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Presentation The self-similar boundary

A class of self-similar sets

Consider an iterated function system (f1, f2), where

f1 and f2 have ratio a < 1,

f1 and f2 have opposite angles ±θ (0 6 θ < π
2 ).

Denote Γ the invariant set associated with (f1, f2) : Γ = f1(Γ) ∪ f2(Γ).
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Presentation The self-similar boundary

A class of self-similar sets

Consider an iterated function system (f1, f2), where

f1 and f2 have ratio a < 1,

f1 and f2 have opposite angles ±θ (0 6 θ < π
2 ).

Denote Γ the invariant set associated with (f1, f2) : Γ = f1(Γ) ∪ f2(Γ).

An example of self-similar set Γ

B. Mandelbrot, M. Frame The canopy and shortest path in a self-contacting

fractal tree, 1999.
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Presentation The self-similar boundary

The critical ratio a
⋆

There exists a critical ratio a⋆ depending only on the angle θ such that

if a < a⋆, then Γ is totally
disconnected,

T. Deheuvels (ENS Rennes, France) Fractals, Cornell University June 15 2014



Presentation The self-similar boundary

The critical ratio a
⋆

There exists a critical ratio a⋆ depending only on the angle θ such that

if a < a⋆, then Γ is totally
disconnected,

if a = a⋆, then Γ is connected
and has multiple points.
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Presentation The self-similar boundary

The critical ratio a
⋆

There exists a critical ratio a⋆ depending only on the angle θ such that

if a < a⋆, then Γ is totally
disconnected,

if a = a⋆, then Γ is connected
and has multiple points.

If a 6 a⋆, Hausdorff dimension of Γ:

d := dimH(Γ) = −
log 2

log a
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Presentation The self-similar boundary

Sobolev spaces on Γ

The self-similar set Γ is endowed with its invariant measure, i.e. the only
probability measure µ on Γ satisfying

µ(B) =
1

2
µ(f −1

1 (B)) +
1

2
µ(f −1

2 (B))

for every Borel set B ⊂ Γ.
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Presentation The self-similar boundary

Sobolev spaces on Γ

The self-similar set Γ is endowed with its invariant measure, i.e. the only
probability measure µ on Γ satisfying

µ(B) =
1

2
µ(f −1

1 (B)) +
1

2
µ(f −1

2 (B))

for every Borel set B ⊂ Γ.

The spaces W s,p(Γ) (Jonsson, Wallin, 1984)

For 0 < s < 1 and 1 6 p < ∞, if v ∈ L
p
µ(Γ), then v ∈ W s,p(Γ) if and only

if

|v |p
W s,p(Γ) :=

∫∫

|x−y |<1

|v(x)− v(y)|p

|x − y |d+ps
dµ(x) dµ(y) < ∞.
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Presentation The class of ramified domains

The class of ramified domains

Γ0

First cell Y 0
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Presentation The class of ramified domains

The class of ramified domains

Γ0

f1(Γ
0) f2(Γ

0)

Y 0

First cell Y 0

Y 0

f1(Y 0) f2(Y 0)

Second iteration
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Presentation The class of ramified domains

The class of ramified domains

If σ = (σ1, . . . , σk) ∈ {1, 2}k ,
write

fσ := fσ1 ◦ . . . ◦ fσk
.

Ω = Interior





⋃

k>0

⋃

σ∈{1,2}k

fσ(Y 0)





Γ

Ω
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Presentation The class of ramified domains

The set Ξ of multiple points of Γ

a = a⋆

Case ➊

θ 6∈ { π
2k , k ∈ N

⋆}

Ξ is countable

where Ξ is the set of multiple points of Γ.

T. Deheuvels (ENS Rennes, France) Fractals, Cornell University June 15 2014



Presentation The class of ramified domains

The set Ξ of multiple points of Γ

a = a⋆

Case ➊

θ 6∈ { π
2k , k ∈ N

⋆}

Ξ is countable

Case ➋

θ = π
2k , k ∈ N

⋆

dimH Ξ = d
2

where Ξ is the set of multiple points of Γ.
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Trace and extension results General results

Questions

Trace:

– Notion of trace for functions in W 1,p(Ω) on Γ ?

– Sobolev regularity of the trace on Γ ?
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Trace and extension results General results

Questions

Trace:

– Notion of trace for functions in W 1,p(Ω) on Γ ?

– Sobolev regularity of the trace on Γ ?

Extension:

– for which values of p is the domain Ω a W 1,p-extension domain,
i.e. there exists a linear continuous extension operator

W 1,p(Ω) → W 1,p(R2)?

If Ω is a W 1,p-extension domain for every p ∈ [1,∞], Ω is said

to be a Sobolev extension domain.
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Trace and extension results General results

Trace theorems

Theorem (Gagliardo, 1957)

If ω ⊂ R
n is an open set with Lipschitz boundary and 1 < p < ∞, one has

the trace result:

W 1,p(ω)|∂ω = W
1− 1

p
,p(∂ω).
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Trace theorems

Theorem (Gagliardo, 1957)

If ω ⊂ R
n is an open set with Lipschitz boundary and 1 < p < ∞, one has

the trace result:

W 1,p(ω)|∂ω = W
1− 1

p
,p(∂ω).

Theorem (A. Jonsson, H. Wallin, 1984)

If 1 < p < ∞, and 1− 2−d
p

> 0, then

W 1,p(R2)|Γ = W
1− 2−d

p
,p
(Γ)
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Trace and extension results General results

Trace theorems

Theorem (Gagliardo, 1957)

If ω ⊂ R
n is an open set with Lipschitz boundary and 1 < p < ∞, one has

the trace result:

W 1,p(ω)|∂ω = W
1− 1

p
,p(∂ω).

Theorem (A. Jonsson, H. Wallin, 1984)

If 1 < p < ∞, and 1− 2−d
p

> 0, then

W 1,p(R2)|Γ = W
1− 2−d

p
,p
(Γ)

Sense of the trace: u is strictly defined at x ∈ R
2 if the limit

u(x) := lim
r→0

1

|B(x , r)|

∫

B(x ,r)
u(y) dy

exists. Trace of u on Γ : ū|Γ.

T. Deheuvels (ENS Rennes, France) Fractals, Cornell University June 15 2014



Trace and extension results General results

Extension theorems

Theorem (A.P. Calderón, E.M. Stein, 1970)

Every Lipschitz domain in R
n is a Sobolev extension domain.
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Trace and extension results General results

Extension theorems

Theorem (A.P. Calderón, E.M. Stein, 1970)

Every Lipschitz domain in R
n is a Sobolev extension domain.

Jones domains (P.W. Jones, 1981) :

A domain ω ⊂ R
n is a Jones domain if there exist ε, δ > 0 such that

for every x , y ∈ ω satisfying |x − y | < δ, there exists a rectifiable arc
γ ⊂ ω joining x to y such that

L(γ) 6
1
ε
|x − y | where L(γ) =length of γ,

d(z , ∂ω) > ε min(|x − z |, |y − z |) for all z ∈ γ.

Theorem (P.W. Jones, 1981)

Jones domains are Sobolev extension domains.
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Trace and extension results General results

The subcritical case (a < a
⋆)

Extension

If Ω is a ramified domain with a < a⋆, then
Ω is a Jones domain, so it has the
p-extension property for all 1 6 p 6 ∞.

Traces

Jones theorem combined with Jonsson and Wallin’s trace operator
yields a trace operator:

W 1,p(Ω) → W
1− 2−d

p
,p(Γ)
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Trace and extension results Trace theorems in the critical case

The ramified domains with a = a
⋆

The case a = a⋆

Ω

γ

x y

In this case, Ω cannot be a W 1,p-extension domain for p > 2.
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Trace and extension results Trace theorems in the critical case

Haar wavelets on Γ

Haar wavelets on Γ:
{

g0 = 1f1(Γ) − 1f2(Γ)
Mother wavelet g0

T. Deheuvels (ENS Rennes, France) Fractals, Cornell University June 15 2014



Trace and extension results Trace theorems in the critical case

Haar wavelets on Γ

Haar wavelets on Γ:
{

g0 = 1f1(Γ) − 1f2(Γ)
gσ |fσ(Γ) = 2

k
2 g0 ◦ fσ

−1 and gσ |Γ\fσ(Γ) = 0 for σ ∈ {1, 2}k

Mother wavelet g0

T. Deheuvels (ENS Rennes, France) Fractals, Cornell University June 15 2014



Trace and extension results Trace theorems in the critical case
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Haar wavelets on Γ:
{
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gσ |fσ(Γ) = 2

k
2 g0 ◦ fσ
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Trace and extension results Trace theorems in the critical case

Haar wavelets on Γ

Haar wavelets on Γ:
{

g0 = 1f1(Γ) − 1f2(Γ)
gσ |fσ(Γ) = 2

k
2 g0 ◦ fσ

−1 and gσ |Γ\fσ(Γ) = 0 for σ ∈ {1, 2}k

Mother wavelet g0 gσ for σ = (1)

Every function v ∈ L
p
µ(Γ), 1 6 p < ∞ can be expanded in the Haar

wavelet basis (gσ):

v = 〈v〉Γ +
∑

k>0

∑

σ∈{1,2}k

βσgσ.

T. Deheuvels (ENS Rennes, France) Fractals, Cornell University June 15 2014



Trace and extension results Trace theorems in the critical case

Construction of a self-similar trace operator

Γ
0

〈u〉Γ0

For u ∈ W 1,p(Ω), define:

ℓ0(u) ≡ 〈u〉Γ0 ,

where 〈u〉Γσ =
1

|Γσ|

∫

Γσ
u.
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Trace and extension results Trace theorems in the critical case

Construction of a self-similar trace operator

〈u〉
f1(Γ0)

〈u〉
f2(Γ0)

f1(Γ
0) f2(Γ

0)

ℓ1(u) = 〈u〉f1(Γ0)1f1(Γ)+〈u〉f2(Γ0)1f2(Γ)
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Trace and extension results Trace theorems in the critical case

Construction of a self-similar trace operator

〈u〉
f12(Γ0)

〈u〉
f21(Γ0)

〈u〉
f22(Γ0)

f12(Γ
0) f21(Γ

0)

f11(Γ
0) f22(Γ

0)

〈u〉
f11(Γ0)

ℓ2(u) =
∑

σ∈{1,2}2

〈u〉fσ(Γ0)1fσ(Γ)
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Trace and extension results Trace theorems in the critical case

Construction of a self-similar trace operator

〈u〉
f12(Γ0)

〈u〉
f21(Γ0)

〈u〉
f22(Γ0)

f12(Γ
0) f21(Γ

0)

f11(Γ
0) f22(Γ

0)

〈u〉
f11(Γ0)

ℓ2(u) =
∑

σ∈{1,2}2

〈u〉fσ(Γ0)1fσ(Γ)
ℓn(u) =

∑

σ∈{1,2}n

〈u〉fσ(Γ0)1fσ(Γ)
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Trace and extension results Trace theorems in the critical case

Construction of a self-similar trace operator

〈u〉
f12(Γ0)

〈u〉
f21(Γ0)

〈u〉
f22(Γ0)

f12(Γ
0) f21(Γ

0)

f11(Γ
0) f22(Γ

0)

〈u〉
f11(Γ0)

ℓ2(u) =
∑

σ∈{1,2}2

〈u〉fσ(Γ0)1fσ(Γ)
ℓn(u) =

∑

σ∈{1,2}n

〈u〉fσ(Γ0)1fσ(Γ)
The sequence (ℓn) converges in L(W 1,p(Ω), Lpµ(Γ)) to an operator ℓ∞.
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Trace and extension results Trace theorems in the critical case

Theorem (Y. Achdou, T.D., N. Tchou, 2012)

Set p⋆ =

{

2 in case ➊

2− d
2 in case ➋

= 2− dimH Ξ

If a = a⋆, then

if p < p⋆,

ℓ∞(W 1,p(Ω)) = W
1− 2−d

p
,p
(Γ)

if p > p⋆, ℓ∞(W 1,p(Ω)) ⊂ W s,p(Γ)

for every s <

{

d
p

in case ➊
d
2p in case ➋

= d−dimH Ξ
p

p⋆ = 2

p⋆ = 2− d
2
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Trace and extension results Trace theorems in the critical case

Theorem (Y. Achdou, T.D., N. Tchou, 2012)

Set p⋆ =

{

2 in case ➊

2− d
2 in case ➋

= 2− dimH Ξ

If a = a⋆, then

if p < p⋆,

ℓ∞(W 1,p(Ω)) = W
1− 2−d

p
,p
(Γ)

if p > p⋆, ℓ∞(W 1,p(Ω)) ⊂ W s,p(Γ)

for every s <

{

d
p

in case ➊
d
2p in case ➋

= d−dimH Ξ
p

p⋆ = 2

p⋆ = 2− d
2

In the case of a ramified domain with 4
similitudes and dimΞ = dimH Γ

4 , the result
holds.
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Trace and extension results Extension theorem in the critical case

Extension theorem

In the case a = a⋆,

⋄ we know that a ramified domain Ω is not a W 1,p-extension domain
for p > 2.

⋄ the trace theorem suggests that Ω is not a W 1,p-extension domain for
p > p⋆.

⋄ p < p⋆?
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Trace and extension results Extension theorem in the critical case

Extension theorem

In the case a = a⋆,

⋄ we know that a ramified domain Ω is not a W 1,p-extension domain
for p > 2.

⋄ the trace theorem suggests that Ω is not a W 1,p-extension domain for
p > p⋆.

⋄ p < p⋆?

Theorem (T.D., 2013)

If Ω is a critical ramified domain and p⋆ = 2− dimΞ, then for all p < p⋆,

Ω is a W 1,p-extension domain
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Comparison of the notions of trace

Comparison of the notions of trace

The following theorem justifies a posteriori the use of several notions of
trace on Γ.

Theorem (Y. Achdou, T.D., N. Tchou, 2013)

For 1 < p < ∞, every function u ∈ W 1,p(Ω) is strictly defined µ-almost

everywhere on Γ, and
u|Γ = ℓ∞(u)

µ-almost everywhere on Γ.

The proof uses as a key ingredient the extension operator for p < p⋆. In
this case, the trace on Γ does not depend on the extension operator:
(Eu)|Γ =: u|Γ.

Corollary

If p > p⋆, Ω is not a W 1,p-extension domain.
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Comparison of the notions of trace

Thank you for your attention!
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