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Sum of translated middle-third Cantor sets
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Assumptions

X any set whose cardinality is continuum

- - -

f:X = R abijection

Continuity at 0 of the inverse map\

lim ') = lim f'(2)

x—0_ x—04



Arithmetic in X (field isomorphism)

ray = [TH(f(x)+ fy)
roYy = f Hf(x) = f(y)
oy = 71 (f(x)f(y))

zoy = [~ {f()/f(y)

One verifies the standard properties: (1) associativity
By Bz=0d(Ydz), 0y Oz=20(y0O =),
(2) commutativity t &y = yPbx, Oy =y ©x, (3)
distributivity (r $y) ® 2z = (r ©® 2) & (y ® z). Elements
0,1 € X are defined by 0 & & = &, I’ ® & = x, which
implies f(0") = 0. f(1’) = 1. One further finds &z = 0.
r@x =1, as expected. A negative of x € X is defined
as or=06r=f1— f(r),ie f(6xr)=—f(xr)and
f(el)y=—f(1")=—1,ie. &1’ = f~1(—1). Notice that

(el e (el) = 71 (fel)?) =11 =1"



Example: Triadic middle-third Cantor set (details later)

n' = f'(n), néeN,
1" =1,
0 = 0,
1'02 = 1/3=f"1(1/2),
1/3)d(1/3) = 1'e2hYeo(1'02)=2'0(1"02)=1=1

X f—l




Multiplication can be regarded as repeated addition 1in
the following sense. Let n € N and n’ = f~1(n) € X.
Then

naom' = (n+m),
n&m' = (nm)
— m"@---@m".
N e’

ntimes

e
R

In particular n’ =1" & --- & 1" (n times).

A power function A(r) = x ® --- ® x (n times) will
be denoted by 2™ . Such a notation is consistent in the
sense that

!

) ! )
V@™ = ptm) = prom



‘The derivative of a function A : X — X

D gg) ~ lim (A(X o H)o A(X)) o H

= lim (A(X © f7(h) O AX)) @ f7(h)

h—0

Examples T

f |

s <sm () Deetex

T Dx = OK 6 Sin (K6 X)

—  _

DXV

= [T NAEON)

= [N F0ON) ‘
— N/ @X(N—l)’ — N/ @XN’@I’



Example: X =R , f:R—-R

\/m—fc/y
r@y = Vad+y
voy = Vit —y?

T Y

e | Cos x = \3/ cos(z3)

. s
D {’/cos(:t:g’) — Clos 7 Sin x \/SID(CC )

d 22 cos(x?)
ESma’:  sin?/3(23)

x> /3



"’Intelgral of a function A: X — X

f AX"NDX'= f! (/ foAo fl(il’:)d.ﬁl’:)

satisfies

D f XNDX' — A(X)

X pA(X)
DX’ |
v DX’

H
=
s
0
I
=



"’Intelgral of a function A: X — X

satisfies

X"YDX'
DX f

X DA(X)

. Dy DX’

fY)

(X)

foAo fl(il?)dil?)

THE FOURIER INTEGRAL
AND CERTAIN OF ITS
APPLICATIONS

NORBERT WIENER
‘rofessor of Mathenantics at te Magsnehusetts Inatitnte of Tech
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Application: Sine Fourier transform on a middle-third Cantor set

Step1: X and f: X - R

Let us start with the right-open interval [0,1) C R,
and let the (countable) set Yo C [0,1) consist of those
numbers that have two different binarv representations.
Denote by 0.tyt5... a ternary representation of some
re0,1). fye¥Y; =10,1)\ Yy then y has a unique
binary representation, say y = 0.b;by.... One then sets
g+(y) = O0tyty..., t; = 2b;. The index £ appears for
the following reason. Let y = 0.byby--- = 0.b3b5 ... be
the two representations of y € Yo. There are two op-
tions, so we define: ¢_(y) = min{0.t1t5....0.85¢5...}
and g4 (y) = max{0.tyt5....0.t¢5 ...}, where t; = 2b,,
t;- = Qbi;-. We have therefore constructed two injective
maps g+ : [0,1) — [0,1). The ternary Cantor-like sets
are defined as the images C'1(0,1) = g4([0,1)), and
f+ : C£(0,1) = [0.1), f+ = gi'. is a bijection between
C+(0,1) and the interval.

X = UkezC_(k, kE + 1)




Application: Sine Fourier transform on a middle-third Cantor set
Step 2:’\/Scalar product N\

\\\\

| T2
) - [ Ao seonx

 (A|B) = (B|A)
(A|B& C) (A|B) @ (AlC)
(A|[A®B) = AG (A|B)
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Application: Sine Fourier transform on a middle-third Cantor set

\\\\

Step 2: Scalar product AN
\f‘ T2’ \
S@E) = [ A e BODY

—~_ oT 02’ S
~ (A|B) = (B|A)
(A|lBe C) = (A|B) @ (A|C)
(A[A®B) = A® (A|B) y
L /

From now on it's just standard signal analysis...

AX) = @ (CulX) © (CulA) & Su(X) © (S, 4))

n>0



Application: Sine Fourier transform on a middle-third Cantor set
Example: R
X |
{:1_45-_
| / _
| A= Lo
04} \ J
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, L//
=02
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The original signals...

n=10 of | n=5

...and their finite-sum
reconstructions

n=30 . 0 n=30




The original signals...

n=10

34/\ /\/\
o2t
ofs ) 15

n=30

n=5

...and their finite-sum
reconstructions

-n=30

« The method works for all Cantor sets, even those that are not self-similar
« We circumvent limitations of the Jorgensen-Pedersen construction, based on
self-similar measures



Example: Fourier analysis of




A cosmetic change in definitions

Consider two sets, X and Y, equipped with bijections
fy: Y — R and fx : X = R, and arithmetics {®y, Oy :
YxVY — Y}, {@X,QX XX X — X}, defined by fy
and fx. The bijection f = f Yo fx : X = Y makes it
possible to consider derivatives of functions A : X — Y.
Let 04 = f5'(0) be the neutral element of addition in X.

 DA(X)

—  lim (A(X ox H) Oy A(X)) oy f(H)

DX H—0%




Bijection for the Sierpinski case

In the Cantor case we removed a coutable subset to have the bijection
In the Sierpinski case we add a countable subset to have the bijection

This is not needed in principle, but I'm not clever enough to find something
more straightforward and yet easy to work with :(

| will describe the bijection since once we have it the rest is just standard
signal analysis:




Aigorithm

~ Consider » € Ry and its ternary representation x =

(ty...to.t_1t_o...)3. If  has two different ternary rep-
resentations, we choose the one that ends with infinitely
Step 1 many 2s. Keeping the digits unchanged let us change the
| base from 3 to 4, i.e.

/

\

€Tr = (tn v o t(].t_lt—Q R )‘3 = (tn Cen t(].t_lt_g RN )4 =1

The quaternary representation of y is unique, and it does
not involve the digit 3. Next, let us parametrize the qua-

ternary digits in a binary way, but written in a column

form:()zgtlz(f:?:é:i%:}.
Step 2

converted into a pair of binary sequences,

1 has been

\

(a;,b;) # (1,1) for any j S

Ay ... A0. A1 -9 . ..
N L L R ( by -+ bo-b_1b_s ... )2



Algorithm

-

/

Step 1

Consider z € R, and its ternary representation x =
(tp...to.t_1t_o...)3. If x has two different ternary rep-
resentations., we choose the one that ends with infinitely
many 2s. Keeping the digits unchanged let us change the
base from 3 to 4, i.e.

€T = (tn ot dtqt_o . )3 > (tn oot dtqt—o . )4 =1

Step 2

\

The quaternary representation of y is unique, and it does

not involve the digit 3. Next, let us parametrize the qua-

ternary digits in a binary way, but written in a column

0 0 1 1
form.()—otl— 132—033— K

converted into a pair of binary sequences,

1 has been

Ay ... 0Q0.A_10_5 . .. )
>

(tn...to.t_1t—2 T )4 = ( bn Ce b[).b—lb—Q Tt

(aj,b;) # (1,1) for any j -_
Until now the procedure is invertible...



Algorthm ...

~ Consider z € Ry and its ternary representation x =
(ty...to.t_1t_o...)3. If  has two different ternary rep-

3 resentations, we choose the one that ends with infinitely

Step 1 many 2s. Keeping the digits unchanged let us change the

| base from 3 to 4, i.e.

/ /

€Tr = (tn v o t(].t_lt—Q R )‘3 = (tn Cen t(].t_lt_g RN )4 =1

The quaternary reprebentatlon of TG unlque “and it does
not involve the digit 3. Next, let us parametrize the qua-

ternary digits in a binary way, but written in a column

form: 0 = 0.1: 0.,2: 1.,3: 1. 1 has been

Step 2 0 L 0 I

converted into a pair of binary sequences,

\ / E—— fﬂiv,
S~ ( Uy ...A0.Ad-1A-92 ... ) \
2

[P R AR A — "
( 0-t—10-2 - )4 bO b 1b_2

(aj,bj) # (1,1) for any j f¥)/ 2 /

Until now the procedure is invertible and defines a Slerplnskl set, but...




...once we identify the pair of binary sequences with a point in
the plane, we no longer know how to return from the point to
the sequences.

In principle there are 4 options, e.g. (1,1) could be either of

(o), (%), (50), (7).



...once we identify the pair of binary sequences with a point in
the plane, we no longer know how to return from the point to
the sequences.

In principle there are 4 options, e.g. (1,1) could be either of

(i), (16, DR, (i),

Can't occur inthe |
' algorithm as containing
~quaternary digit3



...once we identify the pair of binary sequences with a point in
the plane, we no longer know how to return from the point to
the sequences.

In principle there are 4 options, e.g. (1,1) could be either of
( 1.(0) )
0.(1) /,
Cantoccur in the ~ Can't occur in the
 algorithm as containing = algorithm as ending

~ quaternary digit3 ~ with infinitely Os



...once we identify the pair of binary sequences with a point in
the plane, we no longer know how to return from the point to
the sequences.

In prlnC|pIe there are 4 optlons e.g. (1,1) could be either of
M - Can t occur in the Can t occurinthe
|  algorithm as containing = algorithm as ending

.~ quaternarydigit3 ~  with infinitely Os

Only these two options count, and this turns out to be the only
ambiguity of the inverse algorithm in general



Proof: The same mechanism eliminates all the remaining am-
biguities:
(A) If a, b are both irrational, or «a is irrational and b
rational-periodic. their binary forms are unique.

(B) If a is irrational (or rational-periodic), but b ratio-
nal non-periodic, then b cannot end with mfinitely many
1s, as 1t would mean that a ends with infinitely many
Us. So these cases are again unique. Conclusions are
unchanged 1f one interchanges a and b.

(C) The only ambiguity appears if a ends with in-
finitely many Os, but b with infinitely many 1s (or the
other way around). But this is the case we have started
with.

Thus the bijection is not for a standard Sierpinski set, but for its double
cover:

In cases (A) and (B) we identify (a,b). = (a.b)_ =
(a,b). Only the (countable) case (C) requires a two-sided
plane (a,b). # (a.b)_. The case (C) occurs for those
r € R whose ternary representation ends with (2)3 or
(1)3. Only the latter numbers are mapped into (a.b)_.



All Sierpinskian integers are represented by pairs of
integers, a representation somewhat similar to complex
numbers, but with different rules of addition and multi-
plication, as illustrated by

3’ D 4 = (2~0)+ D (1*2)4— =7 = (3~0)+

(numbers represented in decimal form).
8
Ernin iy

FIG. 2: The image of the first 200 natural numbers,
£ '({1,...,200}). All natural numbers are mapped into the
positive side of the oriented plane.



Bo
Our algorithm defines an injective map g+ of R into
a two-sided plane, with the above mentioned 1dentifi-
cations. Let us extend g4+ to g by g(|z|) = g+(|x|).
g(—|x|) = —g+(|x|). The image S = ¢(R) is our defini-
tion of the Sierpinski set. Denoting f =¢~ ! f: S = R
we obtain

-
7
e

r@dy = fHf)+ fly).
rey = fH(fx) - fly).
rOy = [THf(0)f(y),
roy = fHf@)/f).
NN EEEEE ST ©©
AT I T R B T B T B
WO O U W
A T B F A
“%:%‘EE “%:v;‘}::g “%:g“%g F71(0) = (0,0)
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