
Berstein Seminar - Trees in Geometric Group Theory.

Lecturer: Brad. Dates: Feb. 20 and March 6, 2007. Scribe: Owen

1 Length Functions

Reference: “Abstract Length Functions in Groups”, I.M. Chiswell.

Definition. A length function on a group G is a function G → Z which we denote g "→ |g| satisfying
the following properties. It gives rise to the “overlap” function d(x, y) := 1

2 (|x| + |y|− |xy−1|).

1. |1| = 0

2. For all x ∈ G: |x| = |x−1|

3. For all x, y, z ∈ G: d(x, y) < d(x, z) ⇒ d(y, z) = d(x, y)
Sometimes we add:

4. d(x, y) ∈ Z.

Note: Axiom (1) implies d(x, x) = |x| for all x ∈ G. Axiom (3) then shows that |x| ≥ 0.

Example. Fn

G = Fn and |g| is the length of the reduced word representing g. Here d(x, y) is the length of
the largest common final segment of the reduced words representing x and y. The axioms are easily
verified and left as an exercise.

Example. G acts on a simplicial tree T .

Fix P0 in V (T ), the vertices of T . Let |g| be the length of the shortest path from P0 to gP0. Let
γg denote this path. Axioms (1) and (2) hold trivially.

Let x, y ∈ G. If the paths γx−1 and γy−1 bifurcate at a point Q a distance k from P0, then the
shortest path from x−1P0 to y−1P0 goes through Q and has length (|x|−k)+(|y|−k). But this path has
the same length as γxy−1 , so |xy−1| = |x|+|y|−2k. Therefore, d(x, y) = 1

2 (|x|+|y|−(|x|+|y|−2k)) = k.
That is, d(x, y) is the length of the overlap of γx−1 and γy−1 .

Axiom (3) now follows easily, for if d(x, y) < d(x, z) then γx bifurcates from γz strictly after it does
from γy, so γy bifurcates from γx and γz at the same point, and thus d(x, y) = d(y, z). Axiom (4) also
holds easily.
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2 Realizing Length Functions

Question. Can any length function G → Z be realized by an action of G on some tree?

Answer: Yes. In what follows, | · | is a fixed length function.
Let S = {(x, m)|x ∈ G, m ∈ Z, 0 ≤ m ≤ |x|} and define a relation ∼ on S by (x,m) ∼ (y, n) if

m = n and d(x−1, y−1) ≥ m. We easily verify that ∼ is an equivalence relation:
∼ is reflexive since d(x−1, x−1) = |x| ≥ m for any (x,m) ∈ S.
∼ is symmetric since d is.
Finally, ∼ is transitive: suppose (x,m) ∼ (y, m) ∼ (z,m). Then d(x−1, y−1), d(y−1, z−1) ≥ m.

If d(x−1, z−1) < d(x−1, y−1) then axiom (3) yields d(x−1, z−1) = d(z−1, y−1) = d(y−1, z−1), the
last equality by axiom (2). So in any case, d(x−1, z−1) ≥ min{d(x−1, y−1), d(y−1, z−1)} ≥ m, so
(x,m) ∼ (z,m).

Let [x,m] denote the equivalence class of (x, m) and V the set of equivalence classes.
We now construct a tree T with vertex set V : Connect vertices [x,m], [y, m + 1] with a (unique)

edge if (y, m) ∈ [x, m]. Let T be the resulting metric space (each edge has length 1.) Observe that
[x, 0] = [e, 0] for all x ∈ G (e is the identity), so we define this to be our basepoint P0 for T . T is
connected since every [x,m] is connected to P0 via the sequence [x, 0], [x, 1], . . . , [x,m] of edges.

To verify that T is indeed a tree, we need to show its fundamental group is trivial. Observe that
λ : [x,m] "→ m is a (well-defined) “level function” V → Z in the following sense:

• There is a point P with minimal λ(P ), namely P0 with value 0.

• For each Q )= P0 ∈ V , there is a unique P adjacent to Q such that λ(P ) = λ(Q)− 1. Indeed, if
Q = [x,m] this unique point is [x, m− 1].

• For each Q ∈ V , all adjacent points P ′ except the aforementioned one satisfy λ(P ′) > λ(Q).

T is therefore a tree. (If the fundamental group were nontrivial, there would be a non-backtracking
loop. We may assume it to start at a point of minimal value under λ among all such loops, by the
first property above. By the third property, the values of λ along the path would initially increase and
thus eventually decrease. Finally, the second property contradicts the assumption the path does not
backtrack.)

Now we define an action of G on T . Let’s first motivate the definition. We have P0 = [e, 0] as our
basepoint, and we want gP0 to be the point [g, |g|]. Since [x,m] is a distance m from P0 along the path
γx from P0 to xP0, we want g[x,m] to be the corresponding point along the path from gP0 to gxP0.
The length of the overlap of the paths from gP0 to gxP0 and to P0 should be the same as the length of
the overlap of the paths from P0 to xP0 and to g−1P0, which should be d(x−1, g). So the bifurcation
point Q for the paths γg and γgx should be a distance |g|− d(x−1, g) from P0.

If m ≤ d(x−1, g), then g[x,m] should lie on γg a distance m from the end, so we want g[x,m] =
[g, |g|−m].

If m ≥ d(x−1, g), then g[x,m] should lie on γgx a distance m−d(x−1, g) from Q. The total distance
from P0 to g[x, m] should then be (|g|− d(x−1, g)) + (m− d(x−1, g)) = |g| + m− 2d(x−1, g). Thus we
want g[x,m] = [gx, |g| + m− 2d(x−1, g)].
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So we define our action of G on V by:

g[x,m] :=
{

[g, |g|−m] d(x−1, g) ≥ m
[gx, |g| + m− 2d(x−1, g)] d(x−1, g) ≤ m

We first check this is well-defined, and then we will show it is an action. These verifications are messy,
but straightforward.

If (x, m) ∼ (y, m) then d(x−1, y−1) ≥ m. We consider first the case that d(g, x−1) = d(g, y−1). Call
the common value d. (So |gx| = |x| + |g| − 2d and |gy| = |y| + |g| − 2d.) Then the applicable line of
the definition is the same for both (x,m) and (y, m).

There is nothing to show for the first line. In the case of the second line, we have

d((gx)−1, (gy)−1) =
1
2
(|gx| + |gy|− |x−1y|) =

1
2
(|x| + |g|− 2d + |y| + |g|− 2d− |x−1y|)

= |g|− 2d +
1
2
(|x| + |y|− |x−1y|) = |g|− 2d + d(x−1, y−1) ≥ |g| + m− 2d.

So g[x,m] = g[y, m]. [Note: taking y = x shows that |gx| ≥ |g| + m − 2d(x−1, g) so that the second
line of the definition actually gives a point in V .]

Next we consider the case d(g, x−1) )= d(g, y−1). WLOG, d(g, x−1) < d(g, y−1), so axiom (3) says
that d(g, x−1) = d(x−1, y−1). So d(g, y−1) > d(g, x−1) = d(x−1, y−1) ≥ m, and thus the first line of
the definition applies for both (x, m) and (y, m). This completes the verification the map G× V → V
is well-defined.

Now we verify it is an action. 1[x, m] = [x,m] by the second line of the definition, so we need only
verify h(g[x, m]) = (hg)[x,m]. There are four cases to consider depending on which line applies for h
and which for g. We demonstrate one case and leave the remaining three similar cases as exercises.

So let us suppose d(x−1, g) ≥ m and d(g−1, h) > |g| − m. Then h(g[x,m]) = h[g, |g| − m] =
[h, |h|− |g|+m] since the first line is used in both instances. The inequality d(g−1, h) > |g|−m can be
rewritten as |g|+|h|−|hg| > 2(|g|−m) or |hg| < |h|−|g|+2m. Therefore d(g, hg) = 1

2 (|g|+|hg|−|h|) <
1
2 (|g|+(|h|−|g|+2m)−|h|) = m. So d(g, hg) < m ≤ d(x−1, g). Axiom (3) yields d(hg, x−1) = d(g, hg) <
m. Thus line 2 of the definition applies to show (hg)[x,m] = [hgx, |hg| + m− 2d(x−1, hg)].

We must verify [h, |h|− |g|+m] = [hgx, |hg|+m−2d(x−1, hg)]. The second coordinates agree since
|hg| + m− 2d(x−1, hg) = |hg| + m− 2d(hg, g) = |hg| + m− |g|− |hg| + |h| = |h|− |g| + m.

Finally, we need to verify that d((hgx)−1, h−1) ≥ |h| − |g| + m. Using our identity d(hg, x−1) =
d(g, hg), we obtain |hg| + |x| − |hgx| = |g| + |hg| − |h|, so that |hgx| = |x| + |h| − |g|. This gives the
second equality in:

d((hgx)−1, h−1) =
1
2
(|hgx| + |h|− |gx|) =

1
2
((|x| + |h|− |g|) + |h|− |gx|)

= |h|− |g| + 1
2
(|x| + |g|− |gx|) = |h|− |g| + d(x−1, g) ≥ |h|− |g| + m

completing the verification (for this case.)
Now we may finally extend the action of G on V to an action on T . We need only verify that

adjacency of vertices is preserved. This follows immediately from the definition of the action, since
g[x, m] and g[x,m + 1] can be computed using the same line of the definition. (This is where we use
Axiom (4): for the case m = d(x−1, g), both lines agree.)

By construction, the length of the shortest path from P0 = [g, 0] to gP0 = [g, |g|] is |g|, so the action
we have constructed indeed realizes the given length function.

3 Additional Axioms

If our length function satisfies more axioms, we can say more about the action of G on T .

5. d(x, y) + d(x−1, y−1) > |x| = |y|⇒ x = y.
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6. |g2| > |g| if g )= 1.

Theorem. If Axiom (5) holds, the action of G on T has trivial edge stabilizers.

Theorem. If Axiom (6) holds, G acts freely on T .

4 The Culler-Morgan Theorem

References: “Group Actions on R-trees”, Culler-Morgan.
“Complete Trees for Groups with a Real Valued Length Function”, Alperin-Moss.
“On Metric Properties of Treelike Space”, Imrich.

Work of Alperin & Moss and Imrich shows that Chiswell’s construction above can be generalized
to construct R-trees realizing a given real-valued length function.

Now, fix an action G ! T ′, T ′ an R-tree, and fix x0 ∈ T ′. Let ‖g‖ denote the length of the shortest
path [x0, gx0] from x0 to gx0. Given this length function, build T as in the Chiswell construction.

Define ϕ : T → T ′ sending [x, m] to α(m) where α is the isometric embedding [0, ‖g‖] → [x0, gx0].
Then ϕ is an injective, G-invariant map. There was some confusion about this statement in class,

but it follows immediately from the definitions. In fact, injectivity essentially motivated the definition
of the equivalence relation ∼, while G-invariance motivated our definition of G ! T . Now, since ϕ(T )
is invariant under the action of G, we see that ϕ is surjective and hence a G-equivariant isometry if
G ! T ′ is minimal. Composing two such isometries, we obtain:

Proposition. Suppose G ! Ti for i = 1, 2 are two minimal actions on R-trees. Fix xi ∈ Ti and let
‖ · ‖i be the corresponding length function (i.e., ‖g‖i is the length of the shortest path from xi to gxi in
Ti.) If ‖g‖1 = ‖g‖2 for all g ∈ G, then T1 and T2 are isometric by a G-equivariant isometry.

We now state some definitions needed for the statement of the Culler-Morgan theorem.

Definition. A group action G ! T is reducible if any of the following hold. Otherwise it is irreducible.

(i.) Every element of G fixes a point; or

(ii.) There is some line contained in T that is invariant under the action of G; or

(iii.) There is a fixed end of T .

Actions of type (ii) that preserve the orientation of the invariant line are called shifts, while those that
do not preserve orientation are called dihedral.

Definition. A group action G ! T is semisimple if any of the following hold:

(I.) The action is irreducible; or

(II.) The action has a global fixed point; or

(III.) In the definition of reducible, (ii) holds.

In other words, an action is semisimple unless (iii) holds and (i) and (ii) do not.

Theorem (Culler-Morgan). Suppose G ! T1, G ! T2 are minimal semisimple actions of G on
R-trees. If G ! T1, G ! T2 have the same translation length function, then there exists an equivariant
isometry from T1 to T2.

Warning: The translation length function is not a length function in our sense.
Note: The semi-simplicity condition in the statement of the theorem cannot be removed, as the

following example shows:
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Example. Let G = 〈g, r〉 act on the trivalent tree T as follows: g shifts by one unit along some chosen
line. Choose a point p on this line. The complement of p has three components: two that each contain
a ray of the chosen line, and one that does not. Let r flip one of the components containing a ray with
the one that does not. Then G fixes an end of T (the one determined by the ray r fixes) but no line
of T , and has no global fixed point. This action thus fails to be semisimple, but it is minimal since
G acts transitively on T . The translation length function is g "→ 1, r "→ 0, which is the same as the
translation length function of the (minimal, semisimple) action G ! R where g is unit translation and
r acts trivially. (Image below.)

Observe that actions with nontrivial translation length functions must be irreducible, dihedral, or
fixed end. In the first two cases, the action must be semisimple. A fact obtained from several technical
lemmata, but that we will use without proof, shows that the particular case depends only on the length
function:

Fact. Let G ! T , T an R-tree, with nontrivial translation length function l. Then the action is:





fixed end ⇐⇒ l is trivial on G′ = [G, G]
dihedral ⇐⇒ l is nontrivial on G′ and l([g, h]) = 0 for all g, h ∈ G hyperbolic

irreducible ⇐⇒ l([g, h]) )= 0 for some hyperbolic g, h.

In particular, if G ! T1, G ! T2 have the same translation length function, they must be of the
same type.

The proof of the Culler-Morgan Theorem proceeds by cases. Let l be the common translation
length function of G ! Ti, i = 1, 2. First, consider the case that l is identically zero. Then (I) cannot
hold by (i). If (III) were to hold, then Ti would be a line, and the elements of G can only act as the
identity or reflections. If there are two reflections about distinct points, we get a nontrivial translation.
So all reflections are about the same point, which is then a global fixed point. So (II) holds, and we
see that Ti is a point. So T1 and T2 are equivariantly isometric.

Next consider the case that G ! Ti is reducible and the translation length function is nontrivial.
Then case (ii) holds, so the Ti are lines, and we can detect, by the Fact above, whether the action is
dihedral or a shift. If it’s a shift, then ‖g‖i = l(g) for every g ∈ G (for any choice of basepoint), so
the above Proposition gives us the desired equivariant isometry. If it’s dihedral, there are at least two
distinct reflections (by nontriviality of l.) That is to say, we have s, t ∈ G such that l(s) = l(t) = 0 but
l(st) )= 0. Let pi, qi be the fixed points of s, t respectively in Ti. Choose the basepoint xi in Ti to be
halfway between pi and qi. Then the length of a translation can be detected from l as above, while the
length ‖r‖i of a reflection about a point ri in Ti is detected by l as follows: since l(rs), l(rt) are twice
the distances between ri and pi, respectively si and pi, we can determine where ri is on Ti and thus
the distance from ri to xi. ‖r‖i is twice this distance, so the Proposition again gives an equivariant
isometry between T1 and T2.

Finally, we have the case that G ! Ti is irreducible. We use the following lemma without proof.
It is the synthesis of several technical lemmata.

Lemma. If G ! T1, G ! T2 are irreducible minimal actions with identical translation length functions,
then there exist g, h ∈ G such that g, h, gh−1 are hyperbolic in Ti and such that the intersection of the
translation axes Cg ∩ Ch ∩ Cgh−1 is a single point.
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Assuming this lemma, let xi be the intersection point. It will be our basepoint. For k ∈ G, let
L be the geodesic from xi to kxi. Observe that at least one of Cg ∩ L, Ch ∩ L, Cgh−1 ∩ L will be
the single point {xi}, since the intersection of all three sets is the smallest one, and is contained in
Cg ∩ Ch ∩ Cgh−1 = {xi}. Similarly, at least one of kCg ∩ L, kCh ∩ L, kCgh−1 ∩ L is the single point
{kxi}. As C ranges over {Cg, Ch, Cgh−1} and P ranges over {kCg, kCh, kCgh−1}, the distance between
C and P is at most the distance between xi and kxi, and we have just shown that for some pair (C,P ),
the distance is actually realized. By the “Long Lemma” of Marisa’s lecture, it follows that for a, b
hyperbolic, the distance between Ca and Cb is 1

2 max(0, l(ab) − l(a) − l(b)), so we can compute these
distances (recall that kCa = Ckak−1) and hence ‖k‖i from l. The Proposition again yields the desired
equivariant isometry, completing the sketch of the proof.

5 Questions

1. Can these ideas be generalized to any 1-dimensional or even 2-dimensional simplicial complex?

2. Do semisimple actions relate to semisimple groups?

3. Can you classify the R-trees on which a fixed group acts?
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