Combinatorial Harmonic Coordinates

Saar Hersonsky

Fractals 5 - Cornell University.

Perspective

Motivating questions

Perspective

Motivating questions

- Can a given combinatorial structure on a topological space determine a rigid geometry?
- If one varies the combinatorial structure, can analytic information about the space be explored?

Perspective

Motivating questions

- Can a given combinatorial structure on a topological space determine a rigid geometry?
- If one varies the combinatorial structure, can analytic information about the space be explored?

Motivating answers

There are interesting cases in which both answers are "yes".

Convergence to the Riemann mapping. Thurston conjectured (85) that

Convergence to the Riemann mapping. Thurston conjectured (85) that

Rodin-Sullivan proved (87), important and beautiful extensions ever since by Schramm-He, Beardon-Stephenson, C.D Verdiere, Chow-Luo....

Perspective - Our work.

We construct (special types) of flat surfaces starting with combinatorial-topological data, which is,

Perspective - Our work.

We construct (special types) of flat surfaces starting with combinatorial-topological data, which is, a bounded, m-connected planar Jordan domain endowed with a triangulation.

Perspective - Our work.

> We construct (special types) of flat surfaces starting with combinatorial-topological data, which is, a bounded, m-connected planar Jordan domain endowed with a triangulation. The map from the domain to the target has nice properties.

Perspective - Our work.

We construct (special types) of flat surfaces starting with combinatorial-topological data, which is, a bounded, m-connected planar Jordan domain endowed with a triangulation. The map from the domain to the target has nice properties.

Our work may be viewed as discrete uniformization of planar, m-connected bounded Jordan domains; it is also the first step in our program aimed at answering a question by Stephenson from the 90's.

Perspective - Our work.

We construct (special types) of flat surfaces starting with combinatorial-topological data, which is, a bounded, m-connected planar Jordan domain endowed with a triangulation. The map from the domain to the target has nice properties.

Our work may be viewed as discrete uniformization of planar, m-connected bounded Jordan domains; it is also the first step in our program aimed at answering a question by Stephenson from the 90's.

Our work extends (with different methods) previous work by Schramm and Cannon-Floyd-Parry.

One main underlying idea of our work:

For an analytic function f of the complex plane one has

$$
f=u+i v
$$

with u harmonic and v its harmonic conjugate.

Discrete Boundary value problems on graphs

We consider a planar, bounded, m-connected region Ω, and let $\partial \Omega$ be its boundary. Let

$$
\partial \Omega=E_{1} \sqcup E_{2},
$$

where E_{1} is the outermost component of $\partial \Omega$.
Let \mathcal{T} be a triangulation of $\Omega \cup \partial \Omega$. Invoke a conductance function on $\mathcal{T}^{(1)}$, i.e., each edge $(x, y) \in E$ is assigned a conductance $c(x, y)=c(y, x)>0$, making it a simple finite network.

Let $u \in \mathcal{P}(\bar{V})$, the set of non-negative functions defined on \bar{V}, and $\bar{V}=V \cup \delta(V)$. Then for $x \in V$, the function

$$
\Delta u(x)=\sum_{y \sim x} c(x, y)(u(x)-u(y))
$$

is called the Laplacian of u at x;

Let $u \in \mathcal{P}(\bar{V})$, the set of non-negative functions defined on \bar{V}, and $\bar{V}=V \cup \delta(V)$. Then for $x \in V$, the function

$$
\Delta u(x)=\sum_{y \sim x} c(x, y)(u(x)-u(y))
$$

is called the Laplacian of u at x;
For $x \in \delta(V)$, let $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \in V$ be its neighbors enumerated clockwise. The normal derivative of u at a point $x \in \delta(V)$ with respect to a set V is

$$
\frac{\partial u}{\partial n}(V)(x)=\sum_{y \sim x, y \in V} c(x, y)(u(x)-u(y))
$$

Let $u \in \mathcal{P}(\bar{V})$, the set of non-negative functions defined on \bar{V}, and $\bar{V}=V \cup \delta(V)$. Then for $x \in V$, the function

$$
\Delta u(x)=\sum_{y \sim x} c(x, y)(u(x)-u(y))
$$

is called the Laplacian of u at x;
For $x \in \delta(V)$, let $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \in V$ be its neighbors enumerated clockwise. The normal derivative of u at a point $x \in \delta(V)$ with respect to a set V is

$$
\frac{\partial u}{\partial n}(V)(x)=\sum_{y \sim x, y \in V} c(x, y)(u(x)-u(y))
$$

A function $u \in \mathcal{P}(\bar{V})$ is called harmonic in V if $\Delta u(x)=0$, for all $x \in V$.

Let $u \in \mathcal{P}(\bar{V})$, the set of non-negative functions defined on \bar{V}, and $\bar{V}=V \cup \delta(V)$. Then for $x \in V$, the function

$$
\Delta u(x)=\sum_{y \sim x} c(x, y)(u(x)-u(y))
$$

is called the Laplacian of u at x;
For $x \in \delta(V)$, let $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \in V$ be its neighbors enumerated clockwise. The normal derivative of u at a point $x \in \delta(V)$ with respect to a set V is

$$
\frac{\partial u}{\partial n}(V)(x)=\sum_{y \sim x, y \in V} c(x, y)(u(x)-u(y))
$$

A function $u \in \mathcal{P}(\bar{V})$ is called harmonic in V if $\Delta u(x)=0$, for all $x \in V$. The number

$$
E(u)=\sum_{(x, y) \in \bar{E}} c(x, y)(u(x)-u(y))^{2}
$$

is called the Dirichlet energy of u.

Definition

Let k be a positive constant. The Discrete Dirichlet Boundary Value Problem is determined by requiring that
(1) $\left.g\right|_{\mathcal{T}^{(0)} \cap E_{1}}=k,\left.g\right|_{\mathcal{T}^{(0)} \cap E_{2}}=0$, and
(2) $\Delta g=0$ at every interior vertex of $\mathcal{T}^{(0)}$.

These data will be called Dirichlet data for Ω.

A theorem.

We would like to give a concrete description of one of our new main theorems. Here is the setting.

Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$.

Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$. Let $S_{\mathcal{A}}$ be the concentric Euclidean annulus with its inner and outer radii satisfying

$$
\left\{r_{1}, r_{2}\right\}=\left\{1, \exp \left(\frac{2 \pi k}{\operatorname{period}\left(g^{*}\right)}\right)\right\}
$$

Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$. Let $S_{\mathcal{A}}$ be the concentric Euclidean annulus with its inner and outer radii satisfying

$$
\left\{r_{1}, r_{2}\right\}=\left\{1, \exp \left(\frac{2 \pi k}{\operatorname{period}\left(g^{*}\right)}\right)\right\}
$$

Then there exist
(1) a tiling T of $S_{\mathcal{A}}$ by annular shells,

Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$. Let $S_{\mathcal{A}}$ be the concentric Euclidean annulus with its inner and outer radii satisfying

$$
\left\{r_{1}, r_{2}\right\}=\left\{1, \exp \left(\frac{2 \pi k}{\operatorname{period}\left(g^{*}\right)}\right)\right\}
$$

Then there exist
(1) a tiling T of $S_{\mathcal{A}}$ by annular shells,
(2) a boundary preserving homeomorphism

$$
f:(\mathcal{A}, \partial \mathcal{A}, \mathcal{R}) \rightarrow\left(S_{\mathcal{A}}, \partial S_{\mathcal{A}}, T\right)
$$

such that f maps each quadrilateral in $\mathcal{R}^{(2)}$ onto a single annular shell in $S_{\mathcal{A}}$;

Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet boundary value problem defined on $(\mathcal{A}, \partial \mathcal{A}, \mathcal{T})$. Let $S_{\mathcal{A}}$ be the concentric Euclidean annulus with its inner and outer radii satisfying

$$
\left\{r_{1}, r_{2}\right\}=\left\{1, \exp \left(\frac{2 \pi k}{\operatorname{period}\left(g^{*}\right)}\right)\right\}
$$

Then there exist
(1) a tiling T of $S_{\mathcal{A}}$ by annular shells,
(2) a boundary preserving homeomorphism

$$
f:(\mathcal{A}, \partial \mathcal{A}, \mathcal{R}) \rightarrow\left(S_{\mathcal{A}}, \partial S_{\mathcal{A}}, T\right)
$$

such that f maps each quadrilateral in $\mathcal{R}^{(2)}$ onto a single annular shell in $S_{\mathcal{A}} ; f$ preserves the measure of each quadrilateral, i.e.,

$$
\nu(R)=\mu(f(R)), \text { for all } R \in \mathcal{R}^{(2)}
$$

\longrightarrow

\longrightarrow

We will start the proof by extending g to the interior of the domain and affinely over edges in $\mathcal{T}^{(1)}$ and over triangles $\mathcal{T}^{(2)}$. We will (often) abuse notation and will not distinguish between a function defined on $\mathcal{T}^{(0)}$ and its extension over $|\mathcal{T}|$.

We will start the proof by extending g to the interior of the domain and affinely over edges in $\mathcal{T}^{(1)}$ and over triangles $\mathcal{T}^{(2)}$. We will (often) abuse notation and will not distinguish between a function defined on $\mathcal{T}^{(0)}$ and its extension over $|\mathcal{T}|$.

\longrightarrow

We will start the proof by extending g to the interior of the domain and affinely over edges in $\mathcal{T}^{(1)}$ and over triangles $\mathcal{T}^{(2)}$. We will (often) abuse notation and will not distinguish between a function defined on $\mathcal{T}^{(0)}$ and its extension over $|\mathcal{T}|$.

\longrightarrow

The level curves of g form a piecewise-linear analogue of the level curves of the function $u(r, \phi)=r$.

We will start the proof by extending g to the interior of the domain and affinely over edges in $\mathcal{T}^{(1)}$ and over triangles $\mathcal{T}^{(2)}$. We will (often) abuse notation and will not distinguish between a function defined on $\mathcal{T}^{(0)}$ and its extension over $|\mathcal{T}|$.

\rightarrow

The level curves of g form a piecewise-linear analogue of the level curves of the function $u(r, \phi)=r$.
We define a new function, g^{*}, on $\mathcal{T}^{(0)}$.

We will start the proof by extending g to the interior of the domain and affinely over edges in $\mathcal{T}^{(1)}$ and over triangles $\mathcal{T}^{(2)}$. We will (often) abuse notation and will not distinguish between a function defined on $\mathcal{T}^{(0)}$ and its extension over $|\mathcal{T}|$.

The level curves of g form a piecewise-linear analogue of the level curves of the function $u(r, \phi)=r$.
We define a new function, g^{*}, on $\mathcal{T}^{(0)}$. This function will actually be single-valued on an annulus minus a slit and will be called the conjugate function of g. It is obtained by integrating the discrete normal derivative of g along its level curves.

What are the properties on g^{*} ?

- The curve $\partial \mathcal{Q}_{\mathrm{top}}$ is a level curve of g^{*} in $\mathcal{Q}_{\text {slit }}$
- Each level curve of g^{*} has no endpoint in the interior of $\mathcal{Q}_{\text {slit }}$, is simple, and joins E_{1} to E_{2}. Furthermore, any two level curves of g^{*} are disjoint.
- The number of intersections between any level curve of g^{*} and any level curve of g is equal to 1 .

Definition

The period of g^{*} is defined by the g^{*} value on $\partial \mathcal{Q}_{\text {top }}$, that is,

$$
\operatorname{period}\left(g^{*}\right)=g^{*} \left\lvert\, \partial \mathcal{Q}_{\mathrm{top}}=\int_{u \in \mathcal{T}^{(0)} \cap E_{1}} \frac{\partial g}{\partial n}\left(\mathcal{A}_{\left(E_{2}, E_{1}\right)}\right)(u)\right.
$$

