Combinatorial Harmonic Coordinates

Saar Hersonsky

Fractals 5 - Cornell University.

Saar Hersonsky (UGA)

June 14, 2014 1 / 15

Motivating questions

Saar Hersonsky (UGA)

▶ ৰ ≣ ▶ ≣ পি ৫ June 14, 2014 2 / 15

・ロト ・日下・ ・ ヨト・

Motivating questions

- Can a given combinatorial structure on a topological space determine a rigid geometry?
- If one varies the combinatorial structure, can analytic information about the space be explored?

Motivating questions

- Can a given combinatorial structure on a topological space determine a rigid geometry?
- If one varies the combinatorial structure, can analytic information about the space be explored?

Motivating answers

There are interesting cases in which both answers are "yes".

Convergence to the Riemann mapping. Thurston conjectured (85) that

Convergence to the Riemann mapping. Thurston conjectured (85) that

Rodin-Sullivan proved (87), important and beautiful extensions ever since by Schramm-He, Beardon-Stephenson, C.D Verdiere, Chow-Luo.

Saar Hersonsky (UGA)

We construct (special types) of *flat surfaces* starting with combinatorial-topological data, which is,

We construct (special types) of *flat surfaces* starting with combinatorial-topological data, which is, a bounded, *m*-connected planar Jordan domain endowed with a triangulation.

We construct (special types) of *flat surfaces* starting with combinatorial-topological data, which is, a bounded, *m*-connected planar Jordan domain endowed with a triangulation. The map from the domain to the target has nice properties.

We construct (special types) of *flat surfaces* starting with combinatorial-topological data, which is, a bounded, *m*-connected planar Jordan domain endowed with a triangulation. The map from the domain to the target has nice properties.

Our work may be viewed as discrete uniformization of planar, *m*-connected bounded Jordan domains; it is also the first step in our program aimed at answering a question by Stephenson from the 90's.

We construct (special types) of *flat surfaces* starting with combinatorial-topological data, which is, a bounded, *m*-connected planar Jordan domain endowed with a triangulation. The map from the domain to the target has nice properties.

Our work may be viewed as discrete uniformization of planar, *m*-connected bounded Jordan domains; it is also the first step in our program aimed at answering a question by Stephenson from the 90's.

Our work extends (with different methods) previous work by Schramm and Cannon-Floyd-Parry.

One main underlying idea of our work:

For an analytic function f of the complex plane one has

f = u + iv,

with u harmonic and v its harmonic conjugate.

Discrete Boundary value problems on graphs

We consider a planar, bounded, m-connected region $\Omega,$ and let $\partial\Omega$ be its boundary. Let

$$\partial \Omega = E_1 \sqcup E_2,$$

where E_1 is the outermost component of $\partial\Omega$. Let \mathcal{T} be a triangulation of $\Omega \cup \partial\Omega$. Invoke a *conductance function* on $\mathcal{T}^{(1)}$, i.e., each edge $(x, y) \in E$ is assigned a *conductance* c(x, y) = c(y, x) > 0, making it a simple <u>finite network</u>.

Saar Hersonsky (UGA)

$$\Delta u(x) = \sum_{y \sim x} c(x, y) \big(u(x) - u(y) \big)$$

is called the Laplacian of u at x;

$$\Delta u(x) = \sum_{y \sim x} c(x, y) \big(u(x) - u(y) \big)$$

is called the *Laplacian* of u at x;

For $x \in \delta(V)$, let $\{y_1, y_2, \dots, y_m\} \in V$ be its neighbors enumerated clockwise. The *normal derivative* of u at a point $x \in \delta(V)$ with respect to a set V is

$$\frac{\partial u}{\partial n}(V)(x) = \sum_{y \sim x, y \in V} c(x, y)(u(x) - u(y)).$$

$$\Delta u(x) = \sum_{y \sim x} c(x, y) \big(u(x) - u(y) \big)$$

is called the Laplacian of u at x;

For $x \in \delta(V)$, let $\{y_1, y_2, \dots, y_m\} \in V$ be its neighbors enumerated clockwise. The *normal derivative* of u at a point $x \in \delta(V)$ with respect to a set V is

$$\frac{\partial u}{\partial n}(V)(x) = \sum_{y \sim x, y \in V} c(x, y)(u(x) - u(y)).$$

A function $u \in \mathcal{P}(\overline{V})$ is called <u>harmonic</u> in V if $\Delta u(x) = 0$, for all $x \in V$.

$$\Delta u(x) = \sum_{y \sim x} c(x, y) \big(u(x) - u(y) \big)$$

is called the Laplacian of u at x;

For $x \in \delta(V)$, let $\{y_1, y_2, \dots, y_m\} \in V$ be its neighbors enumerated clockwise. The *normal derivative* of u at a point $x \in \delta(V)$ with respect to a set V is

$$\frac{\partial u}{\partial n}(V)(x) = \sum_{y \sim x, y \in V} c(x,y)(u(x) - u(y)).$$

A function $u \in \mathcal{P}(\overline{V})$ is called <u>harmonic</u> in V if $\Delta u(x) = 0$, for all $x \in V$. The number

$$E(u) = \sum_{(x,y)\in \overline{E}} c(x,y) (u(x) - u(y))^2$$

is called the Dirichlet energy of u.

Definition

Let k be a positive constant. The Discrete *Dirichlet* Boundary Value Problem is determined by requiring that

1
$$g|_{\mathcal{T}^{(0)}\cap E_1} = k, \ g|_{\mathcal{T}^{(0)}\cap E_2} = 0, \ \text{and}$$

2)
$$\Delta g=0$$
 at every interior vertex of $\mathcal{T}^{(0)}$.

These data will be called <u>Dirichlet data</u> for Ω .

A theorem.

We would like to give a concrete description of one of our new main theorems. Here is the setting.

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$.

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$. Let $S_{\mathcal{A}}$ be the concentric Euclidean annulus with its inner and outer radii satisfying

$$\{r_1, r_2\} = \{1, \exp\left(\frac{2\pi k}{\operatorname{period}(g^*)}\right)\}.$$

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$. Let $S_{\mathcal{A}}$ be the concentric Euclidean annulus with its inner and outer radii satisfying

$$\{r_1, r_2\} = \{1, \exp\left(\frac{2\pi k}{\operatorname{period}(g^*)}\right)\}.$$

Then there exist

() a tiling T of S_A by annular shells,

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$. Let $S_{\mathcal{A}}$ be the concentric Euclidean annulus with its inner and outer radii satisfying

$$\{r_1, r_2\} = \{1, \exp\left(\frac{2\pi k}{\operatorname{period}(g^*)}\right)\}.$$

Then there exist

- **()** a tiling T of S_A by annular shells,
- 2 a boundary preserving homeomorphism

$$f: (\mathcal{A}, \partial \mathcal{A}, \mathcal{R}) \to (S_{\mathcal{A}}, \partial S_{\mathcal{A}}, T),$$

such that f maps each quadrilateral in $\mathcal{R}^{(2)}$ onto a single annular shell in $S_{\mathcal{A}}$;

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$. Let $S_{\mathcal{A}}$ be the concentric Euclidean annulus with its inner and outer radii satisfying

$$\{r_1, r_2\} = \{1, \exp\left(\frac{2\pi k}{\operatorname{period}(g^*)}\right)\}.$$

Then there exist

- **Q** a tiling T of S_A by annular shells,
- 2 a boundary preserving homeomorphism

$$f: (\mathcal{A}, \partial \mathcal{A}, \mathcal{R}) \to (S_{\mathcal{A}}, \partial S_{\mathcal{A}}, T),$$

such that f maps each quadrilateral in $\mathcal{R}^{(2)}$ onto a single annular shell in $S_{\mathcal{A}}$; f preserves the measure of each quadrilateral, i.e.,

$$u(R) = \mu(f(R)), \text{ for all } R \in \mathcal{R}^{(2)}.$$

 \rightarrow

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

 \rightarrow

・ロト ・日下 ・日下

 $\exists \rightarrow b$

The level curves of g form a piecewise-linear analogue of the level curves of the function $u(r, \phi) = r$.

The level curves of g form a piecewise-linear analogue of the level curves of the function $u(r, \phi) = r$.

We define a *new* function, g^* , on $\mathcal{T}^{(0)}$.

The level curves of g form a piecewise-linear analogue of the level curves of the function $u(r, \phi) = r$.

We define a *new* function, g^* , on $\mathcal{T}^{(0)}$. This function will actually be single-valued on an annulus minus a slit and will be called the *conjugate function* of g. It is obtained by integrating the *discrete normal derivative* of g along its level curves.

What are the properties on g^* ?

- The curve $\partial \mathcal{Q}_{\mathrm{top}}$ is a level curve of g^* in $\mathcal{Q}_{\mathrm{slit}}$
- Each level curve of g^* has no endpoint in the interior of Q_{slit} , is simple, and joins E_1 to E_2 . Furthermore, any two level curves of g^* are disjoint.
- The number of intersections between any level curve of g^* and any level curve of g is equal to 1.

Definition

The *period* of g^* is defined by the g^* value on $\partial \mathcal{Q}_{\mathrm{top}}$, that is,

$$\operatorname{period}(g^*) = g^* | \partial \mathcal{Q}_{\operatorname{top}} = \int_{u \in \mathcal{T}^{(0)} \cap E_1} \frac{\partial g}{\partial n} (\mathcal{A}_{(E_2, E_1)})(u).$$

