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any set whose cardinality is continuum

a bijection

Continuity at 0 of the inverse map

Assumptions



  

Arithmetic in      (field isomorphism)



  

Example: Triadic middle-third Cantor set (details later)



  



  

The derivative of a function

Examples:
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Integral of a function

satisfies
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Application: Sine Fourier transform on a middle-third Cantor set

Step 1:      and



  

Application: Sine Fourier transform on a middle-third Cantor set

Step 2: Scalar product



  

Application: Sine Fourier transform on a middle-third Cantor set

Step 2: Scalar product

From now on it's just standard signal analysis...



  

Application: Sine Fourier transform on a middle-third Cantor set

Example:



  

The original signals...

...and their finite-sum 
reconstructions
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The original signals...

...and their finite-sum 
reconstructions

n=10

n=30 n=30

n=5

● The method works for all Cantor sets, even those that are not self-similar
● We circumvent limitations of the Jorgensen-Pedersen construction, based on 

self-similar measures



  

Example: Fourier analysis of



  

A cosmetic change in definitions



  

Bijection for the Sierpiński case

In the Cantor case we removed a coutable subset to have the bijection
In the Sierpiński case we add a countable subset  to have the bijection

This is not needed in principle, but I'm not clever enough to find something 
more straightforward and yet easy to work with :(

I will describe the bijection since once we have it the rest is just standard 
signal analysis:

n=50n=5



  

Algorithm

Step 1

Step 2



  

Algorithm

Step 1

Step 2

Until now the procedure is invertible...



  

Algorithm

Step 1

Step 2

Until now the procedure is invertible and defines a Sierpiński set, but...



  

...once we identify the pair of binary sequences with a point in 
the plane, we no longer know how to return from the point to 
the sequences. 

In principle there are 4 options, e.g. (1,1) could be either of
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...once we identify the pair of binary sequences with a point in 
the plane, we no longer know how to return from the point to 
the sequences. 

In principle there are 4 options, e.g. (1,1) could be either of

Can't occur in the 
algorithm as containing 

quaternary digit 3

Can't occur in the 
algorithm as ending 

with infinitely 0s

Only these two options count, and this turns out to be the only 
ambiguity of the inverse algorithm in general



  

Proof:

Thus the bijection is not for a standard Sierpiński set, but for its double 
cover:
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