Trace and extension results for a class of domains with self-similar boundary

Thibaut Deheuvels

École Normale Supérieure de Rennes, France

Joint work with Yves Achdou and Nicoletta Tchou

June 15 2014

5th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals

T. Deheuvels (ENS Rennes, France)

An example of ramified domain

Motivations

Human lungs (E.R. Weibel)

Lena river delta

Outline

Presentation

- The self-similar boundary
- The class of ramified domains

2 Trace and extension results

- General results
- Trace theorems in the critical case
- Extension theorem in the critical case

3 Comparison of the notions of trace

A class of self-similar sets

Consider an iterated function system (f_1, f_2) , where

- f_1 and f_2 have ratio a < 1,
- f_1 and f_2 have opposite angles $\pm \theta$ $(0 \leq \theta < \frac{\pi}{2})$.

Denote Γ the invariant set associated with (f_1, f_2) : $\Gamma = f_1(\Gamma) \cup f_2(\Gamma)$.

A class of self-similar sets

Consider an iterated function system (f_1, f_2) , where

- f_1 and f_2 have ratio a < 1,
- f_1 and f_2 have opposite angles $\pm \theta$ $(0 \le \theta < \frac{\pi}{2})$.

Denote Γ the invariant set associated with (f_1, f_2) : $\Gamma = f_1(\Gamma) \cup f_2(\Gamma)$.

An example of self-similar set Γ

A class of self-similar sets

Consider an iterated function system (f_1, f_2) , where

- f_1 and f_2 have ratio a < 1,
- f_1 and f_2 have opposite angles $\pm \theta$ ($0 \le \theta < \frac{\pi}{2}$).

Denote Γ the invariant set associated with (f_1, f_2) : $\Gamma = f_1(\Gamma) \cup f_2(\Gamma)$.

An example of self-similar set Γ

 B. Mandelbrot, M. Frame The canopy and shortest path in a self-contacting fractal tree, 1999.

The critical ratio a^*

There exists a critical ratio a^* depending only on the angle θ such that

```
if a < a<sup>*</sup>, then Γ is totally disconnected,
```


The critical ratio a*

There exists a critical ratio a^* depending only on the angle θ such that

if a < a^{*}, then Γ is totally disconnected,

 if a = a^{*}, then Γ is connected and has multiple points.

The critical ratio a*

There exists a critical ratio a^* depending only on the angle θ such that

if a < a^{*}, then Γ is totally disconnected,

 if a = a*, then Γ is connected and has multiple points.

If $a \leq a^*$, Hausdorff dimension of Γ :

$$d := \dim_H(\Gamma) = -\frac{\log 2}{\log a}$$

Sobolev spaces on Γ

The self-similar set Γ is endowed with its invariant measure, *i.e.* the only probability measure μ on Γ satisfying

$$\mu(B) = \frac{1}{2}\mu(f_1^{-1}(B)) + \frac{1}{2}\mu(f_2^{-1}(B))$$

for every Borel set $B \subset \Gamma$.

Sobolev spaces on **F**

The self-similar set Γ is endowed with its invariant measure, *i.e.* the only probability measure μ on Γ satisfying

$$\mu(B) = \frac{1}{2}\mu(f_1^{-1}(B)) + \frac{1}{2}\mu(f_2^{-1}(B))$$

for every Borel set $B \subset \Gamma$.

The spaces $W^{s,p}(\Gamma)$ (Jonsson, Wallin, 1984) For 0 < s < 1 and $1 \leq p < \infty$, if $v \in L^p_{\mu}(\Gamma)$, then $v \in W^{s,p}(\Gamma)$ if and only if $|v|^p_{W^{s,p}(\Gamma)} := \iint_{|x-y|<1} \frac{|v(x) - v(y)|^p}{|x-y|^{d+ps}} d\mu(x) d\mu(y) < \infty.$

Outline

Presentation

- The self-similar boundary
- The class of ramified domains

Trace and extension results

- General results
- Trace theorems in the critical case
- Extension theorem in the critical case

3 Comparison of the notions of trace

Γ^0 First cell Υ^0

T. Deheuvels (ENS Rennes, France)

f₂(Γ⁰) $f_1(\Gamma^0)$

 Γ^0 First cell Υ^0

T. Deheuvels (ENS Rennes, France)

The set Ξ of multiple points of Γ

 $a = a^{\star}$

Case **1**

 $\theta \notin \{\frac{\pi}{2k}, k \in \mathbb{N}^*\}$ \equiv is countable

where Ξ is the set of multiple points of $\Gamma.$

The set Ξ of multiple points of Γ

 $a = a^{\star}$

where Ξ is the set of multiple points of Γ .

Outline

2

Presentation

- The self-similar boundary
- The class of ramified domains

Trace and extension results

- General results
- Trace theorems in the critical case
- Extension theorem in the critical case

3 Comparison of the notions of trace

Questions

• Trace:

- Notion of trace for functions in $W^{1,p}(\Omega)$ on Γ ?
- Sobolev regularity of the trace on Γ ?

Questions

• Trace:

- Notion of trace for functions in $W^{1,p}(\Omega)$ on Γ ?
- Sobolev regularity of the trace on Γ ?

• Extension:

- for which values of p is the domain Ω a $W^{1,p}$ -extension domain, *i.e.* there exists a linear continuous extension operator

$$W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^2)$$
?

If Ω is a $W^{1,p}$ -extension domain for every $p \in [1,\infty]$, Ω is said to be a Sobolev extension domain.

Trace theorems

Theorem (Gagliardo, 1957)

If $\omega \subset \mathbb{R}^n$ is an open set with Lipschitz boundary and 1 , one has the trace result:

$$W^{1,p}(\omega)_{|\partial\omega} = W^{1-\frac{1}{p},p}(\partial\omega).$$

Trace theorems

Theorem (Gagliardo, 1957)

If $\omega \subset \mathbb{R}^n$ is an open set with Lipschitz boundary and 1 , one has the trace result:

$$W^{1,p}(\omega)_{|\partial\omega} = W^{1-\frac{1}{p},p}(\partial\omega).$$

Theorem (A. Jonsson, H. Wallin, 1984)

If
$$1 , and $1 - \frac{2-d}{p} > 0$, then $W^{1,p}(\mathbb{R}^2)_{|\Gamma} = W^{1 - \frac{2-d}{p},p}(\Gamma)$$$

Trace theorems

Theorem (Gagliardo, 1957)

If $\omega \subset \mathbb{R}^n$ is an open set with Lipschitz boundary and 1 , one has the trace result:

$$W^{1,p}(\omega)_{|\partial\omega} = W^{1-\frac{1}{p},p}(\partial\omega).$$

Theorem (A. Jonsson, H. Wallin, 1984)

If
$$1 , and $1 - \frac{2-d}{p} > 0$, then
$$W^{1,p}(\mathbb{R}^2)_{|\Gamma} = W^{1 - \frac{2-d}{p},p}(\Gamma)$$$$

Sense of the trace: u is strictly defined at $x \in \mathbb{R}^2$ if the limit

$$\overline{u}(x) := \lim_{r \to 0} \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) \, \mathrm{d}y$$

exists. Trace of u on Γ : $\bar{u}_{|\Gamma}$.

Extension theorems

Theorem (A.P. Calderón, E.M. Stein, 1970)

Every Lipschitz domain in \mathbb{R}^n is a Sobolev extension domain.

Extension theorems

Theorem (A.P. Calderón, E.M. Stein, 1970)

Every Lipschitz domain in \mathbb{R}^n is a Sobolev extension domain.

Jones domains (P.W. Jones, 1981) :

A domain $\omega \subset \mathbb{R}^n$ is a Jones domain if there exist $\varepsilon, \delta > 0$ such that for every $x, y \in \omega$ satisfying $|x - y| < \delta$, there exists a rectifiable arc $\gamma \subset \omega$ joining x to y such that

•
$$L(\gamma) \leq \frac{1}{\varepsilon} |x - y|$$
 where $L(\gamma) =$ length of γ ,

•
$$d(z, \partial \omega) \ge \varepsilon \min(|x-z|, |y-z|)$$
 for all $z \in \gamma$.

Theorem (P.W. Jones, 1981)

Jones domains are Sobolev extension domains.

The subcritical case $(a < a^*)$

Extension

If Ω is a ramified domain with $a < a^*$, then Ω is a Jones domain, so it has the *p*-extension property for all $1 \le p \le \infty$.

Traces

Jones theorem combined with Jonsson and Wallin's trace operator yields a trace operator:

$$W^{1,p}(\Omega) \rightarrow W^{1-\frac{2-d}{p},p}(\Gamma)$$

Outline

2

Presentation

- The self-similar boundary
- The class of ramified domains

Trace and extension results

General results

• Trace theorems in the critical case

Extension theorem in the critical case

3 Comparison of the notions of trace

The ramified domains with $a = a^*$

The case $a = a^*$

In this case, Ω cannot be a $W^{1,p}$ -extension domain for p > 2.

Haar wavelets on $\boldsymbol{\Gamma}$

Haar wavelets on Γ :

$$\begin{cases} g_0 = \mathbb{1}_{f_1(\Gamma)} - \mathbb{1}_{f_2(\Gamma)} \end{cases}$$

Mother wavelet g_0

Haar wavelets on Γ

Haar wavelets on Γ :

$$\begin{cases} g_0 = \mathbb{1}_{f_1(\Gamma)} - \mathbb{1}_{f_2(\Gamma)} \\ g_{\sigma|f_{\sigma}(\Gamma)} = 2^{\frac{k}{2}}g_0 \circ f_{\sigma}^{-1} \text{ and } g_{\sigma|\Gamma \setminus f_{\sigma}(\Gamma)} = 0 \text{ for } \sigma \in \{1,2\}^k \end{cases}$$

Mother wavelet g_0

Haar wavelets on Γ

Haar wavelets on Γ :

Haar wavelets on Γ

Haar wavelets on Γ :

Every function $v \in L^p_{\mu}(\Gamma)$, $1 \leq p < \infty$ can be expanded in the Haar wavelet basis (g_{σ}) :

$$v = \langle v \rangle_{\Gamma} + \sum_{k \ge 0} \sum_{\sigma \in \{1,2\}^k} \beta_{\sigma} g_{\sigma}.$$

The sequence (ℓ^n) converges in $\mathcal{L}(W^{1,p}(\Omega), L^p_{\mu}(\Gamma))$ to an operator ℓ^{∞} .

In the case of a ramified domain with 4 similitudes and dim $\Xi=\frac{\dim_{H}\Gamma}{4}$, the result holds.

Outline

2

Presentation

- The self-similar boundary
- The class of ramified domains

Trace and extension results

- General results
- Trace theorems in the critical case
- Extension theorem in the critical case

3 Comparison of the notions of trace

Extension theorem

In the case $a = a^*$,

- \diamond we know that a ramified domain Ω is not a $W^{1,p}$ -extension domain for p > 2.
- $\diamond\,$ the trace theorem suggests that Ω is not a $W^{1,p}\text{-}\text{extension}$ domain for $p>p^{\star}.$
- ♦ $p < p^*$?

Extension theorem

In the case $a = a^*$,

- \diamond we know that a ramified domain Ω is not a $W^{1,p}$ -extension domain for p > 2.
- $\diamond\,$ the trace theorem suggests that Ω is not a $W^{1,p}\text{-}\text{extension}$ domain for $p>p^{\star}.$
- $\diamond \ p < p^{\star}?$

Theorem (T.D., 2013)

If Ω is a critical ramified domain and $p^* = 2 - \dim \Xi$, then for all $p < p^*$, Ω is a $W^{1,p}$ -extension domain

Outline

Presentation

- The self-similar boundary
- The class of ramified domains

2) Trace and extension results

- General results
- Trace theorems in the critical case
- Extension theorem in the critical case

3 Comparison of the notions of trace

Comparison of the notions of trace

The following theorem justifies a *posteriori* the use of several notions of trace on Γ .

Theorem (Y. Achdou, T.D., N. Tchou, 2013)

For $1 , every function <math>u \in W^{1,p}(\Omega)$ is strictly defined μ -almost everywhere on Γ , and

$$\overline{u}_{|\Gamma} = \ell^{\infty}(u)$$

 μ -almost everywhere on Γ .

The proof uses as a key ingredient the extension operator for $p < p^*$. In this case, the trace on Γ does not depend on the extension operator: $(\mathcal{E}u)_{|\Gamma} =: \overline{u}_{|\Gamma}.$

Corollary

If $p > p^*$, Ω is not a $W^{1,p}$ -extension domain.

Thank you for your attention!