
WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR?
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Abstract. In the study of differentiable manifolds, there are several different
objects that go by the name of “connection”. I will describe some of these objects,
and show how they are related to each other. The motivation for many notions of
a connection is the search for a sufficiently nice directional derivative, and this will
be my starting point as well. The story will by necessity include many supporting
characters from differential geometry, all of whom will receive a brief but hopefully
sufficient introduction.

I apologize for my ungrammatical title.
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1. Introduction

In the study of differentiable manifolds, there are several different objects that go

by the name of “connection”, and this has been confusing me for some time now.

One solution to this dilemma was to promise myself that I would some day present

a talk about connections in the Olivetti Club at Cornell University. That day has

come, and this document contains my notes for this talk.

In the interests of brevity, I do not include too many technical details, and instead

refer the reader to some lovely references. My main references were [2], [4], and

[5]. Some other very interesting references are [3] (which is a truly marvelous book),

and [6] (which is also marvelous, although I find it more enigmatic at times). Also,

somebody who REALLY knows what he or she is doing has recently been reworking

the Wikipedia entries having to do with connections and curvature. In prepar-

ing this document, I found the entries on Covariant derivative, Connection, Koszul

connection, Ehresmann connection, and Connection form to be very illuminating

supplementary material to my textbook reading.



All manifolds in this document, and structures on them and maps between them,

are assumed to be smooth.

2. The search for a good directional derivative

Recall from multivariable calculus the definition of the directional derivative. If

g : Rn → R is a differentiable function, p ∈ Rn is a point, and ~v ∈ Rn is a tangent

vector at p, then the directional derivative of g at p in the direction ~v is the

number D~vg defined by

(1) D~vg := lim
t→0

g(p+ t~v)− g(p)

t
.

Remark 2.1. One sometimes thinks of this directional derivative as defining a func-

tion, because vectors in Rn can float, and so ~v can represent a tangent vector to

any point in Rn. But this is a peculiarity of vector spaces, and does not hold for

arbitrary manifolds. (This is actually a peculiarity of Lie groups, where the single

tangent vector ~v can be pushed around by left multiplication to form a vector field.

The “multiplication” for a vector space is just addition.) ♦

Equation (1) doesn’t really make sense for an arbitrary manifold, since we can’t

usually add and subtract vectors from points, so let us use a different definition which

actually does work in a more general setting. Let M be a manifold, g ∈ C∞(M) be

a function, p ∈ M be a point, and ~v ∈ >>>pM be a tangent vector at p. Let t 7→ c(t)

be a smooth curve defined in a neighborhood of 0 such that c(0) = p and c′(0) = ~v.

Then the directional derivative of g at p in the direction ~v is the number D~vg

defined by

(2) D~vg := lim
t→0

g (c(t))− g (c(0))

t
= (g ◦ c)′(0).

One must check that this does not depend on the choice of curve c, but this is not

too difficult to do in local coordinates. Just to be sure that Equations (1) and (2)

really give the same answer if our manifold is Rn, notice that the curve c(t) = p+ t~v

has c(0) = p and c′(0) = ~v, and that

g (c(t))− g (c(0))

t
=
g(p+ t~v)− g(p)

t
.

If X ∈ Vec(M) is a vector field on M and g ∈ C∞(M) is a smooth function, then

the directional derivative of g in the direction X is the function DXg defined



by DXg(p) := DXpg for p ∈ M . (Here Xp is the tangent vector at x given by the

vector field X.) It is not at all obvious that DXg has any nice properties at all, but

surprisingly, it turns out to be a smooth function (again, use local coordinates). In

this way, each vector field X ∈ Vec(M) gives rise to a transformation DX : C∞(M)→
C∞(M). These transformations have nice properties. Each DX is linear over R, and

obeys a Leibniz rule (a.k.a. product rule):

(3) DX(f · g) = f ·DXg + g ·DXf for all f, g ∈ C∞(M).

Such transformations of C∞(M) are called derivations .

The assignment X 7→ DX has another very interesting property. It is clearly linear

over R, but because of the point-wise way in which it is defined, it is actually linear

over C∞(M) also! If f, g ∈ C∞(M), X ∈ Vec(M), and p ∈M and g ∈ C∞(M), then

(DfX g) (p) := D(fX)p g = D(f(p)·Xp) g = f(p) ·DXp g = (f ·DXg) (p),

by linearity over R. So DfX g = f ·DXg.

Remark 2.2. Because of the point-wise sort of definition of DXg, it this linearity of

the direction over C∞(M) should come as no surprise. The really surprising thing is

that the point-wise definition results in a smooth function! ♦

Having defined a directional derivative for functions, we would like to define one

for vector fields.

Definition 2.3. A directional derivative of vector fields is a map ∇ : Vec(M)×
Vec(M) → VecM , (X, Y ) 7→ ∇XY , such that ∇ is bilinear over R and satisfies the

Leibniz rule,

∇X(fY ) = DXf · Y + f · ∇XY

for all f ∈ C∞(M). If ∇ also satisfies ∇fXY = f · ∇XY for all f ∈ C∞(M), then ∇
is called covariant , or tensorial with respect to direction .

One defines a directional derivative of differential forms, or more generally of tensor

fields, in the same way, with the added requirement that ∇ preserve the degree or

type, respectively. 4

Remark 2.4. The term tensorial means exactly linear with respect to scalar mul-

tiplication by smooth functions, although the specific definition is usually stated

differently. The term covariant, on the other hand, usually refers to something quite

different. Its use in this context is meant to refer to Riemann’s requirement that

this derivative be independent of the choice of local coordinates, and hence change



covariantly with respect to changes in coordinates. Of course, in the modern study of

manifolds, most decent transformations or objects are expected to be independent of

the choice of local coordinates and hence are all covariant in this sense. Nonetheless,

a covariant derivative is almost universally understood to mean one that is tensorial

in this way. ♦

Why is tensoriality good? The following proposition answers this question.

Proposition 2.5. Let X1, X2, and Y be vector fields such that X1 and X2 agree at

a given point p ∈M . Suppose ∇ is a covariant directional derivative. Then

∇X1Y (p) = ∇X2Y (p).

Thus the directional derivative at a point depends only on the specific direction at

that point.

Proof. Let e1, . . . , en ∈ Vec(M) be a local frame for M defined in a neighborhood

U of p, i.e. (e1)q, . . . , (en)q form a basis for >>>qM at each q ∈ U . Then over U we can

express X1 and X2 as linear combinations of e1, . . . , en over C∞(U): X1 =
∑n

j=1 fjej
and X2 =

∑n
j=1 gjej. By linearity and tensorality of ∇ with respect to direciton, we

have

(4) ∇X1Y =
n∑
j=1

fj · ∇ej
Y and ∇X2Y =

n∑
j=1

gj · ∇ej
Y.

Because (X1)p = (X2)p, and by the uniqueness of representation of vectors with

respect to a basis, we have fj(p) = gj(p) for j = 1, . . . , n. Together with (4) above,

this implies that ∇X1Y (p) = ∇X2Y (p). QED

Unfortunately, in general there is no natural choice of a covariant directional de-

rivative of vector fields for an arbitrary manifold. There is, however, a natural choice

of directional derivative, called the Lie derivative .

Let X ∈ Vec(M), and let ρt : M → M be the flow of X. This means that ρ0 is

the identity map and

d

dt
ρt(p)

∣∣∣∣
t=0

= Xp

for all p ∈ M . It can be shown that ρs ◦ ρt = ρs+t for s, t ∈ R for which the flow is

defined. It follows that ρ−t = (ρt)
−1, so that each ρt is a diffeomorphism. The Lie



derivative of a vector field Y ∈ Vec(M) in the direction X is the vector field LXY
defined by

(LXY )(p) := lim
t→0

Yp − (ρt∗Y )p
t

for all p ∈ M . Here ρt∗Y is the pushforward of the vector field Y by the diffeomor-

phism ρt, defined by (dφt)φ−1
t (p)Yφ−1

t (p), where dφt is the derivative of φt.

One can also define the Lie derivative LXω of a differential form ω ∈ Ω·(M) on

M in the direction X using the flow of X:

(LXω) (p) := lim
t→0

(ρ∗tω)(p)− ω(p)

t

for p ∈M . Here ρ∗tω is the pullback of ω by ρt, defined by evaluating ω at ρt(p) and

pushing forward the input tangent vectors by the derivative of ρt.

One can show that both of these are directional derivatives, in the sense of Defi-

nition 2.3. Unfortunately, neither of them is tensorial with respect to direction. One

can show without too much difficulty that LXY = −LYX, and so

LfXY = −LY (fX) = DY f ·X + f · LYX = DY f ·X − f · LXY.

So LXY is tensorial in X if and only if DY f ·X ≡ 0, which is generally true only if

X or Y is the zero vector field. For differential forms, one can use “Cartan’s Magic

Formula”, [2, Proposition 3.10], and the tensoriality of differential forms to deduce

LfXω = (ιfX ◦ d)ω + (d ◦ ιfX)ω

= f · (ιX ◦ d)ω + d(f · ιXω)

= f · (ιX ◦ d)ω + df ∧ ιXω + f · (d ◦ ιX)ω

= f · LXω + df ∧ ιXω.

Here, ιXω denotes the interior product of X and ω, and which means ω with X

plugged into the first slot. Since df ∧ ιXω ≡ 0 for all f ∈ C∞(M) in only the most

degenerate circumstances, we see that LXω is almost never tensorial in X.

If our manifold is Rn, then there actually is a natural choice of covariant directional

derivative. We define ∇ : Vec(Rn)× Vec(Rn)→ Vec(Rn) by

(5) ∇XY (p) := lim
t→0

Yp+tXp − Yp
t



for p ∈ Rn. If we write Y : Rn → Rn in terms of its coordinate functions, Y =

(g1, . . . , gn), then we can write ∇XY in terms of its coordinate functions:

(6) ∇XY = (∇Xg1, . . . ,∇Xgn) .

It is not hard to see that ∇ is tensorial with respect to direction.

Remark 2.6. There are two ways to view the meaning of the validity of this defini-

tion. One is that tangent vectors in Rn are viewed as elements of Rn, which means

that a vector field on Rn gives points in Rn, so that you can compose two vector

fields. This is the viewpoint of formula (5).

The other way is to notice that the standard basis for Rn gives us a global frame

for Rn, which allows us to express vector fields as ordered tuples of functions, and

so boost our covariant directional derivative of functions to a covariant directional

derivative of vector fields. This is the viewpoint of (6).

Since the identification of tangent spaces of Rn with Rn, and the global frame of

standard basis vectors, are both structures that are naturally built into the definition

of Rn, this covariant directional derivative can be considered to be God-given as

well. ♦

The definition of this natural covariant directional derivative for Rn highlights

the problem with defining one on an arbitrary manifold. For an arbitrary manifold,

tangent vectors at different points can’t be naturally compared. There is no natural

connection between different tangent spaces. This is what a connection will provide,

and this is why it is so-named.

Very often, a connection on a manifold is simply defined to be any covariant

directional derivative, skipping the intermediate steps. We will approach this goal

from the other end.

3. Fiber bundles and Ehresmann connections

Let M and F be topological spaces. A fiber bundle over M with fiber F is

a topological space E and a continuous map π : E → M such that E is locally the

product of M and F , in the sense that for every u ∈ E there is an open neighborhood

U of π(p) in M and a homeomorphism φ : π−1(U)→ U × F such that the following



diagram commutes.

π−1(U)

π
%%KKKKKKKKKK ∼=

φ // U × F
π1

��
U

Here, π1 : U×F → U is projection onto the first coordinate. From the commuting of

the diagram, we see that each fiber of the bundle, Ep := π−1(p), is homeomorphic

to F . Thus, one can view E as a collection of “copies” of F parametrized by the

points of M . The topology of E comes from the way in which these copies are glued

together along M . (This can be made very precise.) The space M is called the base

space , and E the total space .

Examples 3.1. (1) Let E = M ×F and π : E →M be projection onto the first

coordinate. This is called the trivial bundle over M with fiber F .

(2) Let π : E →M be a covering space. This is a fiber bundle over M with fiber

some discrete set F (usually countable).

(3) The cylinder and the Möbius band are both fiber bundles over the circle, with

fiber the closed interval [0, 1] ⊂ R.

♦

A section of the fiber bundle is a (continuous) map σ : M → E such that π ◦σ =

1M . A section picks out an element of each fiber, in a continuous way.

A fiber bundle homomorphism between two fiber bundles over the same space

is a continuous map between them that commutes with the bundle projections. A

fiber bundle is called trivial if it is isomorphic to the trivial bundle with the same

fiber. Therefore, every fiber bundle can be called locally trivial .

A very important thing to keep in mind is that even though each fiber is homeo-

morphic to F by some homeomorphism, there is no natural homeomorphism, and so

we cannot naturally identify fibers with each other. This is somewhat unfortunate,

but it is also where the interesting features of fiber bundles come from. It all of our

topological spaces are actually manifolds, then there is a way to compare different

fibers. It begins with the following definition.



Definition 3.2. Let π : E → M be a smooth fiber bundle with fiber F . For each

u ∈ E, let Vu denote the subspace of >>>uE consisting of vectors which are tangent

to the fiber Fπ(u). Then Vu = >>>u(Eπ(u)) = ker
(
dπu : >>>uE →>>>π(u)M

)
. We call

Vu the vertical subspace at u. An Ehresmann connection , or fiber bundle

connection , on π : E → M is a collection Γ = {Hu | u ∈ E} of vector subspaces

Hu ⊂>>>uE, called horizontal subspaces, such that

• the assignment u 7→ Hu depends smoothly on u ∈ E; and

• for each u ∈ E we have >>>uE = Hu ⊕ Vu.

4

Remark 3.3. An equivalent way to specify a fiber bundle connection is to give a

vector bundle homomorphism v : >>>E →>>>E such that v2 = v and v(>>>uE) = Vu
for each u ∈ E. Then the horizontal subspaces are given by Hu := ker v|>>>uE. ♦

Example 3.4. Let M and F be manifolds, let E = M × F , and let π : E → M be

the trivial fiber bundle over M with fiber F . The product structure E = M × F

induces a natural direct sum decomposition >>>E ∼= >>>M ⊕>>>F on the tangent bundle

of E. Under this identification, the vertical spaces are given by Vu = >>>uF for each

u ∈ E. The trivial connection on this bundle is given by Hu := >>>uM for each

u ∈M .

A connection is said to be flat at u ∈ E if there is a local trivialization of the

bundle in a neighborhood of u under which the given horizontal subspaces map to the

horizontal subspaces of the trivial connection on the corresponding trivial bundle. ♦

Tangent vectors represent directions. Vertical vectors are in the direction of the

fibers of the bundle, so if you move in a vertical direction then you remain in the

same fiber. The goal of specifying horizontal directions is to tell you exactly how to

move from fiber to fiber.

By checking the dimensions of the various vector spaces, we see that dπu is a linear

isomorphism Hu →>>>π(u)M for each u ∈ E. Hence, for any p ∈M and u ∈ Eu, each

vector in>>>pM has a unique horizontal lift to a vector in>>>uE. A curve in E is called

horizontal if its velocity vectors are all horizontal.

Given a curve t 7→ c(t) in M , a lift of c to E is a curve t 7→ c̃(t) in E such that

π (c̃(t)) = c(t) for all t. The curve c̃ is a horizontal lift if c̃ is a horizontal curve in

E.



Theorem 3.5. Let π : E →M be a smooth fiber bundle with fiber F , and let Γ be a

connection. If p ∈ M and t 7→ c(t) is a smooth curve in M with c(0) = p, then for

each choice of lift u ∈ Ep of p, there exists a unique horizontal lift t 7→ c̃(t) of c with

c̃(0) = u, defined for small t.

The proof of this theorem involves some results about differential equations, which

I will not state here. The words “existence” and “uniqueness” are probably involved.

Perhaps also “Picard-Lindelöf Theorem”.

The uniqueness of horizontal lifts lets us start with a curve in M through p, and

for each u in the fiber over p, travel a short distance to other fibers. We almost have

a map between fibers, but the amount of time we can follow the horizontal lift of the

curve depends on the initial point chosen in the fiber over p. The basic problem is

that an arbitrary fiber bundle, even a smooth fiber bundle, just doesn’t have enough

structure. In the following sections, we examine special kinds of fiber bundles.

4. A quick word about curvature

Anytime we have a connection, whether it be in terms of horizontal spaces or

something else, we have some notion of curvature . This document, and the talk it

is based on, are about connections, and curvature is a whole extra (and extremely

interesting) conversation. But here is the main idea.

All fiber bundles are locally trivial, in that they are locally isomorphic to the trivial

bundle over the same base space with the same fiber. But not all connections are

locally trivial. A connection on the given bundle may or may not correspond under

the local isomorphism to the trivial connection on the trivial bundle. Curvature is

always some sort of mathematical entity that measures how far the given connection

is from being trivial. This mathematical entity usually takes the form of a differential

form, or a more general tensor field, or sometimes just a real-valued function. When

it is zero, it means the connection, and not just the fiber bundle, is locally trivial.

That’s why a locally trivial connection is called flat .

Even if the curvature is identically zero, the fiber bundle may not itself be trivial,

although its connection will be. Some extra conditions are necessary for this to be

true, and what exactly these conditions are depends on the type of connection that

is being studies.



5. Principal bundles and principal bundle connections

Let G be a Lie group, which is to say, a manifold with a group structure for

which multiplication and inversion are smooth maps. A smooth right action R

of G on a manifold P is a group anti-homomorphism G → Diff(P ), g 7→ Rg, such

that the map P × G → P given by (u, g) 7→ Rg(u) is smooth. (For left actions,

G→ Diff(P ) is required to be a homomorphism.)

Definition 5.1. A principal G-bundle over a manifoldM is a fiber bundle π : P →
M with fiber G together with a smooth right action R of G on P , subject to the

following conditions.

• Each Rg preserves fibers, and acts freely and transitively on each one.

• There is an open cover {Uα} of M with local trivializations {φα : π−1(Uα)→
Uα × G} such that under φα, the action of G on π−1(Uα) looks like right

multiplication; i.e., if φα(u) = (π(u), a), then

φα (Rg(u)) = (π(u), a · g) .

4

The action R is free and transitive on a fiber Pp if for each pair of points u1, u2 ∈
Pp, there is a unique g ∈ G such that Rg(u1) = u2. (Specifically, transitivity is the

existence and freeness is the uniqueness.)

Note that P/G ∼= M .

Example 5.2. (1) For any manifold M and any Lie group G, the trivial fiber

bundle π : P (= M × G) → M is a principal G-bundle, with right action R

given by Rg(p, a) = (p, a · g) for all (p, a) ∈ P = M ×G and g ∈ G.

(2) For any Lie group G and closed subgroup H, the quotient projection π : G→
G/H is a principal H-bundle over G/H (which can be shown to be a mani-

fold), with right action of H on G given by right multiplication.

(3) For any manifold M and point p ∈ M , let Frp denote the set of all frames

(ordered bases) of >>>pM . The Lie group GL(n; R) of invertible (n × n)-real

matrices acts freely and transitively on each space of frames, by mapping

each ordered basis to a new ordered basis. The disjoint union Fr of all the



frame spaces can be given the structure of a fiber bundle over M with fiber

GL(n; R), called the frame bundle of M , and the action of this Lie group

on fibers gives rise to a global action on Fr, and this bundle is a principal

GL(n; R)-bundle.

(4) If M is a Riemannian manifold, so that we can measure lengths of tangent

vectors and angles between them, then instead of taking the full frame bun-

dle we can restrict our attention to orthonormal frames, and obtain the

orthonormal frame bundle . This is a principal O(n)-bundle.

♦

Because a principal bundle has extra structure, there are extra requirements we

can put on a fiber bundle connection.

Definition 5.3. Let π : P → M be a G-principal bundle. A principal bundle

connection Γ on this bundle is a fiber bundle connection Γ = {Hu | u ∈ P} such

that the G-action R preserves horizontal subspaces, i.e.

HRg(u) = (dRg)u(Hu) for all g ∈ G.

4

Remark 5.4. An equivalent way to specify a principal bundle connection is to give

a g-valued one-form ω, called a connection form , that satisfies two conditions

relating to the G-action on P . (Here, g denotes the Lie algebra of G, which can

be identified with the tangent space to G at the identity, 1 ∈ G.) Each vector X ∈ g

induces a vector field X]on P , called the fundamental vector field corresponding

to X, defined by

X]
u := (dRu)1(X) =

d

dt
Rexp tX(u)

∣∣∣∣
t=0

for u ∈ P , where Ru denotes the function G → P , g 7→ Rg(u). The form ω is

required to satisfy

• ω
(
X]
)
≡ X for all X ∈ g; and

• R∗gω = Adg−1 ◦ω for all g ∈ G, where Ad denotes the adjoint action of G

on g.

The horizontal subspaces are defined by Hu := kerωu for each u ∈ P . On the other

hand, if we begin with the horizontal subspaces Hu, we can obtain a connection form



as follows. Notice that each vertical subspace Vu can be described as the space of

fundamental vector fields evaluated at u. For a tangent vector v ∈ >>>uP , we define

ωu(v) to be the unique element X ∈ g such that X]
u is the vertical component of v. ♦

Fact 5.5. The trivial fiber bundle connection on the trivial principal G-bundle P =

M ×G over M is a principal bundle connection.

Here is what all of this extra structure buys us.

Theorem 5.6. Let π : P →M be a principal G-fiber bundle, and let Γ be a principal

fiber bundle connection. If p ∈M and c : [0, 1]→M is a smooth path in M starting

at p, then for each choice of lift u ∈ Pp of p, there exists a unique horizontal lift

c̃ : [0, 1]→ P of c with c̃(0) = u.

Lifting the path c to a path c̃ starting at the specified point u is nothing unusual.

The tricky part is guaranteeing that c̃ is horizontal. The idea of the proof is to

adjust c̃ by multiplying via the right action R by a suitable path g : [0, 1]→ G in G:

t 7→ Rg(t) (c̃(t)). The problem of finding this path g reduces to a result about paths

in Lie groups, which I will not state, but is not too difficult.

By varying the initial lift point u ∈ Pp, we obtain a map τt : Pp → Pc(t) between

fibers, called the parallel displacement , or parallel transport along the curve

c.

Proposition 5.7. Each parallel transportation τt : Pp → Pc(t) along a path c starting

at p ∈M commutes with the action of G on P . Hence τt is an isomorphism.

Proof. Because each Rg preserves both fibers and horizontal subspaces, we see that

if c̃ is the horizontal lift of c starting at u ∈ Pp, then Rg ◦ c̃ is the horizontal lift

of c starting at Rg(u) ∈ Pp. Since this holds all along the curve c, we must have

Rg ◦ τt = τt ◦Rg.

It follows that τt is an isomorphism, because G acts freely and transitively on each

fiber. QED

Parallel displacement definitely depends on the initial curve c chosen, but it does

not depend on the parametrization of this curve. One can check that parallel trans-

portation along the same curve but in the opposing direction is the inverse of the

original parallel transportation.



So now we have a true connection between different fibers of π : P →M , although

they still depend on the initial path in M that is chosen. (In fact, the curvature

of a principal bundle connection can be viewed as measuring how much the parallel

displacement depends on the choice of curve. This is specifically measured by the

holonomy groups of the connection.)

In the next section, we will learn how to obtain new fiber bundles from principal

bundles, and how to share the principal bundle connection with the new bundle.

6. Associated bundles

Let π : P →M be a principal G-bundle over M , and let F be a manifold on which

G acts smoothly on the left, i.e. there exists a group homomorphismA : G→ Diff(F ),

g 7→ Ag, such that the map G× F → F , (g, ξ) 7→ Ag(ξ) is smooth. We introduce a

right action of G on the product P × F by

g · (u, ξ) := (Rg(u), Ag−1(ξ)) .

(The inverse is there to change the homomorphism A into an anti-homomorphism.)

We denote the quotient space (P × F )/G by E := P ×G F . Define πE : E → M

by πE ((u, ξ) modG) = π(u). (This is well-defined because the action of G on P

commutes with the projection π.) With a little thought, one can see that each fiber

Ep := π−1
E (p) is isomorphic to F , and πE : E → M is a fiber bundle over M with

fiber F .

As with any quotient, we have a projection P × F → (P × F )/G =: E. Given a

principal bundle connection ΓP on P , we can use this projection to obtain a fiber

bundle connection on E. Let w ∈ E, and choose (u, ξ) ∈ P × F such that w =

(u, ξ) modG. Write βξ for the map P → E given by u 7→ βξ(u) := (u, ξ) modG.

Define the horizontal subspace Hw ⊂>>>wE at w by

Hw := (dβξ)u (Hu) .

Observe that this is independent of our choice of (u, ξ), because for all g ∈ G and

ξ ∈ F , we have

βξ(u) = (u, ξ) modG = (Rg(u), Ag−1(ξ)) modG = βAg−1 (ξ) (Rg(u))



for u ∈ P , so βAg−1 (ξ) = βξ ◦ Rg−1 . Therefore, if we had chosen g · (u, ξ) =

(Rg(u), Ag−1(ξ)) instead of (u, ξ), then

(dβAg−1 (ξ))Rg(u)

(
HRg(u)

)
= d (βξ ◦Rg−1)

Rg(u)
((dRg)u(Hu))

= (dβξ)u ◦ (dRg−1)
Rg(u)

◦ (dRg)u (Hu)

= (dβξ)u (Hu).

One can show, furthermore, that this collection ΓE := {Hw | w ∈ E} satisfy the

necessary conditions to be a fiber bundle connection on πE : E →M .

Example 6.1. Probably the very most important example of an associated bundle E

is where the fiber F is a (finite-dimensional, real) vector space, and A : G→ Diff(F )

is a linear action , i.e. Ag ∈ GL(F ) for all g ∈ G. In this case, E is called a vector

bundle . ♦

7. Vector bundles and Koszul connections

SupposeG, π : P →M , F , A : G→ GL(F ), and πE : E →M be as in Example 6.1.

One can show that because each Ag is a linear transformation, not only is each fiber

Ep := π−1
E (p) diffeomorphic to the vector space F , but it inherits a vector space

structure all its own. But to define a vector bundle, we don’t need to start with a

principal bundle.

Definition 7.1. A rank k vector bundle over a manifold M is a fiber bundle

πE : E → M with fiber Rk such that each fiber Ep := π−1
E (p) has the structure of a

vector space, satisfying the following local linear triviality condition.

For each w ∈ E, there is an open neighborhood U of πE(w) in M

and a trivialization φ : π−1
E (U)→ U ×Rk (as in the definition of fiber

bundles) such that the map EπE(w) → Rk given by the composition

w′ 7→ φ(w′) = (πE(w), ξ) 7→ ξ

is a linear isomorphism.

4

Example 7.2. The absolute most crucial example of a vector bundle is the tangent

bundle >>>M of a manifold M , whose fibers are the tangent spaces >>>pM , p ∈M . ♦



Given a vector bundle, we can always work backwards to obtain a principal bundle.

If E is a rank k vector bundle, then as in (3) of Example 5.2 above, we can construct

the principal GL(k; R)-bundle π
Fr(E)

M of frames (ordered bases) of E over M , called

the frame bundle of the vector bundle. As described at the end of the previous

section, a principal bundle connection ΓFr(E) on the frame bundle induces a fiber

bundle connection ΓE on the vector bundle. In this situation, the connection ΓE
will satisfy one extra condition. Each fiber of πE : E → M is a vector space, so we

can multiply each element of E by any real number. Therefore, each α ∈ R leads

to a fiber-preserving diffeomorphism ᾱ : E → E. The horizontal subspaces of E will

satisfy

(dᾱ)w(Hw) = Hᾱ(w) = Hα·w

for all w ∈ E. Any connection on a vector bundle satisfying this property is called a

vector bundle connection .

As for a principal bundle, given a smooth path c : [0, 1] → M starting at p and

choice of lift w ∈ Ep of p, there exists a unique horizontal lift f̃ : [0, 1] → E of c

with c̃(0) = w. The proof uses the identification
(
Fr(E)× Rk

)
/GL(n; R) ∼= E, and

is apparently not very different from the proof for principal bundles.

By varying the initial lift point w ∈ Ep, we obtain a map τt : Ep → Ec(t), the

parallel transport along the curve c. This time, parallel transport is not just an

isomorphism of fibers, but it is actually a linear isomorphism. That is preserves

scalar multiplication is fairly obvious. That it preserves vector addition follows from

the following so-called clever observation ([5]).

Proposition 7.3. If f : Rn → Rm is differentiable at ~0 and satisfies f(αv) = α ·f(v)

for all α ∈ R and v ∈ Rn, then f is linear.

Proof. Since f preserves scalar multiplication, we have f
(
~0
)

= ~0. Let T =

df0 : Rn → Rm. Then

T (v) = lim
α→0

f(αv)− f(0)

α
= lim

α→0

f(αv)

α
= lim

α→0
f(v) = f(v).

QED

A vector bundle connection on E induces a principal bundle connection on its frame

bundle Fr(E), as follows. Choose u = (u1, . . . , uk) ∈ Fr(E), and let p = πFr(E)(u).

Let c : [0, 1] → M be a smooth path starting at p and let τt : Ep → Ec(t) denote

parallel transport along c until time t. Recalling that an element of Fr(E) can be



specified by giving the k vectors, in order, that make up the ordered basis, we define

a curve c∗ : [0, 1]→ Fr(E) by letting the ith vector in c∗(t) be given by

(c∗(t))i := τt(ui)

for i = 1, . . . , k. We define the horizontal subspace to be the space of all vector

(c∗)′(0) for different choices of c. One can check that this defines a principal bun-

dle connection, and furthermore, that if we consider E as an associated bundle to

the principal bundle Fr(E), then this principal bundle connection induces the given

vector bundle connection.

Finally, we have a linear way to identify fibers of a vector bundle. Now we can

differentiate things, and the main thing we would like to differentiate is the sections

of the vector bundle. Recall that a section is a map σ : M → E such that σ(p) ∈ Ep
for all p ∈ M . In general, a fiber bundle may have no globally-defined sections,

although local triviality means one can always define a section locally. But a vector

bundle always has at least one section, the zero section .

Definition 7.4. Fix a connection on the vector bundle πE : E →M . Let σ : M → E

be a section, and X ∈ Vec(M) be a vector field. The covariant derivative of σ in

the direction X is the section ∇Xσ of E defined as follows. Let p ∈ M , and choose

any smooth curve t 7→ c(t) such that c(0) = p and c′(0) = Xp, and let τt denote

parallel transportation along c. Put

(∇Xσ) (p) := lim
t→0

τ−1
c (σ(c(t)))− σ(p)

t
.

4

One has to show that this definition is independent of the choice of curve c. I

think this makes sense, because we only need to use parallel transportation τt for

small t, and so we only need to lift the curve c for very small t, which means that

everything really only depends on the initial vector c′(0).

The independence on the choice of c is really what proves that∇Xσ is tensorial with

respect to direction. The Leibniz rule is a relatively simple calculation. Thus, each

vector bundle connection gives us a covariant directional derivative of sections, ∇.

Such a derivative is called a Koszul connection . Denoting the space of smooth sec-

tions of E by C∞(M,E), we see that ∇ is a map Vec(E)×C∞(M,E)→ C∞(M,E).

Sometimes the inputs are shuffled over to the outputs, and a Koszul connection is



defined to be a map

C∞(M,E)→ Ω1(M)⊗ C∞(M,E)

from smooth sections of E to differential one-forms on M with values in E. This is

the path taken in [1].

A section σ : M → E is called parallel along X if ∇Xσ ≡ 0, and σ is called

parallel if ∇Xσ ≡ 0 for all X ∈ Vec(M).

Proposition 7.5. Let σ be a section of πE : E →M . The following are equivalent.

(1) σ is parallel.

(2) For any curve t 7→ c(t) on M with parallel transportation τt, τt (σ(c(0))) =

σ (c(t)) for all t.

(3) For all p ∈M , the image of >>>pM under (dσ)p is horizontal.

Equivalence (3) of Proposition 7.5 tells us how we can recover the horizontal sub-

spaces, and hence the vector bundle connection, from the corresponding Koszul con-

nection. The horizontal subspace will be the image of the tangent space in the base

manifold under the derivative of all the parallel sections of the vector bundle.

We can also skip straight from a Koszul connection to the principal bundle con-

nection on Fr(E). This is a little messy, although not difficult, so I will simply point

the reader to page 337, Proposition 21 of [5].

I will end this section with a note. In general, there are many ways to define

a connection. As is familiar from Riemannian geometry, if the manifold or vector

bundle has extra structure, such as a Riemannian metric or a vector bundle metric

or a complex structure or whatever, we can pin down which connection we should

choose.

8. The tangent bundle

The tangent bundle π : >>>M → M of a manifold M is the standard example

of a vector bundle, and applying all of this vector bundle connection and Koszul

connection stuff to it is very fruitful.
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