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Abstract. An iterated function system consisting of contractive similarity
mappings has a unique attractor F ⊆ Rd which is invariant under the action
of the system, as was shown by Hutchinson [Hut]. This paper shows how
the action of the function system naturally produces a tiling T of the convex
hull of the attractor. These tiles form a collection of sets whose geometry is
typically much simpler than that of F , yet retains key information about both
F and Φ. In particular, the tiles encode all the scaling data of Φ. We give
the construction, along with some examples and applications. The tiling T is
the foundation for the higher-dimensional extension of the theory of complex
dimensions which was developed in [La-vF1] for the case d = 1.

1. Introduction

This paper presents the construction of a self-similar tiling which is canonically
associated to a given self-similar system Φ, as in Def. 1. The term “self-similar
tiling” is used here in a sense quite different from the one often encountered in the
literature. In particular, the region being tiled is the complement of the self-similar
set F within its convex hull, rather than all of Rd. Moreover, the tiles themselves
are neither self-similar nor are they all of the same size; in fact, the tiles may even
be simple polyhedra. However, the name “self-similar tiling” is appropriate because
we will have a tiling of the convex hull: the union of the closures of the tiles is the
entire convex hull, and the interiors of the tiles intersect neither each other, nor the
attractor F . While the tiles themselves are not self-similar, the overall structure of
the tiling is.1 .

The construction of the tiling begins with definition of the generators, a collection
of open sets obtained from the convex hull of F . The rest of the tiles will be seen to
be images of these generators under the action of the original self-similar system.
Thus, the tiling T essentially arises as a spray on the generators, in the sense
of [LaPo2] and [La-vF1]. The tiles thus obtained form a collection of sets whose
geometry is typically much simpler than that of F , yet retains key information
about both F and Φ. In particular, the tiles encode all the scaling data of Φ.
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Section §2 gives the tiling construction and illustrates the method with several
familiar examples, including the Koch snowflake curve, Sierpinski gasket and pen-
tagasket. Section §3 describes the basic properties of the tiling. Section §4 discusses
potential applications, and gives a tube formula for the tiling.

It is shown in [LaPe2] that the tiles allow one to define a zeta function ζT for Φ
which is essentially a generating function for the geometry of F . This geometric zeta
function, in turn, allows computation of an explicit tube formula for T . Moreover,
one may define the complex dimensions of T as the poles of ζT . The tube formula
VT (ε) of [LaPe2] is thus defined entirely in terms of the self-similar tiling constructed
in this paper; see §4.

2. The Self-Similar Tiling

2.1. Basic terms.

Definition 1. A self-similar system is a family Φ := {Φj}J
j=1 (with J ≥ 2) of

contraction similitudes

Φj(x) := rjAjx + aj , j = 1, . . . , J.

For j = 1, . . . , J , we have 0 < rj < 1, aj ∈ Rd, and Aj ∈ O(d), the orthogonal
group of rigid rotations in d-dimensional Euclidean space Rd. Thus, each Φj is the
composition of an (affine) isometry and a homothety (scaling).

Remark 2. Note that different self-similar systems may give rise to the same self-
similar set. In this paper, the emphasis is placed on the self-similar system and its
corresponding dynamical system, rather than on the self-similar set.

Definition 3. The numbers rj are referred to as the scaling ratios of Φ. For
convenience, we may take the scaling ratios in nonincreasing order, i.e., reindex
{Φj} so that

1 > r1 ≥ r2 ≥ · · · ≥ rJ > 0. (2.1)

Definition 4. A self-similar system is thus just a particular type of iterated func-
tion system (IFS). It is well known2 that for such a family of maps, there is a unique
and self-similar set F satisfying the fixed-point equation

F = Φ(F ) :=
J⋃

j=1

Φj(F ). (2.2)

We call F the attractor of Φ, or the self-similar set associated with Φ. The action
of Φ is the set map defined by (2.2). Thus, one says that F is invariant under the
action of Φ.

Definition 5. We fix some notation for later use. Let

C := [F ] (2.3)

be the convex hull of the attractor F , that is, the intersection of all convex sets
containing F . Since F is a compact set, it follows that C is also compact, by [Sch,
Thm. 1.1.10]. Further, let

Co := int(C) = C ∼ ∂C. (2.4)

2See [Hut], as described in [Fal] or [Kig], for example.
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Remark 6. For this paper, it will suffice to work with the ambient dimension

d = dim C, (2.5)

restricting the maps Φj as appropriate. In (2.5), dim C is defined to be the usual
topological dimension of the smallest affine space containing C. An appropriate
change of coordinates allows one to think of this convention as using a minimal
subspace Rd; if F is a Cantor set in R3, we study it as if the ambient space were the
line containing it, rather than R3. Note that this means Co is open in the standard
topology; and so we have Co 6= ∅. This remark is intended to allay any fears about
possibly needing to use relative interior instead of interior (see [KlRo] or [Sch]) and
other unnecessary complications.

Definition 7. A self-similar system satisfies the tileset condition iff for j 6= `,

intΦj(C) ∩ intΦ`(C) = ∅. (2.6)

It is shown in Cor. 23 that because C = intC, (2.6) implies that the images Φj(C)
and Φ`(C) can intersect only on their boundaries:

Φj(C) ∩ Φ`(C) ⊆ ∂Φj(C) ∩ ∂Φ`(C).

Here, ∂A := A∩Ac, where Ac is the complement of A and A denotes the (topolog-
ical) closure of A. To avoid trivialities, we also require

Co * Φ(C). (2.7)

The nontriviality condition (2.7) disallows the case Co ∼ Φ(C) = ∅, and hence
guarantees the existence of the tiles in §2.2.

Remark 8. The tileset condition is a restriction on the overlap of the images of
the mappings, comparable to the open set condition (OSC). The OSC requires a
nonempty bounded open set U such that the sets Φj(U) are disjoint but Φ(U) ⊆ U .
See, e.g., [Fal, Chap. 9]. If one takes U = int C, then it will be clear from Cor. 16
of §3 that the OSC follows from (2.6); see Rem. 17.

Definition 9. Denote the words of length k (of {1, 2, . . . , J}) by

Wk = W J
k : = {1, 2, . . . , J}k

= {w = w1w2 . . . wk | wj ∈ {1, 2, . . . , J}}, (2.8)

and the set of all (finite) words by W :=
⋃

k Wk. Generally, the dependence of W J
k

on J is suppressed. For w as in (2.8), we use the standard IFS notation

Φw(x) := Φwk
◦ . . .◦Φw2 ◦Φw1(x) (2.9)

to describe compositions of maps from the self-similar system.

Definition 10. For a set A ⊆ Rd, a tiling of A is a sequence of sets {An}∞n=1 such
that

(i) A =
⋃N

n=1 An, and

(ii) An ∩Am = ∂An ∩ ∂Am for n 6= m.

We then say that the sets An tile A. Further, define a tiling of A by open sets to
be a sequence of open sets {An} satisfying A =

⋃N
n=1 An, where An ∩Am = ∅ for

n 6= m. In general, N may be taken to be ∞. Fig. 1 shows an example of a tiling
by open sets with N = ∞.
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Figure 1. Tiling the complement of the Koch curve K. The equi-
lateral triangles form an open tiling of the convex hull C = [K], in
the sense of Def. 10.

2.2. The construction. In this section, we construct a self-similar tiling, that is,
a tiling which is constructed via the mappings of a self-similar system. Such a tiling
will consequently have a self-similar structure, and is defined precisely in Def. 13
below. The reader is invited to look ahead at Figure 2, where the construction is
illustrated step-by-step for the illuminative example of the Koch curve.

For the system {Φj} with attractor F , denote the hull of the attractor by

C0 = C := [F ]. (2.10)

Denote the image of C under the action of Φ (in accordance with (2.2)) by

Ck := Φk(C) =
⋃

w∈Wk

Φw(C), k = 1, 2, . . . . (2.11)

Note that this is equivalent to the inductive definition

Ck := Φ(Ck−1), k = 1, 2, . . . . (2.12)

Definition 11. The tilesets are the sets

Tk := Ck−1 ∼ Ck, k = 1, 2, . . . (2.13)

Definition 12. The generators Gq of the aforementioned tiling T are the connected
components of the open set

int(C ∼ Φ(C)) = G1 tG2 t · · · tGQ. (2.14)

The symbol t is used to indicate disjoint union.

As will be shown in Theorem 24, it follows from the tileset conditions (2.6)–
(2.7) (and some other facts) that the tilesets and tiles are nonempty, and that each
tileset is the closure of its interior. Also, Theorem 27 will justify the terminology
“generators” by showing

Tk =
Q⊔

q=1

Φk−1(Gq), (2.15)

that is, that any difference Ck−1 ∼ Ck is (modulo some boundary points) the image
of the generators under the action of Φ. The number Q of generators depends on
the specific geometry of C and on the self-similar system Φ. It is conceivable that
Q = ∞ for some systems Φ, but no such examples are known. This possibility will
be investigated further in [LaPe3].
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Figure 2. The left column shows images of the convex hull C
under successive applications of Φ. The right column shows how
the components of the Tk tile the complement; they are overlaid
in Fig. 1. This tiling has one generator G1 = T1.

Definition 13. The self-similar tiling of F is

T :=
(
{Φj}J

j=1, {Gq}Q
q=1

)
. (2.16)

We may also abuse the notation a little, and use T to denote the set of corre-
sponding tiles:

T = {Rn}∞n=1 = {Φw(Gq) | w ∈ W, q = 1, . . . , Q}, (2.17)

where the sequence {Rn} is an enumeration of the tiles. Clearly, each tile is
nonempty and d-dimensional. Furthermore, Theorem 28 will confirm that (2.17) is
an open tiling in the sense of Def. 10.
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(a) (b) (c)
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Figure 3. (a) The parameter ξ for the standard Koch curve, as depicted
in Fig. 1 and Fig. 2. (b) ξ for a skinny Koch, as in Fig. 4. (c) ξ for a chunky
Koch, as in Fig. 5.

2.3. Examples. All the examples discussed in this section have polyhedral gener-
ators, but this is not the general case. In fact, it is possible to have generators with
boundary that is continuously differentiable, although it is not possible that they
be twice continuously differentiable. This was observed to be true for the convex
hull of an attractor in [StWa], and it immediately carries over to the generators as
well. We will study this eventuality further in [LaPe3]. See also §3.1.

2.3.1. The Koch curve. Figure 1 shows the self-similar tiling of the Koch curve;
the steps of the construction are illustrated in Figure 2. In this case, the tiling
is K =

({Φj}2j=1, {G}
)
, and it is easiest to write down the similarities as maps

Φj : C→ C, with the natural identification of C and R2:

Φ1(z) := ξz and Φ2(z) := (1− ξ)(z − 1) + 1 (2.18)

for ξ = 1
2 + 1

2
√

3
i. For this example, r1 = r2 = 1/

√
3 and the single generator

G is the equilateral triangle of side length 1
3 depicted as T1 in Fig. 2. Here and

henceforth, we reserve the symbol i =
√−1 for the imaginary number.

2.3.2. The 1-parameter family of Koch curves. There is an entire family of Koch
curves generalizing the standard Koch curve. We use the same system as above:

Φ1(z) := ξz and Φ2(z) := (1− ξ)(z − 1) + 1,

but now ξ may be any complex number satisfying

|ξ|2 + |1− ξ|2 < 1, (2.19)

as shown in Figure 3. Geometric considerations show that (2.19) must be satisfied
in order for the tileset condition (2.6) to be met.

For any member of this family, we have one isoceles triangle G = G1 = T1 for a
generator. A key point of interest in this example is that, in the language of [La-
vF1], curves from this family will generally be nonlattice, i.e., the logarithms of the
scaling ratios will not be rationally dependent. Thus, one may use this example to
construct tilings where the scaling ratios involved satisfy certain number-theoretic
conditions, as studied in [La-vF1].

2.3.3. The one-sided Koch curve. Occasionally, one may wish to consider a set
which is not self-similar, but which has a (piecewise) self-similar boundary. The
Koch snowflake is an example of such a domain. When considering the area of the
interior of the Koch curve, one is interested in tiling only the region on one side of
the curve. This perspective is motivated by mimicking the calculation of the interior
ε-neighbourhood of the snowflake, as opposed to a 2-sided ε-neighbourhood.
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Figure 4. Self-similar tiling of nonstandard Koch curve (b).
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Figure 5. Self-similar tiling of nonstandard Koch curve (c).
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Figure 6. Self-similar tiling of the interior Koch curve.

For this approach, the previous IFS will not work; its alternating nature maps
portions of the interior to the exterior and vice versa. We can, however, view
the Koch curve as the self-similar set generated by an IFS consisting of 4 maps,
each with scaling ratio 1

3 , in the obvious manner. Since we want each stage of the
construction to generate only those triangles which lie inside the curve, it behooves
us to take the intersection of the convex hull with the interior of the Koch curve, as
seen in the shaded region of C0 in Figure 6. The Koch curve may now be constructed
using the 4-map IFS depicted in Figure 6 (note how C1 =

⋃4
j=1 Φj(C0), etc).
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C0 C1 C2 C3 C4 C5

Co T1 T2 T3 T4 T5

Figure 7. Self-similar tiling of the Sierpinski Gasket.

C5

T5

C0 C1 C2 C3 C4

C
o

T1 T2 T3 T4

Figure 8. Self-similar tiling of the Pentagasket.

2.3.4. The Sierpinski Gasket. The Sierpinski gasket system consists of the three
maps

Φj(x) =
1
2
x +

pj

2
,

where the pj are the vertices of an equilateral triangle; the standard example is
p1 = 0, p2 = 1, and p3 = (1 + i

√
3)/2.

The convex hull of the gasket is the triangle with vertices p1, p2, p3. The generator
G is the ‘middle fourth’ of the hull (see T1 in Figure 7).

2.3.5. The Pentagasket. The Pentagasket is constructed via five maps

Φj(x) = φ−2x + pj ,

where the pj form the vertices of a pentagon of side length 1, and φ = 1+
√

5
2 is the

golden ratio, so that the scaling ratio of each mapping is

rj = φ−2 = 3−√5
2 , j = 1, . . . , 5.

The Pentagasket is the first example of multiple generators Gq. In fact, T1 =
G1 ∪ · · · ∪G6 where G1 is a pentagon and G2, . . . , G6 are triangles.

2.3.6. The Sierpinski Carpet. The Sierpinski carpet is constructed via eight maps

Φj(x) = x
3 + pj ,
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C0 C1 C2 C3 C4

Co T1 T2 T3 T4

Figure 9. Self-similar tiling of the Sierpinski carpet.

C0 C1 C2

Co T1 T2

Figure 10. Self-similar tiling of the Menger sponge.

where pj = (aj , bj) for aj , bj ∈ {0, 1
3 , 2

3}, excluding the single case (1/3, 1/3). The
Sierpinski carpet is an example which is not finitely ramified; indeed, it is not even
post-critically finite (see [Kig]).

2.3.7. The Menger Sponge. The Menger sponge is constructed via twenty maps

Φj(x) = x
3 + pj ,

where pj = (aj , bj , cj) for aj , bj , cj ∈ {0, 1
3 , 2

3}, except for the six cases when exactly
two coordinate are 1/3, and the single case when all three coordinates are 1/3.

The Menger sponge system is the first example with an generator of dimension
greater than 2, also the first example with a nonconvex generator.

3. Properties of the tiling

The results of this section indicate that a self-similar tiling may be constructed
for any self-similar system satisfying the tileset condition of Def. 7. Throughout,
we will use the fact that A = intAt∂A, where we denote the closure of A by A, the
interior of A by intA, and the boundary of A by ∂A = A∩Ac, where Ac = Rd ∼ A.
Recall that t indicates disjoint union.
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Theorem 14. For each k ∈ N, one has Ck+1 ⊆ Ck ⊆ C.

Proof. Any point x ∈ C is a convex combination of points in F . Since similarity
transformations preserve convexity, Φj(x) will be a convex combination of points
in Φj(F ) ⊆ F . Hence Φj(C) ⊆ [F ] = C for each j, so Φ(C) ⊆ C. By iteration of
this argument, we immediately have Φk(C) ⊆ C for any k ∈ N. From (2.12), it is
clear that

Ck+1 = Φ(Ck) = Φk+1(C) = Φk(Φ(C)) ⊆ Φk(C) = Ck, (3.1)

where the inclusion follows by Φ(C) ⊆ C, as established initially. ¤
Corollary 15. The tileset condition is preserved under the action of Φ, i.e.,

intΦj(Ck) ∩ intΦ`(Ck) = ∅, ∀k ∈ N. (3.2)

Proof. From Theorem 14 we have intΦj(Ck) ⊆ intΦj(C), and similarly for Φ`. The
disjointness of intΦj(Ck) and intΦ`(Ck) follows from the tileset condition (2.6). ¤
Corollary 16. For A ⊆ Ck, we have Φw(A) ⊆ Ck, for all w ∈ W . In particular,
F ⊆ Ck, ∀k.

Proof. By iteration of (3.1), it is immediate that Cm ⊆ Ck for any m ≥ k. Since
Φ(A) ⊆ Φ(Ck) = Ck+1 ⊆ Ck by Theorem 14, the first conclusion follows. The
special case follows by induction on k with basis case A = F ⊆ C = C0. The
inductive step is

F ⊆ Ck =⇒ F = Φ(F ) ⊆ Φ(Ck) = Ck+1. ¤
Remark 17. With k = 0 and A = int C, Cor. 16 shows that any system Φ satisfying
the tileset condition (2.6) must also satisfy the open set condition; see Rem. 8.

Corollary 18. The decreasing sequence of sets {Ck} converges to F .

Proof. Cor. 16 shows F ⊆ Ck for every k, so it is clear that F ⊆ ⋂
Ck. For the

reverse inclusion, suppose x /∈ F , so that x must be some positive distance ε from
F . Recall that r1 is the largest scaling ratio of the maps {Φj}, and that 0 < r1 < 1.
For w ∈ Wk, we have diam(Φw(C)) ≤ rk

1diam(C), which clearly tends to 0 as
k →∞. Therefore, we can find k for which all points of Ck = Φk(C) lie within ε/2
of F . Thus x cannot lie in Ck and hence x /∈ ⋂

Ck. ¤
Remark 19. Convergence also holds in the sense of Hausdorff metric, by a theorem
of [Hut]; see also [Fal] or [Kig] for a nice discussion. Hutchinson showed that Φ is a
contraction mapping on the metric space of compact subsets of Rd, which is com-
plete when endowed with the Hausdorff metric. An application of the contraction
mapping principle then shows that Φ has a unique fixed point (as stated in Def. 4)
and that any other point tends towards it under iteration of the action of Φ. This
phenomenon is especially apparent in Figures 2, 7, 8, and 9.

Lemma 20. The action of Φ commutes with set closure, i.e., Φ
(
A

)
= Φ(A)

Proof. It is well known that closure commutes with finite unions, i.e., for any sets
A,B, one has A ∪ B = (A ∪B). See, e.g., [Mu, Chap. 2, §17]. Also, each Φj is a
homeomorphism, and is thus a closed, continuous map. Therefore,

Φ
(
A

)
=

⋃J

j=1
Φj

(
A

)
=

⋃J

j=1
Φj(A) =

⋃J

j=1
Φj(A) = Φ(A). ¤
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Theorem 21. If A is the closure of its interior, then so is Φ(A).

Proof. Let x ∈ Φ(A) so that x ∈ Φj(A) for some j = 1, . . . , J . Because each map
Φj is a homeomorphism, we know that Φj(A) is the closure of its interior, and
hence that x ∈ intΦj(A) ⊆ intΦ(A). The reverse inclusion intΦ(A) ⊆ Φ(A) is
immediate because A is closed by hypothesis (and thus Φ(A) is also closed). ¤
Corollary 22. Each set Ck is the closure of its interior.

Proof. The set C = [F ] is convex by definition, and compact by [Sch, Thm. 1.1.10].
Therefore, C is the closure of its interior by [Sch, Thm. 1.1.14]. The conclusion
follows by iteration of Theorem 21. ¤
Corollary 23. The tileset condition implies that images of the hull can only overlap
on their boundaries:

Φj(C) ∩ Φ`(C) ⊆ ∂Φj(C) ∩ ∂Φ`(C), for j 6= `. (3.3)

Proof. Let x ∈ Φj(C) ∩ ∂Φ`(C). Suppose, by way of contradiction, that x ∈
intΦj(C). Then we can find an open neighbourhood U of x which is contained in
intΦj(C). Since x ∈ ∂Φ`(C), there must be some z ∈ U ∩ intΦ`(C), by Cor. 22.
But then z ∈ intΦj(C) ∩ intΦ`(C), in contradiction to the tileset condition. ¤
Theorem 24 (Nondegeneracy of tilesets). Each tileset is the closure of its interior.

Proof. We need only show Tk ⊆ intTk, since the reverse containment is clear by
the closedness of Tk. Since A = intA t ∂A, take x ∈ int(Ck−1 ∼ Ck) to begin.
Using Cor. 22, we have equality in the first step of the following derivation:

Ck−1 ∼ Ck = int(Ck−1) ∼ Ck

⊆ int(Ck−1) ∼ Ck

⊆ int(Ck−1 ∼ Ck) (3.4)

⊆ int
(
Ck−1 ∼ Ck

)
.

The containment (3.4) follows from

int(Ck−1) ∼ Ck = int(int(Ck−1) ∼ Ck) ⊆ int(Ck−1 ∼ Ck),

where one has the equality because the difference of an open and closed set is open,
and the containment because int(Ck−1) ⊆ Ck−1.

Now consider the case when x ∈ ∂(Ck−1 ∼ Ck). Pick an open set U and find
z ∈ U ∩ (Ck−1 ∼ Ck). Then z ∈ int

(
Ck−1 ∼ Ck

)
by the same argument as above.

This means that x is a limit point of the closed set int
(
Ck−1 ∼ Ck

)
, and hence

must lie within it. ¤

The following corollary will be useful in the proof of Theorem 27.

Corollary 25. For j = 1, . . . , J , Φj(Ck−1) ∼ Φj(Ck) is the closure of its interior.

Proof. Because each Φj is a homeomorphism, the set Φj(Ck−1 ∼ Ck) will be the
closure of its interior by Theorem 24. However, we have

Φj(Ck−1 ∼ Ck) = Φj(Ck−1 ∼ Ck) = Φj(Ck−1) ∼ Φj(Ck), (3.5)

since Φj is closed and injective. ¤
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We are now ready to prove the main result of this paper.

Theorem 26. Each tileset is the image under Φ of its predecessor, i.e.,

Φ(Tk) = Tk+1, for k ∈ N. (3.6)

Proof. Using using Def. 11 and (3.5), we have the identities

Φ(Tk) =
⋃J

j=1
Φj(Ck−1 ∼ Ck), and (3.7)

Tk+1 = Ck ∼ Ck+1. (3.8)

(⊆) To see that (3.7) is a subset of (3.8), pick x ∈ Φ(Tk), so that

x ∈ Φj(Ck−1 ∼ Ck) = Φj(Ck−1) ∼ Φj(Ck) (3.9)

for some j = 1, . . . , J . Since A = intA t ∂A, we proceed by cases. Here again, t
denotes the disjoint union.

(i) Let x ∈ int(Φj(Ck−1) ∼ Φj(Ck)). Then let U ⊆ Φj(Ck−1) ∼ Φj(Ck) be an
open neighbourhood of x. Since x ∈ U ⊆ Φj(Ck−1), we have x ∈ intΦj(Ck−1) ⊆
Ck.

By way of contradiction, suppose that x ∈ Ck+1. Then x ∈ Φ`(Ck) for some `.
Note that ` 6= j, since x /∈ Φj(Ck) by initial choice of x. Inasmuch as Theorem 14
gives x ∈ Φ`(Ck−1), Cor. 23 implies

x ∈ ∂Φj(Ck−1) ∩ ∂Φ`(Ck−1), (3.10)

contradicting the fact that x ∈ intΦj(Ck−1). So we may conclude that

x ∈ Ck ∼ Ck+1 ⊆ Ck ∼ Ck+1. (3.11)

(ii) Now consider x ∈ ∂(Φj(Ck−1) ∼ Φj(Ck)). Again, let U be an open neigh-
bourhood of x. By Cor. 25, we can find w ∈ U ∩ int(Φj(Ck−1) ∼ Φj(Ck)). By
applying the arguments of part (i), we obtain w ∈ Ck ∼ Ck+1 and hence that x
is a limit point of Ck ∼ Ck+1. Since this latter set is closed, we have shown that
x ∈ Ck ∼ Ck+1 in case (ii), and completed the forward inclusion.

(⊇) Now we need to show that (3.8) is a subset of (3.7). Since

x ∈ Ck ∼ Ck+1 = int(Ck ∼ Ck+1) t ∂(Ck ∼ Ck+1), (3.12)

this will again require two parts.
(iii) Let x ∈ int(Ck ∼ Ck+1) ⊆ Φ(Ck−1) ∼ Φ(Ck). Then x ∈ Φ(Ck−1) means

that x ∈ Φj(Ck−1) for some j = 1, . . . , J . Furthermore, there must be some
y ∈ Ck−1 with Φj(y) = x. We know y /∈ Ck, because otherwise

y ∈ Ck =⇒ x = Φj(y) ∈ Φj(Ck) ⊆ Ck+1, (3.13)

which contradicts the initial choice x /∈ Ck+1. Thus y ∈ Ck−1 ∼ Ck, which implies

x = Φj(y) ∈ Φj(Ck−1 ∼ Ck) ⊆ Φj(Ck−1 ∼ Ck). (3.14)

(iv) Now consider x ∈ ∂(Ck ∼ Ck+1), and again let U be an open neighbourhood
of x. Then there is some z 6= x with z ∈ U ∩ int(Ck ∼ Ck+1). By applying the
arguments of part (iii) to z, we see

z ∈ int(Ck ∼ Ck+1) =⇒ z ∈ Φj(Ck−1 ∼ Ck). (3.15)

Therefore, we have shown that x is a limit point of Φj(Ck−1 ∼ Ck), and is hence
contained in it. This completes the proof of the equality (3.6). ¤



CANONICAL SELF-SIMILAR TILINGS BY IFS. 13

Theorem 27. The tilesets can be recovered as the closure of the images of the
generators under the action of Φ, that is,

Tk =
⊔Q

q=1
Φk−1(Gq). (3.16)

Proof. First, observe that3

C ∼ Φ(C) = int(C ∼ Φ(C)), (3.17)

as follows. If x ∈ C ∼ Φ(C), then any open neighbourhood U of x must intersect
int(C ∼ Φ(C)), because C ∼ Φ(C) is the closure of its interior, by Theorem 24.
Hence x ∈ int(C ∼ Φ(C)). The reverse inclusion is clear. Using (3.17), we have

Q⋃
q=1

Gq =
⊔Q

q=1
Gq = int(C ∼ Φ(C)) = C ∼ Φ(C) = T1. (3.18)

Now take Φk−1 of both sides, using Lemma 20 on the left and Theorem 26 on the
right, to obtain the conclusion:

⊔Q

q=1
Φk−1 (Gq) = Φk−1

(⊔Q

q=1
Gq

)
= Φk−1(T1) = Tk. (3.19)

The union
⊔Q

q=1 Φk−1(Gq) is disjoint because each Φj is injective, Gq ⊆ intC, and
the tileset condition (2.6) prohibits overlaps of interiors. ¤

Theorem 28. The collection T = {Φw(Gq)} is an open tiling of C, in the sense
of Def. 10. In fact, T is an open tiling of C ∼ F .

Proof. (i) To see that C =
⋃

Rn =
⋃

Φw(Gq), it suffices to show C =
⋃

Tk, by
Theorem 27. Pick x ∈ C ∼ F . Since F =

⋂
Ck by Cor. 18, this means we can find

k such that x ∈ Ck−1 but x /∈ Ck. Then

x ∈ Ck−1 ∼ Ck ⊆ Ck−1 ∼ Ck = Tk. (3.20)

The reverse inclusion is obvious from Theorem 14 and the definition of the tiles as
subsets of the Ck, in (2.13).

(ii) To see that the tiles are disjoint, note first that the generators are disjoint
by definition. Suppose Rn and Rm are both in the same tileset Tk. Then (3.19)
shows that they are disjoint. Now suppose Rn ⊆ Tk and Rm ⊆ T`, where k < `.
Then Rn is disjoint from Ck by definition of Tk, and it follows from Theorem 14
that Rn is disjoint from C` for all ` ≥ k. (See, e.g., Figure 2.)

It is also clear that Rn ∩ Ck = ∅ implies that Rn ∩ F = ∅, so no tiles intersect
the attractor F . Thus, T is an open tiling of C ∼ F . ¤

Corollary 29. The tiling T is subselfsimilar in that Φ(T ) = T ∼ ⊔
q Gq.

Figure 1 illustrates Theorems 27–28 for the Koch tiling K.

3The equality (3.17) is not trivial because the right side has C ∼ Φ(C), not C ∼ Φ(C).



14 ERIN P. J. PEARSE

3.1. Properties of the generators. What kinds of generators are possible? In
general, this is a difficult question to answer; it is explored in detail in [LaPe3].
The generators inherit many geometric properties from the convex hull C = [F ]
and may therefore have a finite or infinite number of nonregular boundary points.
In fact, by an observation of [StWa], it is possible (even generic) for the boundary
of a 2-dimensional generator to be a piecewise C1 curve. However, it is impossible
for it to be a piecewise C2 curve.

4. Applications

The motivation behind the self-similar tiling was to find a means of extending
the work of [La-vF1] to higher dimensions; this has been partially accomplished
in [LaPe2]. The research monograph [La-vF1] is an investigation of the theory of
fractal subsets of R. The complement of a fractal within the interval containing it
is called a fractal string and may be represented by a sequence of bounded open
intervals of length lj :

L := {lj}∞j=1, with
∞∑

j=1

lj < ∞. (4.1)

Note that lj is a length (i.e., a number) and not an interval. The authors are able
to relate geometric and spectral properties of such objects through the use of zeta
functions which encode this data. This information includes the fractal dimension
and measurability of the fractal under consideration. One of the main results
of [La-vF1] is an explicit formula for the volume VL(ε) of the ε-neighbourhood of
a fractal string, obtained by applying distributional methods to the geometric zeta
function. In [LaPe2], we have obtained similar results for suitable fractal subsets of
Rd; specifically, for those with an associated self-similar tiling. The requisite zeta
functions are defined in terms of the tiling as it is developed in this paper, and
hinges upon the inradius of the generators of the tiling, a notion we now explain.

Definition 30. The inner ε-neighbourhood of a set A is

Aε := {x ∈ A | d(x, ∂A) < ε}.
Definition 31. The (inner) tube formula of A, is

VA(ε) := V (Aε) = vold(Aε), d ∈ N, (4.2)

and it gives the d-dimensional Lebesgue measure of Aε.

The tube formula VT (ε) for a tiling is useful for studying the dimension and
spectral asymptotics of T and the original self-similar set F ; see [La-vF1] and [We],
for example. To compute the tube formula for a tiling, note that the tiles Rn have
disjoint interior (as shown in Theorem 28), so the formula will simply be a sum
taken over the tiles:

VT (ε) =
∑

VRn(ε). (4.3)

This sum naturally splits into two parts; one with tiles which are entirely within ε
of their own boundary, and one with larger tiles. This split is determined by the
inradius.
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ρ

A 
ε1

A 
ε2

Figure 11. Here we see two inner ε-neighbourhoods of a triangle
A ⊆ R2. As ε increases, Aε → A (in the Hausdorff metric, for
example). The inradius ρ is depicted at the far right.

Definition 32. The inner radius or inradius of a set A is

ρ = ρA = ρ(A) := sup{ε | V (Aε) < V (A)}. (4.4)

Note that the supremum is taken over ε > 0, because A0 = A. The inradii
replace the lengths lj of the 1-dimensional theory.

Proposition 33. In Rd, the inradius is the furthest distance from a point of A to
∂A, or the radius of the largest ball contained in A, i.e.,

ρA =sup{ε | V (Aε) < V (A)} (4.5a)

= sup{d(x, ∂A) | x ∈ A} (4.5b)

= sup{ε | ∃x with B(x, ε) ⊆ A}. (4.5c)

Proof. Let A ⊆ Rd, and denote m = sup{d(x, ∂A) | x ∈ A}. Then V (Aε) < V (A)
implies there is a set of positive d-dimensional measure contained in the interior
of A, which is further than ε from any point of ∂A. So ε < ρA implies ε < m.
Conversely, if ε < m, then there exists some nonempty open set U ⊆ A for which
d(x, ∂A) > ε, ∀x ∈ U . Such a set has positive d-dimensional measure. Thus ε < m
implies ε < ρA, whence m = ρA and (4.5a) is equivalent to (4.5b).

Now let r be the radius of the largest circle which can be inscribed in A. For a
point x ∈ A, we have d(x, ∂A) ≥ r if and only if a circle of radius r can be inscribed
in A with center at x, i.e.

ε ≤ m ⇐⇒ ε ≤ r.

This suffices to show the equivalence of (4.5b) and (4.5c). ¤

Definition 34. The generating inradii are the inradii of the generators Gq and
denoted

gq := ρ(Gq), q = 1, . . . , Q. (4.6)

Equation (2.17) shows that under the action of Φ, the images of the Gq will be
a sequence of tiles with inradii

ρ(Φω(Gq)) = re1
1 . . . reJ

J gq,

for some nonnegative integer exponents ej , and q = 1, . . . , Q. It is precisely this
well-behavedness of ρ under the action of Φ that makes it a useful concept.
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Let us denote the inradius of the nth tile by ρn := ρ(Rn), and then collect all the
inradii and index them in nonincreasing order of size. Now σ < τ implies ρσ ≥ ρτ ,
and we have

ρ1 ≥ ρ2 ≥ . . . .

We now return to the inner tube formula (4.3), beginning with the special case
of a single generator. As in [LaPo1] and [La-vF1], this is

VT (ε) =
∑

ρn≥ε/g

VRn
(ε) +

∑

ρn<ε/g

V (Rn),

where g = ρ(G) is the inradius of the single generator, because VA(ε) = V (A)
whenever ε > ρA. The inner tube formula of Rq = {Φw(Gq)} is

VRq
(ε) =

∑

ρw
q ≥ε/gq

VRw
q
(ε) +

∑

ρw
q <ε/gq

V (Rw
q ),

Hence the inner tube formula of the tiling is

VT (ε) =
Q∑

q=1


 ∑

ρw
q ≥ε/gq

VRw
q
(ε) +

∑

ρw
q <ε/gq

V (Rw
q )


 . (4.7)

In [LaPe2], we compute an explicit formula for VT (ε) analogous to [La-vF1, Thm.
6.1], using tools from geometric measure theory and convexity theory. We use the
present construction in an essential manner in [LaPe2], along with the extended
distributional explicit formula [La-vF1, Thm. 4.21], to obtain the following result.

Theorem 35. The d-dimensional volume of the inner tubular neighbourhood of T
is given by the following distributional explicit formula:

VT (ε) =
∑

ω∈DT
res (ζT (ε, s); ω) =

∑

ω∈DT
cωεd−ω. (4.8)

In this formula, ζT is the geometric zeta function of the self-similar tiling whose
residues define the constants cω, and ζT is defined by a matrix product or bilinear
form:

ζT (ε, s) :=〈gζs, E〉κκκκ =
(
g>κκκκE)

ζs, (4.9)

where ζs(s) =
∑

w rs
w is a zeta function encoding the combinatorics of the scaling

ratios of Φ. The sum in (4.8) is taken over the set of complex dimensions

DT := {poles of ζT } ∪ {0, 1, . . . , d− 1}.

In (4.9), g is a vector which has each component of the form gs (where g is a gen-
erating inradius). The matrix κκκκ has a row for each generator, and the components
of each row are the 0-dimensional through (d − 1)-dimensional curvatures of that
generator. Finally, E is a vector of ‘boundary terms’ εi−s

d−i , where i ranges through
the integral dimensions 0, 1, . . . , d of the generators. Further discussion of these
topics, however, is beyond the scope of the current paper; please see [LaPe2].
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5. Concluding remarks

5.1. Connection to classical results.
As seen in the latter part of (4.8), the tube formula VT (ε) of Theorem 35 is, in

fact, a power series in ε, which is summed over the complex dimensions; i.e., VT (ε)
is a sum of terms cωεd−ω, one for each pole ω of ζT and each integer 0, 1, . . . , d− 1.
In the case of the integer terms, the coefficient is very closely related to the 0-
dimensional through (d−1)-dimensional curvature measures. Thus, (4.8) is a fractal
analogue or extension of the classical Steiner formula for a nonempty compact
convex set A:

VA(ε) =
d−1∑

i=0

ciε
d−i, (5.1)

where the coefficients are given by ci := µi(A)µd−i(Bd−i). The measure µi is the
i-dimensional invariant measure (or intrinsic volume) and Bi is the unit ball in i
dimensions. In [LaPe4], we hope to realize the other coefficients cω as some sort of
suitably generalized curvature measures.

5.2. Affine mappings.
The construction presented in this paper remains true if the mappings are taken

to be affine contractions, instead of similarities. Indeed, the key properties of simi-
larity mappings that have been exploited to prove the theorems of §3 are as follows:
similarity transformations are continuous, open, and closed mappings which pre-
serve convexity.

However, I have not pursued the generalization to affine maps, as the tiling was
developed as a tool for computing the tube formula associated with a system Φ.
The strategy of [LaPe2] is to use tube formulas for the generators to obtain tube
formulas for all the tiles. Under affine transformations, however, such an idea does
not seem to work.

5.3. The convex hull.
One might also ask why the convex hull plays such a unique role in the construc-

tion of the tiling. There may exist other sets which are suitable for initiating the
construction; however, here are some properties which seem to make the convex
hull the natural choice:

(1) Any convex set is the closure of its interior, and hence so is any polyconvex
set (as shown in the proof of Cor. 22).

(2) Theorem 14 holds for the convex hull, that is, Φ(C) ⊆ C.
(3) The convex hull of F obviously contains F .
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The idea for the tiling was inspired by the approach of Lapidus and van Franken-
huijsen [La-vF1, Ch. 2] in the 1-dimensional case, and also partially by trying to
find a covering reminiscent to that of Whitney, as in [Ste], but naturally suited to
Φ. Michel Lapidus suggested that I investigate Whitney coverings.
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