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Passive linear networks. Resistors

G

x

Rxy

y

Ohm’s law

Vxy = IxyRxy .

Kirchoff’s voltage law

Vxy = v(x)− v(y),

(v(x), v(y)) ∈ R2 potential function.



Passive linear networks. Inductors and capacitors

Time-dependent voltage V (t) and current I (t) functions.

Inductor
L

Capacitor
C

V (t) = L
d

dt
I (t).

I (t) = C
d

dt
V (t).



Frequency domain. Impedances

Fourier transform: V̂ (ω) =
1
2π

∫ ∞
−∞

v(t)e−iωtdt. a

Inductor: V̂ (ω) = iωL Î (ω) =: ZL Î (ω),

Capacitor: V̂ (ω) =
1

iωC
Î (ω) =: ZC Î (ω),

Resistor: V̂ (ω) = RÎ (ω) =: ZR Î (ω).



Ohm’s law revisited

G

x

Zxy

y

Ohm’s law (complex-valued)

Vxy (ω) = Ixy (ω)Zxy (ω).

Kirchoff’s voltage law

Vxy (ω) = v(ω, x)− v(ω, y),

(v(ω, x), v(ω, y)) ∈ C2 potential function.



Electromotive force

From now on: frequency ω is fixed, ϕ phase shift.

Vxy (t) = |Vxy |e iωt , Ixy (t) = |Ixy |e i(ωt−ϕ), Zxy = |Zxy |e iϕ.

Electromotive force

emfxy (t) = Ixy (t)Zxy = |Ixy ||Zxy |e iωt ,



Power dissipation

Average energy loss

1
T

∫ T

0
<(emfxy (t))<(Ixy (t)) dt = · · · =

1
2
|Ixy |2<(Zxy ).

Power dissipation of the potential (v(x), v(y)) ∈ C

P[v ]Zxy =
1
2
<(Zxy )

|Zxy |2
|v(x)− v(y)|2.



Power dissipation in graphs

Let G = (V ,E ) be a finite graph, Z = {Zxy , {x , y} ∈ E} a
network on G and `(V ) = {v : V → C}. The quadratic form

PZ [v ] =
1
2

∑
{x ,y}∈E

<(Zxy )

|Zxy |2
|v(x)− v(y)|2

is the power dissipation in G associated with the network Z.

I If Zx,y , Ixy , v real, PZ(v) = 1
2

∑
{x,y}∈E

1
Zxy

(v(x)− v(y))2.



Power dissipation in an infinite network. The infinite ladder

Feynman’s infinite ladder network [4]

y

ZL

x

ZC

If ω2LC < 4, the characteristic impedance of the circuit satisfies

<(Z eff
xy ) > 0

even though all elements in the circuit have purely imaginary
impedances!



The Feynman-Sierpinski ladder

Infinite network ZFS = {Zxy , {x , y} ∈ E∞}.

Capacitors ZC = 1
iωC , inductors ZL = iωL.



Theorem [2]: The effective impedance of the Feynman-Sierpinski
ladder has positive real part whenever

9(4−
√
15) < 2ω2LC < 9(4 +

√
15) (FC)

(filter condition).

In this case,

Z eff
FS =

1
10ωC

(
(9 + 2ω2LC )i +

√
144ω2LC − 4(ω2LC )2 − 81

)
.



From infinite graphs to fractals

Underlying infinite graph structure G∞ approximated by finite
graphs Gn = (Vn,En), n ≥ 0.

G0 G1 G2 G3

G0
· · ·

I π : G∞ → R2

I π(G0) ⊆ π1(G1) ⊆ . . . ⊆ πn(Gn) ⊆ . . .



The fractal Q∞

The unique compact set Q∞ ⊆ R2 such that

Q∞ =
⋃
n≥0

π(Gn)
Eucl

is a fractal quantum graph.



The fractal K∞

The set
K∞ = Q∞ \

⋃
n≥0

˚π(En)

is the union of countable many isolated points (nodes in V∗) and
a Cantor dust C∞ (accumulation points).



Observations/consequences

I Identify Vn with π(Vn),

I V∗ =
⋃

n≥1 Vn is dense in K∞,

I K∞ is compact in the Euclidean topology.



Networks on Gn



Networks on Gn

Zε,n = {Zε,xy | {x , y} ∈ En}, Zε,xy = Zxy + ε.

Z eff
ε

Z eff
ε

Z eff
ε

Zε,0 Zε,1 Zε,2

(For completeness, Z eff
ε := lim

n→∞
Z eff
ε,n.)



Theorem [2]: Under (FC), the network Zε,n approximates the
Sierpinski ladder Z in the sense that

lim
ε→0+

lim
n→∞

Z eff
ε,n = Z eff

FS ,

where Z eff
ε,n is the effective impedance of Zε,n.

I Up to now, assume that (FC) holds.



Towards power dissipation in K∞

The power dissipation in V∗ associated with the Feynman-
Sierpinski ladder is the quadratic form

PFS[v ] := lim
ε→0+

lim
n→∞

PZε,n [v|Vn ],

where PZε,n : `(Vn)→ R is the power dissipation in Gn associated
with Zε,n.



domPFS := {v ∈ `(V∗) | PFS[v ] <∞}

I meaningful functions in this set?
I extension of functions?



Harmonic functions

I A function h ∈ `(V∗) is harmonic if for any ε > 0

PZε,0 [h|V0 ] = PZε,n [h|Vn ] for all n ≥ 0.

I Notation: HFS(V∗) := {h ∈ `(V∗) harmonic}.

I For any h ∈ HFS(V∗)

PFS[h] = lim
ε→0+

PZε,n [h|Vn ].



Harmonic extension rule

Theorem [2]: For any h ∈ HFS(V∗), j = 1, 2, 3, h|Gj (V0)
= Ajh|V0

, where

A1 =
1

9ZC + 5Zeff
FS


3ZC + 5Zeff

FS 3ZC 3ZC

3ZC + 2Zeff
FS 3ZC + 2Zeff

FS 3ZC + Zeff
FS

3ZC + 2Zeff
FS 3ZC + Zeff

FS 3ZC + 2Zeff
FS



A2 =
1

9ZC + 5Zeff
FS


3ZC + 2Zeff

FS 3ZC + 2Zeff
FS 3ZC + Zeff

FS

3ZC 3ZC + 5Zeff
FS 3ZC

3ZC + Zeff
FS 3ZC + 2Zeff

FS 3ZC + 2Zeff
FS



A3 =
1

9ZC + 5Zeff
FS


3ZC + 2Zeff

FS 3ZC + Zeff
FS ZC + 2Zeff

FS

3ZC + Zeff
FS 3ZC + 2Zeff

FS 3ZC + 2Zeff
FS

3ZC 3ZC 3ZC + 5Zeff
FS

 .



Observations

I A1,A2,A3 have the same eigenvalues

λ1 = 1, λ2 =
3Z eff

FS

9ZC + 5Z eff
FS
, λ3 =

1
3
λ2,

I span{u1} = {constant harmonic functions},

I |λ3| < |λ2| < 1. Otherwise, PFS[h] = PZ0 [Ajh|V0 ] (power
dissipation concentrates in one single cell, a contradiction).



Continuity of harmonic functions

Theorem (A.R.’17): Harmonic functions are continuous on V∗.



Harmonic extension and power dissipation

Lemma: There exists r ∈ (0, 1) such that

PZ0 [Ajh0] ≤ r2 PZ0 [h0] ∀ j = 1, 2, 3

and any non-constant function h0 ∈ `(V0).



Consequences

I Harmonic functions are well-defined on K∞,

HFS(K∞) = {h : K∞ → C | h|V∗ harmonic on V∗}.

I Well-defined power dissipation in K∞,

PFS[h] = PFS[h|V∗ ], h ∈ HFS(K∞).



Power dissipation measure

Theorem (A.R.’17): For each non-constant h ∈ HFS(K∞), power
dissipation induces a continuous measure νh on K∞ with
supp νh = C∞.

Define

νh(Tw ) := lim
ε→0+

lim
n→∞

∑
x ,y∈Tw∩Vn

{x ,y}∈En

PZε,n [h]xy

for each m-cell Tw .



Oscillations

Corollary: For any m-cell Tw ,

νh(Tw ) � osc(h|Tw )2.



Self-similar measure on K∞

Bernouilli measure µ on K∞:

µ(Tw1...wn) = µw1 · · ·µwn ,

3∑
i=1

µi = 1.

I suppµ = C∞,

I (C∞, µ) is probability space,

I take µ1 = µ2 = µ3 = 1
3 .



Singularity of power dissipation

Theorem (A.R.’17): Assume that for any non-constant
h ∈ HFS(K∞) such that h|V0 = v0

x 7→ ‖DP0Mn(x) . . .M1(x)v0‖

is non-constant for some n ≥ 1. Then, the measure νh is singular
with respect to µ.



Summary

I Power dissipation on an infinite (fractal) AC network

I harmonic potentials are continuous

I (non-atomic) power dissipation measure

I singularity of power dissipation measure
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Thank you for your attention!


