems
• Hölder and Minkowski Inequalities
• Littlewood’s Three Principles

– measurable/open sets
– Lusin’s Theorem
– Egoroff’s Theorem

• Modes of Convergence
• Banach ⇐⇒

(abs. conv. =⇒ conv.)
• Y Banach =⇒ L(X, Y ) Banach
• Completeness of Lp

• (Lp)∗ = Lq

• (L1)∗ = L∞ but (L∞)∗ 6= L1

• T bounded ⇐⇒ T contin ⇐⇒ T
contin at 0

• λ is the unique trans-inv meas on R
with λI = 1

• step fns, simple fns dense in Lp

• X ∼= X∗∗

• l∞ is Banach under sup norm
• X complete in two norms =⇒ they

are equiv
• basic integral properties

–
∫

χ
E dµ = µE

–
∫

f dµ = 0 =⇒ f = 0 µ− ae
• C(X), ‖ · ‖∞) is Banach
• Cantor set: uncountability, measur-

ability
• ‖T‖ < 1 =⇒ 1− T is invertible
• C∞ is Banach under sup norm
• Nasty Integrals
• equiv definitions of absolute conti-

nuity

1statement and application only, no proof required
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II. Convexity

A function f : (a, b) → R is called convex iff

f (λs + (1− λ)t) 6 λf(s) + (1− λ)f(t)

for all s, t ∈ (a, b) and λ ∈ (0, 1). Geometrically, this states that the graph of f over the
interval from s to t lies underneath the line segment joining (s, f(s)) to (t, f(t)).

1. A convex function on (a, b) is continuous.

2. f is convex iff

f

(
x + y

2

)
6 f(x) + f(y)

2

for all x, y ∈ (a, b).

3. f is convex iff for all s, t, s′, t′ ∈ (a, b) such that s 6 s′ < t′ and s < t 6 t′,

f(t)− f(s)

t− s
6 f(t′)− f(s′)

t′ − s′
.

4. f is convex iff f is absolutely continuous on every every compact subinterval of (a, b)
and f ′ is increasing (on the set where it is defined).

5. If f is convex and t0 ∈ (a, b), then there exists β ∈ R such that f(t)−f(t0) > β(t−t0)
for all t ∈ (a, b).

6. (Jensen’s Inequality) Let (X, M, µ) be a probability space (i.e., a measure space
with µX = 1). If g : X → (a, b) is in L1(µ) and f is convex on (a, b), then

f

(∫
g dµ

)
6

∫
(f◦g) dµ.

7. Use Jensen’s Inequality to prove that the (weighted) geometric mean is never more
than the (weighted) arithmetic mean, i.e., for {αi} such that

∑
αi = 1,

∏
yαi

i 6
∑

αiyi,

for any collection of positive numbers {yi}.
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8. When does equality hold in the Minkowski inequality? (The answer is different for
p = 1 and for 1 < p < ∞. What about p = ∞?)

9. If f ∈ Lp ∩ L∞ for some p < ∞, then ‖f‖∞ = limq→∞ ‖f‖q for q > p.

10. A variation on the previous question: let (X, M, gm) be a finite measure space and
let f be a M-measurable real- or complex-valued function on X.
(1) Show that f belongs to L∞ iff

(a) f ∈ Lp,∀p ∈ [0,∞), and

(b) sup{‖f‖p
... 1 6 p 6 ∞} < ∞.

(2) Show that if these conditions hold, then ‖f‖∞ = limp→∞ ‖f‖p.

11. Let (X, M, µ) be a probability space and suppose that 1 6 p1 < p2 < ∞.
(1) Use Hölder’s Inequality to show that if f ∈ Lp2 , then f ∈ Lp1 and ‖f‖p1 6 ‖f‖p2 .
(2) Use Jensen’s Inequality to show that if f ∈ Lp2 , then f ∈ Lp1 and ‖f‖p1 6 ‖f‖p2 .
(3) Show that if f, f1, f2, . . . ∈ Lp2 , then

‖fn − f‖p2

n→∞−−−−−→ 0 =⇒ ‖fn − f‖p1

n→∞−−−−−→ 0.
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III. Approximation in Lp

We have the following:

• for 1 6 p 6 ∞, the simple functions S on X form a dense subspace of Lp(X, A, µ),
• for 1 6 p < ∞, the step functions S on [a, b] form a dense subspace of Lp([a, b],A, µ),
• for 1 6 p < ∞, the continuous functions C[a, b] form a dense subspace of Lp([a, b],A, µ).

(1) Show that the subspace of step functions S[a, b] is not dense in L∞([a, b], A, µ).
(Hint: Construct a Borel subset A of [a, b] such that ‖χA − f‖∞ > 1

2
whenever

f ∈ S[a, b].)

(2) Show that the subspace of continuous functions C[a, b] is not dense in L∞([a, b],A, µ).
(Hint: Let A = [a, c], where a < c < b. How small can ‖χA−f‖∞ be for f ∈ C[a, b]?)

Suppose we expand the definition of step function. Let f : R → R be called a step
function on R iff its restriction to any finite interval [a, b] is a step function on [a, b]
in the previous sense.

(3) Show that the set of step functions on R that vanish outside some bounded interval
are dense in Lp([a, b], A, µ).

(4) Show that the set of continuous functions on R that vanish outside some bounded
interval are dense in Lp([a, b], A, µ).
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IV. Modes of Convergence

Pointwise:
fn

pw−−−→ f iff ∀ε, ∀x ∈ X, ∃N s.t. n > N =⇒ |fn(x)− f(x)| < ε.

Almost everywhere:
fn

ae−−→ f iff ∀ε, ∃A ⊆ X with µ(X ∼ A) = 0, and
∀x ∈ A, ∃N s.t. n > N =⇒ |fn(x)− f(x)| < ε.

Uniform:
fn

unif−−−→ f iff ∀ε, ∃N s.t. ∀x ∈ X, n > N =⇒ |fn(x)− f(x)| < ε.

Almost uniform:
fn

au−−−→ f iff ∀ε, ∃A ⊆ X with µ(X ∼ A) = 0, and
∃N s.t. ∀x ∈ A, n > N =⇒ |fn(x)− f(x)| < ε.

Lp (or “convergence in pth mean”):

fn
Lp−−−→ f iff ∀ε, ∃N s.t. n > N =⇒ ‖fn − f‖p < ε.

Measure:

fn
µ−−→ f iff ∀ε, ∃N s.t. n > N =⇒ µ{x ... |fn(x)− f(x)| > ε} < ε.

We also say {fn} is Cauchy in measure iff

∀ε, ∃N s.t. m,n > N =⇒ µ{x ... |fn(x)− fm(x)| > ε} < ε.

The following functions are the archetypal (counter)examples for the modes of conver-
gence:

(i) fn = 1
n
χ

(0,n).

(ii) fn = χ
[n,n+1].

(iii) fn = nχ
[0,1/n].

(iv) fn = χ
[j/2k,(j+1)/2k] where n = 2k + j with 0 6 j < 2k. Thus,

f1 = χ
[0,1]

f2 = χ
[0, 1

2
] f3 = χ

[ 1
2
,1]

f4 = χ
[0, 1

4
] f5 = χ

[ 1
4
, 1
2
] f6 = χ

[ 1
2
, 3
4
] f7 = χ

[ 3
4
,1]

...

etc.

Exercises:

1. Check if fn → f in each of the modes listed above, for the {fn} given in (i)-(iv).
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2. For the following, 1 6 p < ∞.

a) If µ is finite, then fn
ae−−→ f =⇒ fn

µ−−→ f .

b) If fn
µ−−→ f , then there is a subsequence {fnk

} ⊆ {fn} with fnk

ae−−→ f .

c) If {fn} is Cauchy in measure, then there is a measurable f such that fn
µ−−→ f .

d) If µ is finite, then fn
ae−−→ f =⇒ fn

au−−−→ f . (Egoroff’s Thm)

e) fn
au−−−→ f =⇒ fn

µ−−→ f .

f) Let µ be counting measure on X = Z. Then fn
µ−−→ f ⇐⇒ fn

unif−−−→ f .

g) For f, fn ∈ Lp, fn
Lp−−−→ f =⇒ fn

µ−−→ f .

h) For f, fn ∈ Lp, if fn
Lp−−−→ f , then ∃{fnk

} ⊆ {fn} with fnk

ae−−→ f .

i) For f, fn ∈ Lp, let g : X → [0,∞] such that |fn| 6
ae

g and |f | 6
ae

g. If either

(i) fn
ae−−→ f , or (ii) fn

µ−−→ f , then fn
Lp−−−→ f .

j) For f, fn ∈ Lp, show that if fn
Lp−−−→ f so fast that

∑
n

∫ |fn − f |p dµ < ∞, then

fn
ae−−→ f .

3. a) Interpret these results for the functions (i)-(iv), in light of problem 1.

b) Which of (d)-(f) remain true for p = ∞?

4. If fn, f are measurable and ϕ is continuous and fn
ae−−→ f , then ϕ◦fn

ae−−→ ϕ◦f .

5. Suppose fn
µ−−→ f and gn

µ−−→ g.

a) fn + gn
µ−−→ f + g

b) fngn
µ−−→ fg if µX < ∞, but not necessarily if µX = ∞.

Function toolbox: how to make {fn} such that fn → f .

(1) fn := fχ
Xn , where Xn ↗ X. For example, fn := fχ

[−n,n].

(2) fn(x) :=

{
f(x) f(x) 6 n

0 else
, or fn(x) :=

{
f(x) f(x) 6 n

n else
.

(3) Find {fn} that converge to a continuous function g and use 4, above.

Note: if you use (1), you can bound the domain to avoid tails. If you use (2), your fn are
bounded and you avoid spikes.
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V. The “Baez bumps”

Assigned when Dr. Baez taught 209C in the spring of 2000, this collection of problems is
really helpful for combining the concepts of Modes of Convergence with relations between
different Lp spaces.

1. Spikes: for which values of k, p does the function lie in Lp(R, dx)? (Here, k > 0, and
1 6 p 6 ∞.)

f(x) =

{
|x|−k |x| 6 1

0 |x| > 1

2. Tails: for which values of k, p does the function f lie in Lp(R, dx)? (Again, k > 0,
and 1 6 p 6 ∞.)

f(x) =

{
|x|−k |x| > 1

0 |x| 6 1

3. Moving spikes: let fn : R→ R be given by

f(x) =

{
nk |x− n| 6 1

2n

0 otherwise.

So fn is a spike of height nk and width 1
n

centered at n. For what values of k > 0
does this sequence {fn} converge to zero

a) pointwise?

b) pointwise a.e.?

c) uniformly?

d) in measure?

e) in Lp? (1 6 p 6 ∞)

4. Flattening bumps: let fn : R→ R be given by

f(x) =

{
1

nk |x| 6 n
2

0 otherwise.

So fn is a bump of height 1
nk and width n centered at n. For what values of k > 0

does this sequence {fn} converge to zero in senses (a)-(e) as above?
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5. If p 6= q (1 6 p, q 6 ∞), find a function f : R → R with f ∈ Lp but f /∈ Lq. (Hint:
if p > q, use a function with a tail; if p < q, use a function with a spike.)

Let (X, M, µ) be a measure space and f : X → R be a measurable function.
Here, Lp = Lp(X, µ) and Lq = Lq(X,µ).

6. Show that if X is a finite measure space (i.e., µ(X) < ∞) and p > q, then f ∈
Lp =⇒ f ∈ Lq. (Note: since X is a finite measure space, there cannot be tails.)

7. Show that if f is bounded and p < q, then f ∈ Lp =⇒ f ∈ Lq. (Note: since f is
bounded, it cannot have spikes.)

8. Suppose f, fn : R→ R are measurable functions. Prove or give a counterexample:

a) fn
a.e.−−−→ f =⇒ fn

µ−−→ f (in measure).

b) fn
µ−−→ f =⇒ fn

a.e.−−−→ f .

c) fn
µ−−→ f =⇒ fn

L2−−−→ f .

d) fn
L2−−−→ f =⇒ fn

µ−−→ f .

For those which are false, which become true when we consider f, fn : [0, 1] → R
instead? No proof is necessary. (Note: those that are true will remain true, since we
can think of functions on [0, 1] as a special case of functions on R.)

9. For 1 6 p 6 q < ∞, show that

|f | > 1 =⇒ ‖f‖p 6 ‖f‖q.

10. For 1 6 p 6 q < ∞, show that

|f | 6 1 =⇒ ‖f‖p > ‖f‖q.

11. For 1 6 p 6 q 6 r < ∞, show that

f ∈ Lp, f ∈ Lr =⇒ f ∈ Lq.

(Note: In 9, the function f cannot have tails. In 10, it cannot have spikes. In 11,
it can have both, but f ∈ Lp controls how bad the tails are, and f ∈ Lr controls how
bad the spikes are.)
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VI. Baire Category Problems

1. State precisely and sketch the proof of Baire’s Thm. Give at least one significant
application. [2003, 2000,1999]

2. a) State precisely the Closed Graph Theorem and the Open Mapping Theorem.

b) Assuming the Open Mapping Theorem, deduce the Closed Graph Theorem.

3. Let X be a linear space which is a Banach space under each of the norms || · ||1, || · ||2.
If there exists a a > 0 such that ||x||1 6 a||x||2,∀x ∈ X, then the two norms are
equivalent. [1998,1997,1995]

4. Use the Open Mapping Theorem to show that if the vector space V is complete in
|| · ||1, || · ||2, then there are constants c1, c2 > 0 such that

c1||x||1 6 ||x||2 6 c2||x||1,∀x ∈ X.

State the Closed Graph Theorem and use this result to prove it. [1996]

5. Let L(X) be the space of bounded linear operators on the Banach space X, and let
T ∈ L(X). [2003,1999,1996,1995]

a) Show ||T || < 1 =⇒ I − T is invertible with bounded inverse.

b) Deduce (using proof of (a)) that the set G of invertible elements of L(X) is an
open set of L(X). Also, show that ϕ : G → G by ϕ(T ) = T−1 is continuous.

6. Let X, Y be Banach, S : X → Y an unbounded linear map, and Γ(S) = {(x, y) ∈
X × Y

... y = Tx}. Then

a) Γ(S) is not complete.

b) T : X → Γ(S) by Tx = (x, Sx) is closed but not bounded.

c) T−1 : Γ(S) → X is bounded and surjective, but not open.

7. Let Y = L1(µ) where µ is counting measure on N, and let

X = {f ∈ Y
...

∑∞
n=1

n|f(n)| < ∞},
equipped with the L1 norm.

a) X is a proper dense subspace of Y ; hence X is not complete.

b) Define T : X → Y by Tf(n) = nf(n). Then T is closed but not bounded.

c) Let S = T−1. Then S : Y → X is bounded and surjective but not open.
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8. Show that the completeness of the range is necessary in the corollary to the Open
Mapping Theorem, i.e., find a Banach space X, a normed linear space Y , and a
continuous linear bijection f : X → Y such that f−1 is not continuous.

9. Show that the completeness of the domain is necessary in the Closed Graph Theorem,
i.e., find a normed linear space X a Banach Space Y , and a closed linear map T :
X → Y such that T is not bounded.

10. There exist meager subsets of R whose complements have Lebesgue measure zero.

11. The Baire Category Theorem remains true if X is assumed to be a locally compact
Hausdorff space instead of a complete metric space. (Hint: the proof is similar; the
substitute for completeness is the finite-intersection-property definition of compact-
ness.)

12. Let Ck([0, 1]) be the space of functions on [0, 1] possessing continuous derivatives up
to order k on [0, 1], including one-sided derivatives at the endpoints.

a) If f ∈ C([0, 1]), then f ∈ Ck([0, 1]) iff f is k times continuously differentiable
on (0, 1) and limx→0+ f (j)(x) and limx→1− f (j)(x) exist for j 6 k. (Hint: try the
Mean Value Theorem.)

b) ||f || = ∑k
n=0 ||f (j)||u is a norm on Ck([0, 1]) that makes Ck([0, 1]) into a Banach

space. (Hint: use induction on k. The essential point is that if {fn} ⊆ C1([0, 1]),

fn
unif−−−→ f , and f ′n

unif−−−→ g, then f ∈ C1([0, 1]) and f ′ = g. One way to prove
this is to show that f(x)− f(0) =

∫ x

0
g(t) dt.)

13. Let Y = C([0, 1]) and X = C1([0, 1]), both equipped with the uniform norm.

a) X is not complete.

b) The map d
dx

: X → Y is closed but not bounded.
(Hint: use the previous exercise to show closed.)

14. Why doesn’t a 1-point space violate the Baire Theorem?
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VII. The Hahn-Banach Theorem(s)

There are no problems here (unless you want to prove the equivalences - good luck!), this
is just a collection of different versions of the HBT. This is to give some idea of how rich this
theorem is, and give some different perspectives.

The following are equivalent:

(HB 1) Existence of Banach Limits. Let be a directed set, and let bounded functions from
into . Then there exists a real-valued Banach limit for – that is, a linear map that
satisfies for each .

(HB 2) Convex Extension Theorem and

(HB 3) Sublinear Extension Theorem. Suppose X is a real vector space, X0 is a linear
subspace, is a linear map, is a convex (or sublinear) function, and on X0. Then can
be extended to a linear map that satisfies on X.

(HB 4) Convex Support Theorem and

(HB 5) Sublinear Support Theorem. Any convex (or sublinear) function from a real vector
space into is the pointwise maximum of the affine functions that lie below it. That is,
if is convex (respectively, sublinear), then for each there exists some affine function
that satisfies for all and f(x0)=p(x0).

(HB 6) Sandwich Theorem. Let C be a convex subset of a real vector space. Suppose that
is a concave function, is a convex function, and everywhere on C. Then there exists
an affine function satisfying .

(HB 7) Norm-Preserving Extensions. Let be a normed space, and let Y be a linear subspace
of X. Let – that is, let be a bounded linear map from Y into the scalar field, where
Y is normed by the restriction of . Then can be extended to some satisfying .

(HB 8) Functionals for Given Vectors. Let be a normed vector space other than the degen-
erate space 0, and let . Then there exists some such that and . Hence the norm of a
vector in X can be characterized in terms of the values of members of :

(We emphasize that this is a maximum, not just a supremum; contrast that with
28.41.7.) Therefore each acts as a bounded linear functional by the rule Tx(f)=f(x),
with norm .
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(HB 9) Separation of Points. If X is a normed space, then separates the points of X. That
is, if x and y are distinct points of X, then there exists some such that . Equivalently,
if , then there exists some such that .

(HB 10) Variational Principle. Let X be a normed space. Let V be a closed linear subspace,
let vanishes on , and let . Then is nonempty, and

(HB 11) Separation of Subspaces. Let B be a closed linear subspace of a Banach space X,
and let . Then there exists a member of that vanishes on B but not on .

(HB 12) Luxemburg’s Measure. For every nonempty set and every proper filter of subsets
of , there exists a probability charge on that takes the value 1 on elements of .

(HB 13) On every Boolean algebra there exists a probability charge.

(HB 14) Let X be a Boolean algebra. Then for every proper ideal I in X there exists a
probability on X that vanishes on I.

(HB 15) Riesz Seminorms and

(HB 16) Positive Functionals. Let X be a Riesz space, let S be a Riesz subspace, and suppose
either

Let be a positive linear functional, satisfying on S+. Then extends to a positive
linear functional , satisfying on X+.

(HB 17) Continuous Support Theorem. Let X be a real TVS. Then any continuous convex
function from X into is the pointwise maximum of the continuous affine functions
that lie below it. That is, if is continuous and convex, then for each there exists some
continuous affine function that satisfies for all and f(x0)=p(x0).

(HB 18) Separation of Convex Sets in TVS’s. Let A and B be disjoint nonempty convex
subsets of a real topological vector space X, and suppose A is open. Then there exists
such that for every .

(HB 19) Separation of Convex Sets in LCS’s. Let A and B be disjoint nonempty convex
subsets of a real, locally convex topological vector space X. Suppose A is compact
and B is closed. Then there exists such that .
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(HB 20) Separation of Points from Convex Sets. Let B be a nonempty closed convex subset
of a real, locally convex topological vector space X. Let . Then there exists such that
.

(HB 21) Intersection of Half-Spaces. Let X be a real, locally convex topological vector space.
Then any closed convex subset of X is the intersection of the closed half-spaces that
contain it. (By a closed half-space we mean a set of the form , for some continuous
linear functional and some real number r.)

(HB 22) Separation of Points. If X is a Hausdorff LCS, then separates points of X. That is,
if x and y are distinct points of X, then there exists some such that . Equivalently,
if , then there exists some such that .

(HB 23) Separation of Subspaces. Let B be a closed linear subspace of a locally convex space
X, and let . Then there exists a member of that vanishes on B but not on .

(HB 24) Weak closures. In a locally convex space, every -closed, convex set is -closed. In
brief, every closed convex set is weakly closed.

(HB 25) Banach’s Generalized Integral. Let , etc., be as in 29.30, with . Let be a bounded
charge on . Then the Bartle integral , already defined on in 29.30, can be extended
(not necessarily uniquely) to a continuous linear map , satisfying . If is a positive
charge, then can be chosen so that it is also a positive linear functional.

(HB 26) Banach’s Charge. Let be an algebra of subsets of a set , and let be a bounded
real-valued charge on . Then can be extended to a real-valued charge on all of . If is
a positive charge, then we can also choose to be a positive charge.

Dang! There’s 26 of them!
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VIII. Undergraduate Material

All problems are from recent quals.

1. [1996] Find

lim
n→∞

sin(nx)

where lim denotes the limit superior (or ‘lim sup’). Prove your answer is true.

2. [1997] Prove or give a counterexample: the set R of real numbers with its usual
topology is a union of nowhere dense subsets.

3. [2003s] Let {xn} be a Cauchy sequence in a metric space. Show that if {xn} admits
a convergent subsequence, then the entire sequence is convergent.

4. [1996] Prove that there is no value of k such that the equation x3 − 3x + k = 0 has
two distinct roots in [0, 1].

5. [1998] Let X be a compact topological space. Suppose that f : X → R has the

property that {x ... f(x) > a} is closed for each a ∈ R. Prove that f is bounded above
and that it attains its least upper bound.

6. [1997] If an
n→∞−−−−−→ a (for an, a ∈ R) show that limn→∞

(
1 + an

n

)n
= ea by first

establishing that limx→0
log(1+x)

x
= 1 and then using it.

7. [2002] Show that if {xn} is a convergent sequence in Rk with limit b, then

A := {xn
... n ∈ N} ∪ {b}

is a compact subset of Rk. Would this result be true in an arbitrary metric space,
rather than in Rk?

8. [1996] Prove that the series
∑∞

n=1
1
n

diverges.

9. [2003s] Show that the series
∑∞

n=0
(−1)n+1

n+1
is convergent, and calculate its sum.

10. [1996] Determine the radius of convergence of the series f(z) =
∑∞

n=0
z2n

(2n)!
. Prove

that within the radius of convergence, f ′′(z) = f(z).
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11. [1997] Prove that if X and Y are topological spaces, f : X → Y is continuous, and
K ⊆ X is compact, then f(K) ⊆ Y is compact.

12. [1997, 1995] Let f : [0, 1] → R be a continuous, but not necessarily differentiable
function. Show that it attains a maximum at some point of the closed unit interval.

13. [2000]

a) Give the definition of a connected set in Euclidean space Rn.

b) Show that if C ⊆ Rn is connected, then any continuous continuous f : C → Z
is constant. (Z = {0,±1,±2, . . .} is the set of integers.) Is the converse true?

14. [1999] Show that a (scalar-valued) continuous function on the interval [0, 1] is nec-
essarily uniformly continuous.

15. [1998, 1995] Let

f(x) =
∞∑

n=0

(−1)n cos nx

n
, x ∈ R.

At which points is f well-defined? At which points is it continuous?

16. [1996] Suppose that f : R → R is continuous and limx→±∞ f(x) = ∞. Using the
fact that every Cauchy sequence in R converges, show that f attains a minimum
value.

17. [1996] Suppose f : R → R is one-to-one and onto, and let f−1 denote the inverse
function (not the reciprocal).

a) If f is continuous, is f−1 necessarily continuous? Give a proof or a counterex-
ample.

b) If f is differentiable, is f−1 necessarily differentiable? Give a proof or a coun-
terexample.

18. [2001] A function f is said to satisfy a Lipschitz condition on an interval [a, b] if
there is a constant M such that |f(x)− f(y)| 6 M |x− y| for all x, y ∈ [a, b].

a) Show that a function satisfying a Lipschitz condition is absolutely continuous.

b) Show that an absolutely continuous function f satisfies a Lipschitz condition if
and only if |f ′| is bounded.
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c) Prove or give a counterexample: f satisfies a Lipschitz condition if one of its
derivatives (say D+) is bounded.

19. [2000]

a) Let f(x) = ‖x‖ for x ∈ Rn, where ‖x‖ = (
∑n

k=1 x2
k)

1/2
denotes the Euclidean

length of x = (x1, x2, . . . , xn) ∈ Rn. Compute f ′(x), the differential of f at x,
whenever it exists. If f ′(x) does not exist for some x, explain why.

b) Answer the same question as in (a) for the function f = ‖x‖2, for x ∈ R.

20. [1999] Let f(x) be a continuous function from [a, b] into itself.

a) Prove from basic principles that f(x0) = x0 for some x0 ∈ [a, b].

b) Assume in addition that the derivative f ′ exists on (a, b) and that |f ′(x)| 6 α,
for some 0 < α < 1. Prove that the fixed point x0 is unique and state and prove
an algorithm for finding x0.

21. [1999] State the Fundamental Theorem of Calculus (FTOC) (relating a function F
to the integral of its derivative) in its most general form, stating the necessary and
sufficient condition (C) that F must satisfy in order that the theorem hold. Finally,
consider F (x) = |x| on R. Illustrate the truth or falsity of the FTOC in this case;
i.e., show that F (x) does or does not satisfy (C) and also that F (x) does or does not
satisfy the statement of the FTOC.

22. [2003s] Calculate the volume of the unit ball in R3. (Show your work). Explain
briefly how you would proceed to extend this result to Rn, for any n > 1.

23. [1998, 1995] Let f be a continuous function on [0, 1] such that
∫ 1

0

xnf(x) dx = 0, for all n = 0, 1, 2, . . .

Show that f(x) = 0 for all x ∈ [0, 1].

24. [2003s, 1998, 1995] Show that the series S1 =
∑

n=1 nqn and S2 =
∑

n=1 n2qn are
uniformly convergent for 0 < q < 1 (compact intervals). Show that S1 = q(1− q)−2.
Using this, find a similar expression for S2.

25. [2002] Let fn(x) = cos(x + 1
n
), for x ∈ R and n > 1. Is the sequence {fn}∞n=1

uniformly convergent on R? If so, what is its limit?
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26. [2002] Let {fn} be a uniformly convergent sequence of continuous function on [a, b]
and let c ∈ [a, b]. Prove directly that

lim
n→∞

lim
x→c

fn(x) = lim
x→c

lim
n→∞

fn(x).

Prove the result directly; do not quote a known theorem.

27. [2000] Let ζ(x) =
∑∞

n=1 n−x, for x > 1.

a) Show that ζ is uniformly convergent on (a,∞) for every a > 1.

b) Show that ζ is continuous on (1,∞).

28. [2000]

a) Give an example of a sequence of real-valued functions {fn} which converges
pointwise but not uniformly on [0, 1].

b) Give an example of a series of differentiable functions
∑

n=1 fn which converge
uniformly on [0, 1] but such that there exists x0 in [0, 1] at which the series of
derivatives

∑
n=1 f ′n(x0) does not converge.

29. [1999] Give an example where the integral and sum of an infinite sequence of contin-
uous functions cannot be interchanged. State (without proof) a theorem guaranteeing
that this interchange can be carried out.

30. [2002] Suppose that f is a real-valued continuous function on [a, b]. Show that

lim
n→∞

∫ b

a

f(x) sin(nx) dx = 0.

31. [2000]

a) State (without proof) the Stone-Weierstrass Theorem (for real-valued functions).

b) Show that the algebra of real-valued functions generated by the set {1, x2} is
dense in C[0, 1] but is not dense in C[−1, 1]. (Here, C(X) denotes the space of
real-values continuous functions on I equipped with the uniform topology.)

32. [2003s] Let A be the real vector space spanned by the functions

1, sin x, sin2 x, . . . , sinn x, . . .

defined on [0, 1]. Show that A is dense in C[0, 1], the space of real-valued continuous
function on [0, 1] equipped with the sup norm.
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33. [2001] Let f : [0, π] → R be a continuous function. Show that for every ε > 0, there
is a trigonometric function Tn defined as

Tn(x) =
n∑

k=0

ak cos kx

such that sup06x6π |f(x) − Tn(x)| < ε, and explain why this conclusion no longer
holds if the cosine function is replaced by the sine function.

34. [2002] Let

ϕ(t) =

∫ ∞

0

e−tx2

dx, for t > 0.

Find t0 > 0 such that ϕ(t0) = 1. Is such a point unique? Justify your computation.

35. [1998, 1995] Let f : [0, 1]×R→ R be a continuously differentiable function. Define
for t ∈ [0, 1] and n = 1, 2, 3, . . .

y0(t) = e−t

yn+1(t) = yn(t) +

∫ t

0

f(t, yn(t)) dt

Show that the sequence yn converges uniformly to a continuous function on [0, 1].
Hint: use the Cauchy criterion.

36. [1999] If {fn} is a sequence of pointwise bounded functions on [a, b], show that there
exists a subsequence of {fn} which converges on a dense subset of [a, b]. (Assume
that the functions are Rk-valued.)

37. [1999] Let f : Rn → R be a differentiable function that is homogeneous of order k
(i.e., f(λx1, . . . , λxn) = λkf(x1, . . . , xn), ∀λ ∈ R). Show that x1

∂f
∂x1

+. . .+xn
∂f
∂xn

= kf

(i.e., ~x · f ′(x) = kf(~x)).

38. [1999] Let f : Rn → R be a differentiable function. Define the directional derivative
of f (at ~x) in the direction of the unit vector ~v ∈ Rn. Show that this derivative has
maximum modulus when ~v is in the direction of the gradient (f ′) of f .

39. [2002]

a) Give the definition of differentiability of a function f : Rn → R, at the point
a ∈ Rn.

b) Show that if f is differentiable at a, then it is continuous at a. Is the converse
true? Explain your answer.



Real Analysis Qual Seminar 19

40. [2003s] Let f : R2 → R2 be defined by

f(x, y) =
(
cos

(√
x2 + y2

)
, sin

(√
x2 + y2

))
.

Show that f is continuously differentiable on {(x, y) ∈ R2 ... x, y > 0} and determine
both directly and by using a well-known theorem whether f is locally invertible near
the point (x0, y0) = (1, 1).

41. [1998, 1997, 1995] State the Inverse Function Theorem for functions from Rn into
Rn. What conclusion can be drawn from this theorem about the function f(x, y) =
(x + y, x2 − y) near the point (0, 0) in R2?

42. [1999, 1998] Let X be any compact subset of R containing an interval (of positive

length). Is it possible that {f ∈ C(x)
... |f(x)| 6 1,∀x ∈ X} is a compact subset of

C(X)? Prove your assertion.

43. [1995] State the Arzela-Ascoli Theorem. Give reasons why it does or does not apply
to the following collections of functions:

a) A1 = {fn
... fn(x) = x− n, n > 1, x ∈ [0, 1]}

b) A2 = {fn
... fn(x) = xn, n > 1, x ∈ [0, 1]}

c) A3 = {fn
... fn(x) = (1 + (x + n)2)

−1
, n > 1, x ∈ [0,∞)}

44. [1994] For a > 0, let fn be a sequence of functions defined on the interval [0, a]
by fn(x) = (x/a)n, n = 1, 2, . . .. Verify that the Arzela-Ascoli theorem fails for this
sequence, and explain why.
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IX. Nasty Integrals

1. f : X → [0,∞] is measurable and
∫

X
f dµ = c where 0 < c < ∞. Let α ∈ R be a

constant. Show that

lim
n→∞

∫

X

n log

[
1 +

(
f(x)

n

)α]
dµ =





∞ 0 < α < 1

c α = 1

0 α > 1

2. Define F (t) =

∫ ∞

0

e−xt

1 + x2
dx, for t > 0.

a) Show that F is well-defined as an improper Riemann integral and as a Lebesgue
integral.

b) Show F ′′(t) exists on (0,∞) and satisfies F ′′(t) + F (t) = 1
t
.

c) (Extra credit) Compute F (t).

3. Let I be an open interval of R and suppose f : R → R such that x 7→ extf(x) is
integrable for each fixed t ∈ I. Define F : I → R by

F (t) =

∫

R
extf(x) dx.

Show that F is differentiable with derivative F ′(t) =
∫
R xextf(x) dx at each t ∈ I.

4. [2000] Show F (t) =

∫ ∞

−∞

sin(x2t)

1 + x2
dx is continuous on R.

5. [1998] f ∈ C[0, 1] is such that
∫ 1

0
xnf(x) dx for n = 0, 1, 2, . . .. Show that f ≡ 0.

6. Compute the limits

a) lim
n→∞

∫∞
0

(
1 + x

n

)−n
sin

(
x
n

)
dx

b) lim
n→∞

∫∞
a

n(1 + n2x2)−1 dx

7. a) Find the smallest constant c such that log(1 + et) < c + t for 0 < t < ∞.

b) Does lim
n→∞

1
n

∫ 1

0
log(1 + enf(x)) dx exist for every real f ∈ L1[0, 1], if f > 0?
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X. The Radon-Nikodym Theorem

Theorem. (Radon-Nikodym) Let (X, A) be a measurable space, and let µ and ν be σ-finite
positive measures on (X, A). If ν ¿ µ, then there is an A-measurable function f : X →
[0,∞) such that ν(A) =

∫
A

f dµ holds for each A ∈ A. The function f is unique up to µ-ae

equality. We denote f = dν
dµ

.

1. (The Sum Rule) d(ν1 + ν2)/dµ = dν1

dµ
+ dν2

dµ
.

2. (The Chain Rule) Suppose ν1 is a σ-finite signed measure and ν2, ν3 are σ-finite
positive measures on (X, A) such that ν1 ¿ ν2 and ν2 ¿ ν3.

a) If g ∈ L1(ν1), then g(dν1

dν2
) ∈ L1(ν2) and

∫
g dν1 =

∫
g dν1

dν2
dν2.

b) We have ν1 ¿ ν3, and dν1

dν3
= dν1

dν2

dν2

dν3
.

c) If ν2 ¿ ν1 and ν1 ¿ ν2, then dν1

dν2

dν2

dν1
=
ae

1 (with respect to µ or ν).

3. Let µ and ν be measures on (X, A), and suppose µ is σ-finite.

a) If ν is σ-finite, show that the following are equivalent:

(i) ν ¿ µ and µ ¿ ν,

(ii) µ and ν have exactly the same sets of measure zero, and

(iii) there is a A-measurable function g that satisfies 0 < g(x) < ∞ at each
x ∈ X and is such that ν(A) =

∫
A

g dµ holds ∀A ∈ A.

b) Show that if µ is σ-finite measure on (X, A), then there is a finite measure ν on
(X, A) such that ν ¿ µ and µ ¿ ν.

4. Let µ be counting measure on Q. Show µ is σ-finite but µ(a, b) = ∞,∀a < b.

5. Let {Ak} be a sequence of measurable sets such that
∑

n µ(An) < ∞. Then the set
of points that belong to Ak for infinitely many values of k has measure 0 under µ.
(Hint: consider ∩∞n=1 ∪∞k=n Ak and note that µ (∩∞n=1 ∪∞k=n Ak) 6 µ

(∪∞k=pAk

) ∀p.)

6. Let {qn} be an enumeration of the rational numbers, and for each n ∈ N, let fn : R→
R be a nonnegative Borel function that satisfies

∫
fn dλ = 1 and vanishes outside the

closed interval of length 1/2n centered at qn. Define µ on B(R) by µA =
∫

A

∑
n fn dλ.

a)
∑

n fn(x) < ∞ holds at λ-ae x in R. (Hint: see prev. exercise.)

b) µ is σ-finite, that µ ¿ λ, and each non-empty open subset of R has infinite
measure under µ.


