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Motivating questions

Can a given combinatorial structure on a topological space determine
a rigid geometry?

If one varies the combinatorial structure, can analytic information
about the space be explored?

Motivating answers

There are interesting cases in which both answers are ”yes”.
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Rodin-Sullivan proved (87), important and beautiful extensions ever since
by Schramm-He, Beardon-Stephenson, C.D Verdiere, Chow-Luo....
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We construct (special types) of flat surfaces starting with
combinatorial-topological data, which is, a bounded, m-connected planar
Jordan domain endowed with a triangulation. The map from the domain
to the target has nice properties.

Our work may be viewed as discrete uniformization of planar, m-connected
bounded Jordan domains; it is also the first step in our program aimed at
answering a question by Stephenson from the 90’s.

Our work extends (with different methods) previous work by Schramm and
Cannon-Floyd-Parry.
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Perspective

One main underlying idea of our work:

For an analytic function f of the complex plane one has

f = u + iv ,

with u harmonic and v its harmonic conjugate.
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Boundary value problems for graphs - basic definitions

Discrete Boundary value problems on graphs

Ē

δ(V )

We consider a planar, bounded, m-connected region Ω, and let ∂Ω be its
boundary. Let

∂Ω = E1 ⊔ E2,

where E1 is the outermost component of ∂Ω.
Let T be a triangulation of Ω ∪ ∂Ω. Invoke a conductance function on
T (1), i.e., each edge (x , y) ∈ E is assigned a conductance

c(x , y) = c(y , x) > 0, making it a simple finite network.
Saar Hersonsky (UGA) June 14, 2014 6 / 15
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Let u ∈ P(V ), the set of non-negative functions defined on V̄ , and
V = V ∪ δ(V ). Then for x ∈ V , the function

∆u(x) =
∑

y∼x

c(x , y)
(

u(x)− u(y)
)

is called the Laplacian of u at x ;
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Let u ∈ P(V ), the set of non-negative functions defined on V̄ , and
V = V ∪ δ(V ). Then for x ∈ V , the function

∆u(x) =
∑

y∼x

c(x , y)
(

u(x)− u(y)
)

is called the Laplacian of u at x ;

For x ∈ δ(V ), let {y1, y2, . . . , ym} ∈ V be its neighbors enumerated
clockwise. The normal derivative of u at a point x ∈ δ(V ) with respect to
a set V is

∂u

∂n
(V )(x) =

∑

y∼x , y∈V

c(x , y)(u(x) − u(y)).

A function u ∈ P(V ) is called harmonic in V if ∆u(x) = 0, for all x ∈ V .
The number

E (u) =
∑

(x ,y)∈Ē

c(x , y)
(

u(x)− u(y)
)2

is called the Dirichlet energy of u.
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Boundary value problems for graphs - basic definitions

Ē

δ(V )

Definition

Let k be a positive constant. The Discrete Dirichlet Boundary Value
Problem is determined by requiring that

1 g |T (0)∩E1
= k , g |T (0)∩E2

= 0, and

2 ∆g = 0 at every interior vertex of T (0).

These data will be called Dirichlet data for Ω.
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Boundary value problems for graphs - basic definitions

A theorem.

We would like to give a concrete description of one of our new main
theorems. Here is the setting.
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Boundary value problems for graphs - basic definitions

Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet

boundary value problem defined on (A, ∂A,T ).
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Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet

boundary value problem defined on (A, ∂A,T ). Let SA be the concentric

Euclidean annulus with its inner and outer radii satisfying

{r1, r2} = {1, exp
( 2πk

period(g∗)

)

}.

Then there exist

1 a tiling T of SA by annular shells,

2 a boundary preserving homeomorphism

f : (A, ∂A,R) → (SA, ∂SA,T ),

such that f maps each quadrilateral in R(2) onto a single annular

shell in SA; f preserves the measure of each quadrilateral, i.e.,

ν(R) = µ(f (R)), for all R ∈ R(2).
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Boundary value problems for graphs - basic definitions What goes into the proof

We will start the proof by extending g to the interior of the domain and
affinely over edges in T (1) and over triangles T (2). We will (often) abuse
notation and will not distinguish between a function defined on T (0) and
its extension over |T |.
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We will start the proof by extending g to the interior of the domain and
affinely over edges in T (1) and over triangles T (2). We will (often) abuse
notation and will not distinguish between a function defined on T (0) and
its extension over |T |.

→

The level curves of g form a piecewise-linear analogue of the level curves
of the function u(r , φ) = r .

We define a new function, g∗, on T (0). This function will actually be
single-valued on an annulus minus a slit and will be called the
conjugate function of g . It is obtained by integrating the discrete normal

derivative of g along its level curves.
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Boundary value problems for graphs - basic definitions Constructing a combinatorial polar angle, first - a conjugate function

L(v)

A

E2

E1

v

slit(A)

Qv

π(v)
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Boundary value problems for graphs - basic definitions Constructing a combinatorial polar angle, first - a conjugate function

What are the properties on g∗?

The curve ∂Qtop is a level curve of g∗ in Qslit

Each level curve of g∗ has no endpoint in the interior of Qslit, is
simple, and joins E1 to E2. Furthermore, any two level curves of g∗

are disjoint.

The number of intersections between any level curve of g∗ and any
level curve of g is equal to 1.

Definition

The period of g∗ is defined by the g∗ value on ∂Qtop, that is,

period(g∗) = g∗|∂Qtop =

∫

u∈T (0)∩E1

∂g

∂n
(A(E2,E1))(u).
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