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This talk is based on the paper The Length Spectrum of a Compact Constant Curvature Complex
is Discrete by Brady and McCammond [1]. At first we review some relevant results which can be
found in the book Metric Spaces of Non-Positive Curvature by Bridson and Haefliger (BH).
Recall: An Mκ-complex is a polyhedral cell complex where each cell has a metric of constant
curvature κ, with the metrics agreeing on cell intersections. From now on we denote by X an Mκ

complex. Our aim will be to prove Theorem 1 below.

Definition. For x, y ∈ X, the length spectrum from x to y is the set of lengths of all local geodesics
from x to y. The length spectrum of X is the set of lengths of all closed geodesic loops in X.

Theorem 1 (Brady–McCammond). If X is compact, the length spectrum of X is discrete.

Let Shapes(X) denote the set of isometry classes of cells in X. We assume Shapes(X) is finite, so
that X is a geodesic space.
Let S̄, S̄′ ∈ Shapes(X) (we think of both as cells), and x̄ ∈ S̄, ȳ ∈ S̄′. Let

Sx̄ = {x ∈ X|there is an isometryf from S̄ to an open cell in X and f(x̄) = x}

and let Sȳ be defined analogously.
For example, in case of the product of two 3-regular trees T3×T3, we have Shapes(T3×T3)={point,

segment, square}. Below are sets Sx̄ and Sȳ in T3×T3 for a given x̄ and ȳ in S̄ = S̄′ ∈ Shapes(T3×
T3).

1



Before we deal with the Theorem 1, we prove the following weaker result:

Theorem 2. For all S̄, S̄′ ∈ Shapes(X) and x̄ ∈ S̄, ȳ ∈ S̄′, the set {d(x, y)|x ∈ Sx̄, y ∈ Sȳ} is
discrete.

In order to prove this theorem, we use the proposition below.

Proposition 1. For all l > 0, there is an integer N such that every geodesic of length l or less in
X is contained in a union of at most N cells.

Proof of theorem 2. Let T be an open cell in X. Note that |Sx̄ ∩ T | ≤ |IsomT | < ∞ (and same for
Sȳ). For V ⊂ X a finite connected subcomplex, and dV the intrinsic metric on V , |{dV (x, y)|x ∈
Sx̄ ∩ V, y ∈ Sȳ ∩ V }| is finite. Let ΣN =

⋃

V

{dV (x, y)|x ∈ Sx̄ ∩ V, y ∈ Sȳ ∩ V }, where the union is

over subsets V containing at most N cells. Note that ΣN is finite since there are only finitely many
isometry classes of such V , due to the finiteness of Shapes(X). By Proposition 1 above, we have

{d(x, y)|x ∈ Sx̄, y ∈ Sȳ} ∩ [0, l) ⊂ ΣN

since by the proposition there’s a union of at most N cells in which the geodesic between x and
y is contained, and in this union V , dV (x, y) = d(x, y). Since each ΣN is finite, their union is
discrete.

Instead of proving Proposition 1 above, we’ll look at a stronger statement given below.

Proposition 2. For all l > 0 there is an integer N such that for every taut m-string of length l or
less in X, m ≤ N .

An m-string between x and y in X is a Σ = (x0, x1, . . . , xm), where xi ∈ X, x0 = x, xm = y, and
{xi, xi+1} are contained in the same closed cell Si. An m-string Σ is taut if for all i there’s no cell
containing {xi−1, xi, xi+1} and the concatenation of the geodesics [xi−1, xi] and [xi, xi+1] in Si−1 and
Si respectively is a geodesic in Si−1 ∪ Si. Note that proposition 2 implies proposition 1 since every
geodesic is a taut string. Let st(x) be the union of every closed cell that contains the point x ∈ X,
and let st(x) denote the interior of st(x). There is a natural projection p : st(x) \ {x} → Lk(x,X).

Lemma (I.7.23 in BH). For x a vertex of X, Σ = (x0, . . . , xm) a taut m-string in st(x) \ {x},
and for κ > 0, dS(x, xi) < π

2
√

κ
, then p(Σ) is a taut m-string in Lk(x,X) of length less than π.

The proof of proposition 2, which you can find in BH on page 110, uses an induction argument
together with the above lemma. We omit the details here.

Let γ be a local geodesic in X. The sequence of open cells that γ passes through is called the linear
gallery of γ. Similarly, for γ a closed local geodesic, we get a circular gallery. We now turn to the
proof of Theorem 1, divided into three parts.
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Proof of Brady–McCammond theorem.
The idea behind the proof is to show that the lengths of closed geodesic loops form a set of measure
zero and have only finitely many connected components in a suitable analogue of space of loops up
to a given length; taking the limit as length increases, we arrive at the desired result.

Step 1:

Assume to the contrary that X is an Mκ-complex not satisfying the theorem. Then there is an
infinite sequence of (closed, geodesic) loops γ1, γ2, . . . such that each is of distinct length less than
l. By the compactness of X and Proposition 2, we can choose an infinite subsequence of {γi} in
which all geodesic loops share the same circular gallery G.

Step 2:

For γ a closed geodesic loop with circular gallery G, the dimension of the cells that γ passes through
alternately increases and decreases. Open cells of a locally maximal (minimal) dimension along γ we
call top (bottom) cells and denote T1, T2, . . . , Tm (and B0, B1, . . . , Bm). Note that γ intersects each
top cell in a segment and each bottom cell at a point (we consider a 0-cell both open and closed).

Thus choosing a point in each bottom cell defines an m-string. Let Loops(G) =

m∏

i=1

Bi, the space

of m-strings which are geodesic in each simplex and pass through each Bi. Let d : Loops(G) → R

be the distance map, measuring the length of m-strings in Loops(G). Recall the weak form of
Morse-Sard theorem:

Theorem 3 (Morse-Sard). For M,N smooth manifolds, and f : M → N a smooth map, the set
of critical values of f has measure 0 (where a critical value is the image of a critical point).

Note that the map d is smooth, since we can decompose d as the sum of di, where each di : Ti → R

is the distance map restricted to the top cell Ti having cells Bi−1 and Bi in its boundary. These
functions are smooth, hence is their sum d. Thus we can apply Morse-Sard to conclude that the
measure of the critical values of d, which include the lengths of geodesic closed loops, is 0.

Step 3:

The finishing touch is showing that the set of critical values of d has only finitely many connected
components, and hence, since we’ve shown it has measure zero, the length spectrum of G must be
finite. This supplies the contradiction to Step 1.

Definition. A real semi-algebraic set is a subset of R
n which can be described by finite boolean

combinations of sets defined by a polynomial equation or inequality.

We use, without proof, the following standard result.

Theorem 4. Real semi-algebraic sets have a finite number of connected components.
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We fix a standard isometric embedding of a bottom cell Bi of type S
n, R

n, or H
n in R

n+1 as
k(x2

1+x2
2+. . .+x2

n)+x2
n+1 = 1 for k = 1, 0,−1 respectively. Such embeddings consist of polynomial

equations and inequalities defining each Bi. Doing this to all bottom cells, we get an injection
g : Loops(G) → R

N , for N =
∑m

i=1
dim(Bi) + m. Once we fix a similar embedding of top cells,

there are unique linear (Euclidean) transformations from the standard embeddings of bottom cells
to the embeddings of top cells in which they are contained. In a top cell, the distance function can
be written as cos−1(x · y),

√
x · y − 1, or cosh−1(x ◦ y) for R, S, H cells respectively (where ◦ is the

Lorentzian inner product). Recall that d is the sum of these restricted distance functions di. Note
that the derivatives of these functions with respect to any variable are rational up to a square root
of a polynomial in the denominator.
To show that the critical points of d in R

N are real semi-algebraic, we first reduce the number of
variables by projecting to the first n coordinates in every standard embedding of a bottom cell (see
illustration below). These n coordinates become the intrinsic parameters. Taking the product, we
get a smooth homeomorphism f from the intrinsic parametrization to our standard embedding of
Loops(G) in R

N . Thus the critical points of d are the critical points of d ◦ f with respect to the
intrinsic parameters. With a bit of calculation, these can be written as a sum of polynomials over
square roots of polynomials, and finally converted to a system of equations and inequalities. Thus
the critical points are a real semi-algebraic set.
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