
1. Probability and Distributions

1.1. Set Theory.

Definition 1.1. The union of two sets

A ∪ B := {x ... x ∈ A or x ∈ B}
consists of all points x which are elements of A or elements of B (or both). The intersection

of two sets

A ∩ B := {x ... x ∈ A and x ∈ B}
consists of all points x which are elements of both A and B simultaneously. The intersection
of A and B is the points they have in common.

Theorem 1.2. A ∩ B ⊆ A, A ∩ B ⊆ B, A ⊆ A ∪ B, B ⊆ A ∪ B, and A ∩ B ⊆ A ∪ B,

Theorem 1.3. (Distributive Laws)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Definition 1.4. The complement of A

A∗ := {x ... x /∈ A}
consists of all points x which are not in A. The difference of two sets

A − B := {x ∈ A and x /∈ B}
consists of all points in A that aren’t in B. Thus, A∗ = C − A, where C is the whole space.

Theorem 1.5. (DeMorgan’s Laws)
A − (B ∪ C) = (A − B) ∩ (A − C) and A − (B ∩ C) = (A − B) ∪ (A − C).

Definition 1.6. When A∩B = ∅, we say A and B are disjoint. In probability, this is often
phrased A and B are mutually exclusive events. Similarly for a collection, the sets {Ci} are
disjoint if no two of them have a point in common, i.e.,

Ci ∩ Cj = ∅ whenever i 6= j.

1.2. The Probability Set Function.

Definition 1.7. A probability set function, or probability measure is a function which assigns
numbers to sets A ⊆ C in such a way that

(i) 0 ≤ P (A) ≤ 1 always,
(ii) P (C) = 1, where C is the whole space, and
(iii) if {Ci} are disjoint, then

P
(

⋃

Ci

)

=
∑

P (Ci).

Intuitively, the probability of the event A can be thought of as the “size” or “measure” of
the set A, as measured by the function P . The closer it is to 1, the more likely it is that the
event A will occur.

Here, {Ci} is a collection that can consist of any number of sets: 2, 3, n, or even infinitely
many.
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Theorem 1.8. P (A∗) = 1 − P (A). Or equivalently, P (A) + P (A∗) = 1.

Theorem 1.9. P (∅) = 0.

Theorem 1.10. (Monotonicity) If A ⊆ B, then P (A) ≤ P (B).

Theorem 1.11. P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

Corollary 1.12. P (A ∪ B) = P (A) + P (B) if and only if P (A ∩ B) = 0.

Remark 1.13. Note that the condition P (A ∩ B) = 0 in this corollary doesn’t necessarily
mean A ∩ B = ∅! Example: C = [0, 1], the unit interval, with P (A) =

∫

A
dx. Then let

A = [0, 1
2
] and B = [1

2
, 1], so A ∩ B = { 1

2
} 6= ∅.

Definition 1.14. The events {Ci} are exhaustive if and only if

C =
⋃

Ci,

that is, every element of C is in some Ci.

Definition 1.15. A partition of C is an exhaustive collection of mutually exclusive events.
In other words, a partition of C consists of chopping up C into collection of subsets {Ci} such
that

(i) Ci ∩ Cj = ∅ whenever i 6= j, and
(ii) C =

⋃

Ci.

Definition 1.16. (Basic notion of probability)
Suppose there are several different possible outcomes of an experiment, and each one is
equally likely. The probability of an event is

P (A) =
number of ways that A can occur

total possible outcomes
.

Formally, suppose the events {Ci}n
i=n form a partition of C, and each of the Ci is equally

likely (i.e., P (C1) = · · · = P (Cn) = 1
n
). Then for

E = C1 ∪ · · · ∪ Ck,

we have
P (E) = P (C1 ∪ · · · ∪ Ck) = P (C1) + · · ·+ P (Ck) = k · P (C1) = k

n
.

Here, n is the total number of outcomes, and k is the number of ways in which E can occur.

Example 1. (a) Flipping a fair coin. The probability of the event A = head is

P (A) =
1 way to get a head

2 possible outcomes
=

1

2
.

(b) Throwing a die. The probability of the event B = even is

P (B) =
3 ways to get an even number

6 possible different outcomes
=

3

6
=

1

2
.

(c) Throwing two dice. The probability of the event C = (total < 8) is

P (C) =
21 outcomes have total 7 or less

36 possible different outcomes
=

21

36
=

7

12
.



1.3. Counting.

The material in this section is not in the textbook, but is very useful for assessing proba-
bilities by counting the number of ways in which an outcome may occur.

Rule. (The Product Rule) Suppose a procedure can be broken down into a sequence of two
tasks. If there are n ways to do the first task and m ways to do the second, then there are
nm ways to do the procedure.

Similarly, a procedure consisting of k tasks with ni ways of doing each task can be done
in n1n2 . . . nk ways.

Example 2. How many possible outcomes are there for 4 consecutive flips of a coin? Each
flip can have two outcomes, so there are

2 · 2 · 2 · 2 = 24 = 16

possible outcomes.

Example 3. How many possible outcomes are there when two dice are thrown? Each die
has 6 possible outcomes, so there are

6 · 6 = 62 = 36

possible outcomes.

Example 4. How many possible license plates are there, if every plate must have a number
followed by a sequence of three letters, followed by three more numbers? If all combinations
are allowed, there are 10 choices for each number and 26 choices for each letter, so there are

10 · 26 · 26 · 26 · 10 · 10 · 10 = 104 · 263 = 175, 760, 000

possible license plates.

Important Note! For these examples, the same number or letter may appear multiple
times. This is an example of replacement. Also, note that order matters: in Example (2) for
instance, we are counting HTTT, THTT, TTHT, and TTTH as four distinct events.

Rule. (The Sum Rule) If a first task can be done in n ways, and a second task in m ways,
and if these tasks cannot be done at the same time, then there are n + m ways to do one of
these tasks.

Example 5. Delta Airlines has 3 flights going to Miami on a given day, and United has 4.
How many ways are there to fly to Miami? There are 3+4=7. Here, flying via Delta is one
task, and flying via United is another. They are mutually exclusive because you can’t do
both at the same time.

Example 6. Either a member of the mathematics faculty, or a student who is a mathematics
major, will be picked to go on a university committee. If there are 42 faculty members and
122 students, how many different choices are there for a representative? 42+122=164.

Rule. (The Pigeonhole Principle) If k + 1 objects are placed into k boxes, then there is at
least one box which contains 2 or more objects.



Definition 1.17. (Combinations) A combination of elements of a set is an unordered selec-
tion of some of them. If the set has n elements and we choose k of them, this is written

(

n

n

)

=
n!

k!(n − k)!
= C(n, k)

and called “n choose k”. Combinations are also sometimes called binomial coefficients be-
cause they appear as the coefficients in the expansion of (x + y)n.

Important Note! Combinations are used when order does not matter, and when there
is no replacement. This is quite different from the Product Rule.

Example 7. How many ways are there to select 6 players from a 10-player team, to compete
in a match? Since it doesn’t matter what order the players are picked in, and you can only
pick a given player once (ie, no replacement), we use combinations:

(

10

6

)

=
10!

4!6!
=

7 · 8 · 9 · 10

2 · 3 · 4 = 7 · 3 · 10 = 210

Example 8. Card games might be the most common source of examples of combinations,
because whenever cards are drawn, you can only choose a given card once. Also, the order
you get your cards doesn’t matter for most simpler games.

(a) How many ways are there to get dealt a hand of 5 cards? Since there are 52 in a deck,
there are

(

52

5

)

=
52!

5!47!
= 〈something huge〉.

(b) How many ways are there to get exactly three spades? There are 13 spades, and 39
non-spades. This procedure corresponds to two tasks: choosing 3 spades and choosing 2
non-spades, so we use the product rule. There are

(

13
3

)

ways to choose the two spades,

and there are
(

39
2

)

ways to choose the remaining cards, so the product rule says there are
(

13

3

)(

39

2

)

different possible hands that contain exactly three spades.
(c) How many ways are there to get at least three spades? We break this up into three

disjoint tasks so that we may apply the sum rule:

(at least 3 spades) = (exactly 3 spade) or (exactly 4 spades) or (exactly 5 spades).

We just saw how to count the number of ways to get exactly 3 spades. Similarly, the
number of ways to get exactly 4 spades is

(

13
4

)(

39
1

)

, and the number of ways to get exactly

5 spades is
(

13
5

)(

39
0

)

=
(

13
5

)

, using the power rule again for each of these computations.
Now, we are ready to use the sum rule to put this all together: the number of ways to
at least 3 spades is

(

13

3

)(

39

2

)

+

(

13

4

)(

39

1

)

+

(

13

5

)

.



You haven’t seen this yet, but it’s coming up in chapter 3, so I’ll include it here:

Theorem 1.18. (The Binomial Theorem)

(x + y)n =

n
∑

j=0

(

n

j

)

xn−jyj

=

(

n

0

)

xn +

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 + · · · +
(

n

n − 2

)

x2yn−2 +

(

n

n − 1

)

xyn−1 +

(

n

n

)

yn

1.4. Conditional Probability and Independence.

Definition 1.19. The conditional probability of the event A to occur, given that the event
B is known to have occurred is

P (A|B) =
P (A ∩ B)

P (B)
.

This immediately gives the multiplication rule for probabilities:

P (A ∩ B) = P (B)P (A|B).

This allows us to think of the probability of “two things happening simultaneously” P (A∩B)
as the “probability of one thing happening” P (B) times the “probability that the other
happened, given that the first also happened” P (A|B).

Theorem 1.20. For any fixed B, P (A|B) is a probability set function defined for all sets
A ⊆ C. Check that it satisfies the three properties.

Definition 1.21. Two events A and B are independent if and only if

P (A ∩ B) = P (A)P (B).

Note: this does not imply that A ∩ B = ∅, it does not even imply that P (A ∩ B) = 0! A
nice way to think of independence is that if A and B are independent, then the probability
of A shouldn’t depend on whether or not B has occurred, or vice versa. In other words, if
A and B are independent,

P (A|B) =
P (A ∩ B)

P (B)
=

P (A)P (B)

P (B)
= P (A),

so the probability of A given B is the same as the probability of A not given B. Whether or
not B has occurred has no influence on the likelihood of A.

Definition 1.22. A collection {Ci} is pairwise independent iff each pair is independent, i.e.,

P (Ci ∩ Cj) = P (Ci)P (Cj) whenever i 6= j.

A collection {Ci} is mutually independent iff every finite subcollection of {Ci} satisfies a
multiplication rule like this:

P (Ci ∩ Cj ∩ · · · ∩ Cm) = P (Ci)P (Cj) . . . P (Cm) whenever all indices are different.



Theorem 1.23. (Law of total probability)
Suppose {Ci}n

i=1 is a partition of C. Then the probability of some event A can be given in
terms of this partition as

P (A) = P (C1)P (A|C1) + P (C2)P (A|C2) + · · ·+ P (Cn)P (A|Cn)

=
n

∑

i=1

P (Ci)P (A|Ci)

Note that this allows us to compute P (A) in terms of the probability of A given that C1

occurred, plus the probability of A given that C2 occurred, plus . . . etc.

Theorem 1.24. (Bayes’ theorem)
Suppose {Ci}n

i=1 is a partition of C. Then

P (Cj|A) =
P (A ∩ Cj)

P (A)
=

P (Cj)P (A|Cj)
∑n

i=1 P (Ci)P (A|Ci)
.

1.5. Random Variables.

Definition 1.25. A random variable X : C → R is any function from the sample space to
the real numbers. Thus, it maps outcomes to numbers and events to subsets of R.

Definition 1.26. X is a discrete random variable if it takes finitely many values in R, or at
most a countably infinite number of values.
X is a continuous random variable if it takes uncountably many values in R, or varies
continuously throughout some subset of R, e.g., whenever X can take any value in an interval
(a, b), then you have a continuous random variable.

Definition 1.27. The probability density function (pdf) f of a random variable X indicates
the relative likelihood of X to take a given value.

(a) When X is discrete, f(x) is exactly the probability that X = x occurs, i.e., the definition
of the pdf simplifies to

f(x) := Pr(X = x).

(b) When X is continuous, it is easier to define the pdf in terms of the distribution function.
If F is the df of X, then define the pdf by

f(x) := d
dx

F (x) = F ′(x).

Definition 1.28. If X is a (discrete or continuous) random variable, then its distribution

function (df) or cumulative distribution function F is defined by

F (x) := Pr(X ≤ x).

The df can also be defined in terms of f as

F (x) :=
∑

y≤x

f(y) or F (x) :=

∫

y≤x

f(y),

depending on whether X is discrete or continuous, respectively.



Remark 1.29. (Relationship of f to F )
This was just stated above, but for emphasis, they are related by the Fundamental Theorem

of Calculus, i.e.:

f(x) = F ′(x), and F (x) =

∫ x

−∞

f(t) dt.1

Often when X is continuous, you can use this to get f from F or vice versa. When X is
discrete, you may be better off trying to use the graph to construct one from the other.

Theorem 1.30. (Properties of the pdf)

(1) f(x) ≥ 0.
(2) If X is discrete, f(x) ≤ 1. If X is continuous, this may not be the case.
(3)

∑

x∈R
f(x) = 1 or

∫

R
f(x)dx = 1, always.

Theorem 1.31. (Properties of the df)

(1) 0 ≤ F (x) ≤ 1, always.
(2) x < y implies that F (x) ≤ F (y), i.e., F (x) increases with x.
(3) (a) If X does not take any value less than a, then F (x) = 0 for any x < a.

(b) If X does not take any value greater than b, then F (x) = 1 for any x > b.
(4)

∑

x∈R
f(x) = 1 or

∫

R
f(x)dx = 1, always.

(5) If X is discrete, the F (x) is a step function. Each step occurs at a point of R which
lies in the range of X, and has a height equal to the probability f(x) = Pr(X = x).
F (x) is constant along each step.

(6) (a) F (∞) := limx→∞ F (x) = 1.
(b) F (−∞) := limx→−∞ F (x) = 0.

(7) F (x) is continuous from the right, i.e., for ε > 0 and for any point a,

F (a+) := lim
ε→0+

F (a + ε) = F (a).

so the limit as you approach from the right exists and is equal to the function value
at that point. (On the graph, “the dot on the left end of any step/interval is filled
in.”)

Definition 1.32. In terms of a random variable X, the probability of an event A is

P (A) := Pr(X ∈ A).

Theorem 1.33. The probability of an event A is computed via the random variable X by

P (A) = Pr(X ∈ A) =
∑

x∈A

f(x) or

∫

x∈A

f(x) dx.

Example 9. In general, whenever you are given a pdf, rv or df, and asked to find the
probability of a set, this is the strategy to use:

1This should be clear for X continuous. It is also true for X discrete, but the derivative requires a little
refinement before you can make it precise (there is a remark on p.45 about this). Still, turn to page 34-35
and compare Figures 1.3 and 1.4. Stare at it until you can see how the “weights” of f at points {1, 2, 3} in
Fig. 1.4 do somehow correspond to the rate of change of F at these points. A derivative is supposed to be
the rate of change, right . . . ? When f has a bump of height 1

2
, F increases by 1

2
, etc.



(1) Let A = ( 1
4
, 9

2
]. Then if X is continuous,

P (A) = Pr
(

1
4

< X ≤ 9
2

)

=

∫ 9/2

1/4

f(x) dx = F (9
2
) − F (1

4
).

(2) Let A = ( 1
4
, 9

2
]. Then if X is discrete and only takes values among the positive

integers, its pdf f will only be positive on the positive integers (and zero elsewhere).
Then

P (A) =
∑

x∈A∩N

f(x) =

4
∑

x=1

f(x),

since A ∩ N = ( 1
4
, 9

2
] ∩ {1, 2, 3, 4, 5, . . .} = {1, 2, 3, 4}.

Example 10. (The Uniform Distribution) When probability is uniformly distributed, the
likelihood of X taking a given value is the same as the likelihood of X taking any other
value. So the pdf f of X gives the same “weight” (probability density) to each point, i.e., f
is a constant:

f(x) =

{

1
b−a

, a ≤ x ≤ b

0, else
.

So if we look at the df F , it must increase at a constant rate, i.e., it is linear on [a, b]:

F (x) =











0, x < a
x−a
b−a

, a ≤ x ≤ b

1, b < x

Draw the graphs of both of these to compare, and convince yourself that the horizontal line
you see in the graph of f really means “equally likely” or “completely random”.

1.6. Expectation.

Definition 1.34. The expectation of a random variable is just the sum of xf(x) over the
whole space:

E(X) :=
∑

x∈R

xf(x), or E(X) :=

∫

x∈R

xf(x) dx.

The first sum is written over R because x can take any real value, but you should keep in
mind that f(x) will only ever be nonzero at finitely many (or countably infinitely many)
points, so you only have to count the values of xf(x) for these points.

Remark 1.35. Expectation, or expected value, should be thought of intuitively as the payoff

you might expect to receive. Another important way to think of it is the average value. This
is probably easiest to see for the finite discrete case, like a simple gambling game. See the
Remark on page 52 or the following example.

Example 11. Suppose you are playing a game with three possible outcomes for each “round”
of the game. Each outcome may have a different probability, say p1 = 1

2
, p2 = 1

3
, p3 = 1

6
.

Suppose the outcomes also have “payoffs”, e.g., the first outcome pays x1 = $1, the second



pays x2 = $5, and the third pays x3 = $8. Then if you were to play this game repeatedly,
over time you might expect to win (on average)

x1p1 + x2p2 + x3p3 =
1

2
+

5

3
+

8

6
= $3.50,

each round. This is your expectation. Also, it is the most you should be willing to pay the
game: if it costs $4 to play this game, you will likely lose (on average) 50 cents per round.

It may be helpful to dissect the above example in terms of the random variable, etc. In
this game, X is mapping outcomes of the game to 1,5, or 8, the payoffs. The probability of
each payoff is given by the pdf f(x), whose graph has a bump of height 1

2
over 1, 1

3
over 5,

and 1
6

over 8.

Note: expectation can be negative! There is more than just probabilities involved here,
there are payoffs, too! If the payoffs are sufficiently negative, you can expect to lose money
on the game. Consider the above example again, but this time, you lose when x1 comes up,
i.e., x1 = −$10 (so you have to pay $10 when this outcome occurs). Then the expectation is

x1p1 + x2p2 + x3p3 = −10

2
+

5

3
+

8

6
= −$2.00,

and you can expect to lose $2 every round. Ouch!
(Re)considered in terms of random variables, X is mapping outcomes of the game to -10,5,

or 8, the payoffs. The probability of each payoff is given by the pdf f(x), whose graph has
a bump of height 1

2
over -10, 1

3
over 5, and 1

6
over 8. f still only takes positive values, but

now it takes one of them at a negative point on the real line, and it is THIS which results
in a negative expectation.

Example 12. Standard figures for a state lottery are about 135 million players, with a
jackpot of $10 million. Suppose a ticket costs $5. Let’s compute the expectation. The
outcomes here are: you win, or you don’t. Probability of winning is

p = 1
135,000,000

,

so probability of losing is

1 − p = 134,999,999
135,000,000

.

The payoff for winning is $10 million, the payoff for losing is $0. So the expectation is

10, 000, 000 · 1
135,000,000

+ 0 · 134,999,999
135,000,000

≈ 0.074.

So you can expect to lose, on average, $4.92 every time you play the lotto.

Theorem 1.36. The expectation of a function u(X) of a random variable is given by the
formula

E(u(X)) :=
∑

x

u(x)f(x) or

∫

R

u(x)f(x) dx.

Remark 1.37. (Expectation is Linear)

E(aX + bY ) = aE(X) + bE(Y ),



where a, b ∈ R are constants and X, Y are random variables. This should not come as any
great surprise, because expectation is just an integral (or sum) and you’ve known since basic
calculus that

∫

(af + bg)dx = a

∫

f dx + b

∫

g dx

and
∑

(af + bg) = a
∑

f + b
∑

g.

In particular, for a constant k,

E(k) =

∫

kf(x) dx = k

∫

f(x) dx = k · 1 = k.

Definition 1.38. The mean µ of an rv is just its expectation:

µ := E(X).

The variance σ2 of an rv measures how far X is from µ, on average:

var(X) = σ2 := E
(

(X − µ)2
)

= E
(

X2
)

− µ2.

You should be able to prove the second equality here! It is a theorem, not part of the
definition! The standard deviation of an rv is just the square root of the variance:

σ =
√

σ2 =
√

var(X).

The moments of X are as follows:

1st moment: E(X1) = E(X) =

∫

xf(x) dx or
∑

x

xf(x)

2nd moment: E(X2) =

∫

x2f(x) dx or
∑

x

x2f(x)

3rd moment: E(X3) =

∫

x3f(x) dx or
∑

x

x3f(x)

...

kth moment : E(Xk) =

∫

xkf(x) dx or
∑

x

xkf(x)

The moment-generating function of X is

M(t) := E
(

etX
)

=

∫

etxf(x) dx or
∑

x

etxf(x).

Theorem 1.39. We can find the moments of a random variable X by computing the deriva-
tives of the moment-generating function and evaluating at t = 0:

E(Xk) = M (k)(t).



For example,

1st moment: µ = E(X) = M ′(0)

2nd moment: E(X2) = M ′′(0)

3rd moment: E(X3) = M ′′′(0)

1.7. Chebyshev’s Inequality.

Lemma 1.40. If u(X) is a nonnegative function, then

Pr(u(X) ≥ c) ≤ E(u(X))

c
.

Theorem 1.41. (Chebyshev’s Inequality)

Pr (|X − µ| ≥ kσ) ≤ 1

k2
and Pr (|X − µ| < kσ) ≥ 1 − 1

k2
.

This allows you to compute upper and lower bounds for the probability of some sets. For
example, if you wanted to find out what percentage of the class received test scores within
two standard deviations of the mean, you could compute

Pr (|X − µ| < 2σ) ≥ 1 − 1

22
≥ 1 − 1

4
=

3

4
= 75%.

Similarly, the percentage of students with test scores within 3 standard deviations of the
mean would be

Pr (|X − µ| < 3σ) ≥ 1 − 1

32
≥ 1 − 1

9
=

8

9
≈ 89%.



Throughout this review sheet, you may assume that every rule given for continuous random
variables in terms of integrals has an analogous rule for discrete random variables in terms of
sums. The only real exception to this is that you can’t get a discrete pdf from a discrete df
by differentiating, but everything else should be fine. If you are confused or doubtful about
something, ask me.

2. Multivariate Distributions

2.1. Distributions of Two Random Variables.

Definition 2.1. The joint pdf of two random variables X, Y is a function f(x, y) such that

P (A) = Pr((X, Y ) ∈ A) =

∫∫

A

f(x, y) dy dx

or
P (A) = Pr((X, Y ) ∈ A) =

∑

(x,y)∈A

f(x, y).

As before, we always have that the integral/sum over the entire space is 1; this is because
the probability of the whole space is 1. In other words,

∫∫

R2

f(x, y) dy dx = 1 and
∑

all (x,y)

f(x, y) = 1.

Definition 2.2. The joint df of two random variables X, Y is

F (x, y) = Pr(X ≤ x and Y ≤ y).

It is computed via the formula

F (x, y) =

∫ x

−∞

∫ y

−∞

f(s, t) dt ds

or
F (x, y) =

∑

s≤x,t≤y

f(s, t).

Remark 2.3. To find the probability of a given event (i.e., set), sketch the region corre-
sponding to that event and set up an integral over it. For example, the probability that X
takes a value between a and b and Y takes a value between c and d would be

Pr(a < X ≤ b, c < Y < d) =

∫ b

a

∫ d

c

f(x, y) dy dx.

Remark 2.4. Note that
Pr(a < X ≤ b,−∞ < Y < ∞)

means “the probability that X takes a value in (a, b] and Y takes a value in (−∞,∞), at
the same time.” But of course, Y always takes a value in (−∞,∞) (there is nowhere else to
go!), so saying −∞ < Y < ∞ gives no new information. In other words,

Pr(a < X ≤ b,−∞ < Y < ∞) = Pr(a < X ≤ b).

Earlier, we saw that for a one-variable df,

Pr(a < X ≤ b) = Pr(X ≤ b) − Pr(X ≤ a) = F (b) − F (a).



Now for a two-variable df, we have that

Pr(a < X ≤ b) = Pr(a < X ≤ b,−∞ < Y < ∞)

= Pr(X ≤ b,−∞ < Y < ∞) − Pr(X ≤ a,−∞ < Y < ∞)

is the probability that (X, Y ) takes a value in the (infinite) vertical strip between the points
a and b on the x-axis.

Use this discussion to show that the probability of (X, Y ) being in the rectangle (a, b]×(c, d]
is

Pr(a < X ≤ b, c < Y ≤ d) = F (b, d) − F (b, c) − F (a, d) + F (a, c).

Hint 1: remember that P (A ∪ B) = P (A) + P (B) − P (A ∩ B).
Hint 2: draw the picture! For example, F (a, c) is the probability of landing in the region left
of x = a and below y = c, so sketch this rectangle. Compare it to the others.

Definition 2.5. If f(x, y) is the joint pdf of X and Y , we can recover the pdf of X by
integrating with respect to Y (“integrating out the y’s”):

fx(x) =

∫

R

f(x, y) dy

is called the marginal pdf of X. Similarly, “integrating out the x’s” yields the marginal pdf
of Y :

fy(y) =

∫

R

f(x, y) dx.

Remark 2.6. You know that for problems involving just a single random variable X, the
expectation of X is

E(X) =

∫

R

xf(x) dx or E(X) =
∑

R

xf(x).

Thus, if you are given a joint pdf f(x, y) and asked to find the expectation of X, you must

(1) Find the pdf of X, i.e. the marginal pdf fx(x) of X, by integrating

fx(x) =

∫

R

f(x, y) dy.

(2) Use this to find the expectation of X by evaluating

E(X) =

∫

R

xfx(x) dx.

2.2. Conditional Distributions and Expectations.

Definition 2.7. The conditional pdf of X given Y is

fx|y(x|y) =
f(x, y)

fy(y)
.

Similarly, the conditional pdf of Y given X is

fy|x(y|x) =
f(x, y)

fx(x)
.



In general, fy|x(y|x) will be a function of both variables x, y. The intuitive meaning of this
function fy|x(y|x) is that if you plug in some value for x (e.g. let x = 0), then fy|x(y|x) will
be the function of y at that “slice of x” which corresponds to a pdf in the y direction. Have
a look at the following figures.

x

y

f(x,y)

Figure 1. Suppose this is the joint pdf of X, Y . It is positive on the unit
square [0, 1] × [0, 1] and 0 elsewhere.

If we fix x = 0, then the crosscut through this graph is a function of y that looks like a
pdf, provided we “normalize” (i.e., divide by the appropriate marginal so that the integral
of the whole thing is 1).

y

x

fy|x(y|x=0)

Figure 2. Here, the graph over the shaded slice is fy|x(y|x = 0).

By looking at the shape of the graph of the pdf fy|x(y|x = 0), you can see that when given
X = 0, it is much more likely that Y also takes values near 0. This is simply because

fy|x(0|x = 0) > fy|x(1|x = 0).

Now look at Figure 3. If we fix x = 1, then this slice also looks like a pdf if we normalize.

y

fy|x(y|x=1)

x

Figure 3. Here, the graph over the shaded slice is fy|x(y|x = 1).

Conclusion:
fy|x(y|x) gives you a pdf, for any fixed value of x.



By looking at the shape of the graph of the pdf fy|x(y|x = 1), you can see that when we
already know X = 1, it is much more likely that Y also takes values near 1. So by comparing
the graphs, you can see how when we are given information like X = 0 or X = 1, it tells us
something about whether Y is likely to be large or small.

Definition 2.8. We saw in the 1-variable case that the expectation of X is given by

E(X) =

∫

R

xf(x) dx,

where f(x) is the pdf of X. By direct analogy, define the conditional expectation of X given
Y = y to be

E(X|y) =

∫

R

xfx|y(x|y) dx,

that is, the expectation calculated with the conditional pdf. Similarly, the conditional ex-

pectation of Y given X = x is

E(Y |x) =

∫

R

yfy|x(y|x) dy.

Remark 2.9. Note that E(Y ) is just a number, but E(Y |x), also denoted E(Y |X = x),
is a function. Specifically, it is the function that gives you the expectation when you tell it
what slice of x you are at. For example, let’s refer to the previous pictures. In Figure 2, Y
takes values close to 0 more often than values close to 1. If you average these values (take
the mean value!) of Y , you might find that on average, Y is 1

3
(i.e., half of the shaded area

is to the left of y = 1
3

and the other half is to the right). This is another way of saying
E(Y |x = 0) = 1

3
.

In Figure 3, Y takes values close to 1 more often than values close to 0. If you average
these values (take the mean value!) of Y , you might find that on average, Y is 2

3
(i.e., half

of the shaded area is to the left of y = 2
3

and the other half is to the right). This is another

way of saying E(Y |x = 1) = 2
3
.

Conclusion:
E(Y |x) = E(Y |X = x) is a function of x.

We’ve seen two values for this function:

E(Y |X = 0) = 1
3

and E(Y |X = 1) = 2
3
.

2.2.1. Functions of a Random Variable.

Remark 2.10. In the 1-variable case, we saw that the expectation of a function of a random
variable is given by

E(u(X)) =

∫

R

u(x)f(x) dx,

where f(x) is the pdf of X. For example, let u be the polynomial u(x) = 3x − x2. Then

E(3X − X2) = E(u(X)) =

∫

R

(3x − x2)f(x) dx.



All this carries over immediately to the conditional case. Using the same example as
above, u(x) = 3x − x2,

E(3X − X2|y) = E(u(X)|y) =

∫

R

(3x − x2)fx|y(x|y) dx.

It’s the same thing, but now using the conditional pdf.
In fact, this carries over the same way to the two variable case as well. For example,

E(3XY − Y 2) = E(u(X, Y )) =

∫∫

R2

(3xy − y2)f(x, y) dx dy,

where u(x) = 3xy − y2. It’s the same thing, but now using the joint pdf f(x, y) of X, Y .
In fact, and this should not be surprising by now, this carries over the same way to the

general multivariable case as well. For example,

E(3XY − Y 2Z + Z2) = E(u(X, Y, Z)) =

∫∫∫

R3

(3xy − y2z + z2)f(x, y, z) dx dy dz,

where u(x) = 3xy − y2z + z2. The pattern should now be burned into your mind.

Remark 2.11. The comments about conditional expectation apply equally well to condi-
tional variance. In the 1-variable case, we saw

µ = E(X) =

∫

R

xf(x) dx,

and

var(X) = σ2(X) = E
(

(X − µ)2
)

= E
(

X2
)

− E(X)2 = E
(

X2
)

− µ2.

Likewise, in the conditional case, we have that the conditional variance is given by

var(X|y) = σ2(X|y) = E
(

(X − E(X|y))2|y
)

= E
(

X2|y
)

− E(X|y)2.

This is computed using the rules outlined in the previous remark, for example,

E
(

X2|y
)

=

∫

R

x2fx|y(x|y).

This is just E(u(X)|y) for u(x) = x2.

The situation for variance parallels that of expectation, in the sense that while var(Y ) is
a number, var(Y |x) is a function. In particular, it will be a function that gives the variance
for a particular x-slice. For example, the variance var(Y |X = 0) will be a number describing
the spread (dispersion) of the pdf highlighted in Figure 2, and the variance var(Y |X = 1)
will be a number describing the spread (dispersion) of the pdf highlighted in Figure 3.



x

y

f(x,y)

Figure 4. The line y = x has been added to Figure 1 and drawn across the
surface of the graph of f(x, y), to highlight the ridge where f takes its maxi-
mum.

2.3. The Correlation Coefficient. In the example given in the figures above, we noticed
that when X = 0, it seems that Y is also near 0. Additionally, when X = 1, it seems that Y
is also near 1. In fact, Figure 4 reveals that the joint pdf f(x, y) forms sort of a ridge over
the line y = x. We describe this phenomenon by saying X and Y are related to each other,
or correlated. See Figure 4.

If X, Y were more strongly correlated, the graph of their joint pdf might look more like
Figure 5. Now, a formula to make this precise.

x

y

f(x,y)

Figure 5. The probability is REALLY clustered around the line y = x.

Definition 2.12. We write the means of the random variables X, Y as

µX = E(X) and µY = E(Y ).

Since the variance of X alone is

var(X) = E
(

(X − µX)2
)

= E((X − µX)(X − µX))

and the variance of Y alone is

var(Y ) = E
(

(Y − µY )2
)

= E((Y − µY )(Y − µY )),



we describe how they vary jointly with the covariance

cov(X, Y ) = E((X − µX)(Y − µY )) = E(XY ) − µXµY .

This is computed as in Remark 2.10:

cov(X, Y ) =

∫∫

R2

xyf(x, y) dx dy −
(

∫

R

xfx(x) dx

) (
∫

R

yfy(y) dy

)

.

Remark 2.13. Covariance is an attempt to measure the degree to which X and Y tend to
be large at the same time (positively correlated), or the degree to which one tends to be
large when the other is small (negatively correlated). For example, suppose that E[(X −
µX)(Y − µY )] is positive. Then

(X > µX and Y > µY ) and/or (X < µX and Y < µY )

must occur together to a greater extent than

(X > µX and Y < µY ) and/or (X < µX and Y > µY ) .

Otherwise, the mean would be negative.
If the covariance of X, Y is a large positive number, it means that when one is large, the

other is very likely to be large. If the covariance of X, Y is a large negative number, it means
that when one is large, the other is very likely to be small. If the covariance of X, Y is 0 (or
close to it), it means that whatever value X takes is not related to whatever value Y takes.

KEY POINT: In the next section, you see that if X, Y are independent, then

E(XY ) = E(X)E(Y ).

So if X, Y are independent, their covariance is

cov(X, Y ) = E(XY ) − E(X)E(Y ).

So if X, Y are independent, whatever value X takes is not related to whatever value Y takes.
The converse of the KEY POINT is not true. That is, you can have cov(X, Y ) = 0 when X

and Y are dependent. Here is a simple example: let f(x) = 1
3
, x = −1, 0, 1. Define Y = X2.

Since Y is defined entirely in terms of X, it is clear that X and Y are dependent; the value
of Y is entirely determined by X. However,

E(XY ) = E(X3) = E(X) = 0.

So we have E(XY ) = E(X)E(Y ) = 0 with X, Y uncorrelated but NOT independent.

However, the magnitude of cov(X, Y ) is also influenced by the magnitudes of X and Y ,
and this may be misleading. For example, you can show that cov(2X, Y ) = 2 cov(X, Y ). Do
it!2 This is motivation for the idea of correlation, a sort of normalized (i.e., max value is 1)
version of covariance.

2This is a good exercise. In fact, it is not much harder to show that for any constants a, b, c, d ∈ R,

cov(aX + b, cY + d) = ac cov(X, Y ).



Definition 2.14. If X, Y have variances which are positive and finite, then the correlation

of X and Y is

ρ(X, Y ) =
cov(X, Y )

σXσY

.

If ρ(X, Y ) = 1, then X, Y are basically distributed the same way. If ρ(X, Y ) = 0, then X, Y
are unrelated. If ρ(X, Y ) = 1, then X and Y are inversely related.

The next theorem shows why −1 < ρ(X, Y ) < 1.

Theorem 2.15. (Not in the book). For any X, Y , we have −1 < ρ(X, Y ) < 1.

Proof. We use the following form of the Cauchy-Schwartz inequality:3

[E(XY )]2 ≤ E
(

X2
)

E
(

Y 2
)

.

From this inequality, it follows that

[cov(X, Y )]2 ≤ σ2
Xσ2

Y

|cov(X, Y )| ≤ σXσY .

But then from the definition of correlation,

|ρ(X, Y )| =
| cov(X, Y )|

σXσY
≤ σXσY

σXσY
= 1

�

2.3.1. The Moment-Generating Function. We saw in the 1-variable case that the expectation
of a function of a random variable could be calculated by

E(u(X)) =

∫

R

u(x)f(x) dx,

and in the multivariable case, we extended this to

E(u(X1, X2, . . . , Xn)) =

∫∫

. . .

∫

Rn

u(x1, x2, . . . , xn)f(x1, x2, . . . , xn) dx1 dx2 . . . dxn.

Now we apply this in the case of a particular function, the exponential.

Definition 2.16. The moment-generating function (mgf) of a random variable X is

M(t) = E
(

etX
)

=

∫

R

etxf(x) dx.

The moment-generating function of two random variables X, Y is

M(t, s) = E
(

etX+sY
)

=

∫∫

R2

etx+syf(x, y) dx dy.

3If you are a math major, you should take a good look at this form of the C-S inequality and compare it
to what you’ve seen before. Convince yourself that this is actually the same as

|~a ·~b| ≤ ‖~a‖ · ‖~b‖.
Ask me if you have doubts . . .



And in the most general case, the moment-generating function of n random variables X1, . . .Xn

is

M(t1, t2, . . . , tn) = E
(

et1X1+t2X2+···+tnXn

)

=

∫∫

. . .

∫

Rn

et1x1+t2X2+···+tnXnf(x1, x2, . . . , xn) dx1 dx2 . . . dxn.

Remark 2.17. The significance of the mgf is that it contains all the same information as
the df, and vice versa. Thus, they are two different forms of presenting the same random
variable. The advantage of the mgf is that it allows you to find the kth moment of X by
taking derivatives, rather than integrating, and differentiation is often easier than integrating.
Consider that the third moment of X is

E(X3) =

∫

R

x3f(x) dx,

but this can also be found by
E(X3) = M ′′′(0),

the third derivative of the mgf, evaluated at 0. Of course, you have to integrate to find the
mgf initially, but then you needn’t integrate again. Note that there are also some discrete
distributions which are basically impossible to compute by direct summation, but which are
simple to compute via mgf (see homework problems, esp. §1.9). However, you can usually
integrate eg(x)f(x) using integration by parts.

2.3.2. How to use the mgf to answer some common questions.

For two random variables X, Y , compute the mgf

M(t1, t2) = E
(

et1X+t2Y
)

=

∫∫

R2

et1x+t2yf(x, y) dx dy.

Then use it to find:

means µ1 = E(X) =
∂M(0, 0)

∂t1

µ2 = E(Y ) =
∂M(0, 0)

∂t2

variances σ2
1 = E(X2) − µ2

1 =
∂2M(0, 0)

∂t21
− µ2

1

σ2
2 = E(Y 2) − µ2

2 =
∂2M(0, 0)

∂t22
− µ2

2

covariance cov(X, Y ) = E [(X − µ1)(Y − µ2)] =
∂2M(0, 0)

∂t1∂t2
− µ1µ2

marginals X has mgf = M1(t1) = E
(

et1X
)

= M(t1, 0)

Y has mgf = M2(t2) = E
(

et2Y
)

= M(0, t2)

independence X, Y are independent ⇐⇒ M(t1, t2) =M(t1, 0)M(0, t2).



2.4. Independence.

Definition 2.18. In §1.3, we saw that two sets A, B are independent iff

P (A ∩ B) = P (A)P (B).

When this is true, the conditional probability of A given B becomes

P (A|B) =
P (A ∩ B)

P (B)
=

P (A)P (B)

P (B)
= P (A). (1)

Remark 2.19. In §1.5 and §1.6, we saw that the right way to think about P (A) is in terms
of random variables:

P (A) = Pr(X ∈ A) = Pr({X ∈ A}).
(We usually drop the curly braces {, } when it seems clear.)
So the definition of independence becomes

Pr({X ∈ A} ∩ {X ∈ B}) = Pr(X ∈ A)Pr(X ∈ B),

and we can rephrase the equality (1) as

Pr(X ∈ A|X ∈ B) =
Pr(X ∈ A ∩ B)

Pr(X ∈ B)
=

Pr(X ∈ A)Pr(X ∈ B)

Pr(X ∈ B)
= Pr(X ∈ A).

In other words, if A, B are independent, then the probability that X takes a value in A, when
you know that X does take a value in B, is the same as the probability of X taking values
in A when you have no other information. In other words, knowing that X is in B gives you
no information about whether or not X is in A. This is the meaning of independence!

This situation can only happen if A and B intersect, and if that intersection is “small”.
This is codified in the equality

P (A ∩ B) = P (A)P (B).

When you multiply two numbers from (0, 1), you get another number between (0, 1) which
is smaller than either of the original numbers. Since 0 ≤ P (A) ≤ 1 and 0 ≤ P (B) ≤ 1,
independence implies that P (A ∩ B) must be very small.

To determine whether or not A and B are independent, ask yourself:

Question: “Does knowing X ∈ A tell me if X ∈ B or X /∈ B?” and vice versa.

Examples

�

A B

Figure 6. Here, if X ∈ B, then clearly X is also in A. The answer to the
above question is YES, so A, B are not independent.



�

A
B

Figure 7. Here, if X ∈ A, then maybe X is also in A, but maybe not. You
can’t say either way. Thus, the answer to the above question is NO, so A, B
are independent.

�

A
B

Figure 8. Here, if X ∈ A, then clearly X is not in B. The answer to the
above question is YES, so A, B are not independent.

2.4.1. Independent Random Variables.

We saw the definition of independence for sets:

P (A ∩ B) = P (A)P (B).

Now we look at independence for random variables.

Definition 2.20. (Independent Random Variables) Suppose X, Y have joint pdf f(x, y),
the marginal pdf of X is fx(x), and the marginal pdf of Y is fy(y). Then X and Y are

independent random variables iff

f(x, y) = fx(x)fy(y).

Remark 2.21. In equation (1) we saw how conditioning doesn’t do anything for independent
events:

P (A|B) =
P (A ∩ B)

P (B)
=

P (A)P (B)

P (B)
= P (A).

The notion of independence of random variable is defined to make the analogous equation
hold true for conditional pdfs:

fx|y(x|y) =
f(x, y)

fy(y)
=

fx(x)fy(y)

fy(y)
= fx(x).

In words, if X, Y are independent, then the conditional pdf of X given Y is just the marginal
pdf of X; it doesn’t depend on Y .

We saw previously that E(X) is a number, and E(X|y) is a function of y; the function
that spits out the expectation of X for a given y-value. So what happens when X, Y are
independent? In this case, E(X|y) becomes the constant function with value E(X).

E(X|y) =

∫

R

xfx|y(x|y) dx =

∫

R

x
fx(x)fy(y)

fy(y)
dx =

∫

R

xfx(x) dx = E(X).



Theorem 2.22. X, Y are independent iff the joint pdf f(x, y) can be written as a function
of x alone multiplied by a function of y alone:

f(x, y) = g(x)h(y).

Remark 2.23. Point of the theorem: you don’t have to calculate the marginals to determine
independence. What it says, is that if you can split the pdf into a function g(x) of x and
a function h(y) of y, then the only difference between g and h and the marginals is some
constant. Example: suppose the pdf of X, Y is

f(x, y) = 6x2y.

Then X, Y are independent because

f(x, y) = 6x2 · y
= 2x2 · 3y
= 3x2 · 2y
= 1

5
x2 · 30y

= . . .

The marginals of X and Y will be fx(x) = c1x
2 and fy(y) = c2y. We don’t know what c1, c2

are (and we don’t care!), but we know c1c2 = 6.

Theorem 2.24. (Thm 2, p.103) If X, Y are independent, then

Pr(a < X < b, c < Y < d) = Pr(a < X < b)Pr(c < Y < d),

or more generally,
Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B).

Remark 2.25. For two random variables X and Y and two sets (events) A and B, compare:

A, B independent sets =⇒ Pr(X ∈ A, X ∈ B) = Pr(X ∈ A)Pr(X ∈ B).

X, Y independent rv’s =⇒ Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B).

Theorem 2.26. (Thm 3, p.105) Suppose u(X) is a function of X only, and v(Y ) is a function
of Y only. If X, Y are independent, then

E(u(X)v(Y )) = E(u(X))E(v(Y )).

This is the most general case, but it’s not the form we use most often. The following
immediate corollary is more helpful.

Corollary 2.27. If X, Y are independent, then

E(XY ) = E(X)E(Y ).

Proof. Let u(X) = X and v(Y ) = Y in the previous theorem. �

Corollary 2.28. If X, Y are independent, then

M(t1, t2) = M(t1, 0)M(0, t2).



Proof. Let u(X) = et1X and v(Y ) = et2Y in the previous theorem. �

Corollary 2.29. If X, Y are independent, then they are uncorrelated.

Proof. Two corollaries back, we saw that if X, Y are independent, then

E(XY ) = E(X)E(Y ).

So the covariance is

cov(X, Y ) = E(XY ) − E(X)E(Y ) = 0,

and hence the correlation coefficient is

ρ(X, Y ) =
cov(X, Y )

σXσY
=

0

σXσY
= 0.

�

Remark 2.30. One of the best and easiest ways to tell if X, Y are independent is hidden
in a comment about Example 2 on page 103. Basically, it says that if the space of positive
probability is not a rectangle (with sides parallel to the axes), then X, Y must be dependent
(i.e., cannot be independent). To see why, let’s consider an example similar to #2.35 from
the homework.

Example 13. Let X, Y have joint pdf f(x, y) = 3x, 0 ≤ y ≤ x ≤ 1. Are X, Y independent?

We sketch the space of positive probability (where f > 0): Suppose we are given that

1

1 x

y

Figure 9. The region 0 ≤ y ≤ x ≤ 1.

X = 1. Does this tell us anything about Y ? Well, all we know about Y is that for X = 1,
Y is uniformly distributed between 0 and 1. But what if we instead fix X = 0? Does this
tell us anything about Y ? YES! If X = 0, then Y can only be 0! So Y depends on X, and
they are not independent! Similarly, if we are given that Y = 1, it is clear that X must also
be 1.

Example 14. To see how this technique can really save you time, consider a problem like
#2.34: let X, Y have joint pdf f(x, y) = 1

π
, (x1 − 1)2 +(x2 +2)2 ≤ 1. Are X, Y independent?

To check this directly from the definitions via

f(x, y) = fx(x)fy(y),



you would need to compute a couple of integrals like

fx(x) =

∫

√
1−(x1−1)2−2

−
√

1−(x1−1)2−2

1

π
dx.

Instead of such pain, however, you could simply graph the support of f(x, y) (i.e., where
f > 0):

-2

-1

1 x

y

Figure 10. The region (x1 − 1)2 + (x2 + 2)2 ≤ 1 is a circle of radius 1 which
has been translated 1 to the right and 2 down.

As in the previous example, we can see that for Y = −2, X is uniformly distributed
between 0 and 2, but given Y = −1 or given Y = −3, we know that X must be 1. Thus X
depends on Y and they are NOT independent random variables.

2.4.2. Summary of ways to check independence.

(1) X, Y are independent ⇐⇒ f(x, y) = g(x)h(y).
(2) X, Y are independent ⇐⇒ f(x, y) = fx(x)fy(y).
(3) X, Y are independent ⇐⇒ M(t1, t2) = M(t1, 0)M(0, t2).
(4) X, Y are independent =⇒ Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B).
(5) X, Y are independent =⇒ E(XY ) = E(X)E(Y ).
(6) X, Y are independent =⇒ cov(X, Y ) = ρ(X, Y ) = 0.
(7) {f(x, y) > 0} is not a rectangle =⇒ X, Y NOT independent.

Note the direction of the arrows! Anything which points only in one direction cannot be
reversed. Recall the counterexample from a previous section:

Example 15. Let f(x) = 1
3
, x = −1, 0, 1. Define Y = X2. Since Y is defined entirely in

terms of X, it is clear that X and Y are dependent; the value of Y is entirely determined by
X. However,

E(XY ) = E(X3) = E(X) = 0.

So we have E(XY ) = E(X)E(Y ) = 0 with X, Y uncorrelated but NOT independent.


