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Perspective

Motivating questions

@ Can a given combinatorial structure on a topological space determine
a rigid geometry?

@ If one varies the combinatorial structure, can analytic information
about the space be explored?

Motivating answers

There are interesting cases in which both answers are "yes".
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Perspective

Convergence to the Riemann mapping. Thurston conjectured (85) that

Rodin-Sullivan proved (87), important and beautiful extensions ever since
by Schramm-He, Beardon-Stephenson, C.D Verdiere, Chow-Luo....
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Perspective - Our work.

We construct (special types) of flat surfaces starting with
combinatorial-topological data, which is, a bounded, m-connected planar
Jordan domain endowed with a triangulation. The map from the domain
to the target has nice properties.

Our work may be viewed as discrete uniformization of planar, m-connected
bounded Jordan domains; it is also the first step in our program aimed at
answering a question by Stephenson from the 90's.

Our work extends (with different methods) previous work by Schramm and
Cannon-Floyd-Parry.

Saar Hersonsky (UGA) June 14, 2014 4 /15



One main underlying idea of our work:

For an analytic function f of the complex plane one has
f=u+iv,

with u harmonic and v its harmonic conjugate.
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Discrete Boundary value problems on graphs

E
a(v)

=

We consider a planar, bounded, m-connected region €2, and let 092 be its
boundary. Let
0Q = EL U B,

where E; is the outermost component of 0XQ.

Let 7 be a triangulation of Q U 0f2. Invoke a conductance function on
T, ie., each edge (x,y) € E is assigned a conductance

c(x,y) = c(y,x) > 0, making it a simple finite network.
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Boundary value problems for graphs - basic definitions

Let u € P(V), the set of non-negative functions defined on V, and
V =V UG(V). Then for x € V, the function

Au(x) =Y clx,y)(ulx) = u(y))

y~X

is called the Laplacian of u at x;
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Boundary value problems for graphs - basic definitions

Let u € P(V), the set of non-negative functions defined on V, and
V =V UG(V). Then for x € V, the function

Au(x) =Y clx,y)(ulx) = u(y))

is called the Laplacian of u at x;

For x € 0(V), let {y1,y2,...,¥m} € V be its neighbors enumerated
clockwise. The normal derivative of u at a point x € §(V') with respect to
aset Vis

TV = Y o) ule) - ).
y~x, yeV

A function u € P(V) is called harmonic in V if Au(x) =0, for all x € V.

The number
E()= Y clxy)(u(x) - uly))’
(x,y)€E
is called the Dirichlet energy of u.
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Boundary value problems for graphs - basic definitions

Definition

Let k be a positive constant. The Discrete Dirichlet Boundary Value
Problem is determined by requiring that

o g"r(o)ms1 = k, g|7-(o)m:—2 =0, and
© Ag = 0 at every interior vertex of 7.

These data will be called Dirichlet data for <.
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A theorem.

We would like to give a concrete description of one of our new main
theorems. Here is the setting.

W
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Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet
boundary value problem defined on (A,0.A,T).

Saar Hersonsky (UGA) June 14, 2014 10 / 15
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Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet
boundary value problem defined on (A,0.A,T). Let Sx be the concentric
Euclidean annulus with its inner and outer radii satisfying
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Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet
boundary value problem defined on (A,0.A,T). Let Sx be the concentric
Euclidean annulus with its inner and outer radii satisfying

2k

-1 e
{n,n}={1ep (period(g*)

)}

Then there exist
© a tiling T of S4 by annular shells,

© a boundary preserving homeomorphism
f:(A0AR)— (54,054, T),

such that f maps each quadrilateral in R(® onto a single annular
shell in S 4;
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Boundary value problems for graphs - basic definitions

Theorem (The case of an annulus, Her - 12)

Let k be a positive constant and let g be the solution of the Dirichlet
boundary value problem defined on (A,0.A,T). Let Sx be the concentric
Euclidean annulus with its inner and outer radii satisfying

2k

-1 e
{n,n}={1ep (period(g*)

)}

Then there exist
© a tiling T of S4 by annular shells,

© a boundary preserving homeomorphism
f:(A0AR)— (54,054, T),

such that f maps each quadrilateral in R(® onto a single annular
shell in S4; f preserves the measure of each quadrilateral, i.e.,

v(R) = u(f(R)), for all R € R®),
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Boundary value problems for graphs - basic definitions =~ What goes into the proof

We will start the proof by extending g to the interior of the domain and
affinely over edges in 7(!) and over triangles 7(. We will (often) abuse

notation and will not distinguish between a function defined on 7(9 and
its extension over |T|.
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Boundary value problems for graphs - basic definitions

What goes into the proof

We will start the proof by extending g to the interior of the domain and
affinely over edges in 7(!) and over triangles 7(. We will (often) abuse

notation and will not distinguish between a function defined on 7(9 and
its extension over |T|.
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The level curves of g form a piecewise-linear analogue
of the function u(r,¢) =r.
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Boundary value problems for graphs - basic definitions

What goes into the proof

We will start the proof by extending g to the interior of the domain and
affinely over edges in 7(!) and over triangles 7(. We will (often) abuse
notation and will not distinguish between a function defined on 7(9 and

its extension over |T|.
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The level curves of g form a piecewise-linear analogue of

of the function u(r,¢) =r.

We define a new function, g*, on 7©) This function will actually be

single-valued on an annulus minus a slit and will be called the
conjugate function of g. It is obtained by integrating the discrete normal

derivative of g along its level curves.
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Boundary value problems for graphs - basic definitions Constructing a combinatorial polar angle, first - a conjugate funct

Saar Hersonsky (UGA) June 14, 2014 13 /15



Boundary value problems for graphs - basic definitions Constructing a combinatorial polar angle, first - a conjugate funct

What are the properties on g*?
@ The curve 9Q;op, is a level curve of g* in Qg

@ Each level curve of g* has no endpoint in the interior of Qg is
simple, and joins E; to E. Furthermore, any two level curves of g*
are disjoint.

@ The number of intersections between any level curve of g* and any
level curve of g is equal to 1.

Definition

The period of g* is defined by the g* value on 0Qyp, that is,

period(g") = &'10Qup = | g

ueTONE on

-A(Eg,El))(u)'
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Constructing a combinatorial polar angle, first - a co
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