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NOTATIONAL NOTES

If M and N are smooth manifolds and f : M → N is a smooth map between
them, we denote the induced map on tangent bundles by >>>f : >>>M → >>>N. For
each p ∈ M, the linear map between tangent spaces induced by f is denoted
>>>pf : >>>pM →>>>f(p)N. In this notation,>>>f is defined by

(>>>f)(p,~v) = (f(p), (>>>pf)(~v))
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for each (p,~v) ∈ >>>M. This notation is to distinguish between the derivative>>>f of
a smooth map f, which is a map of tangent bundles, from the differential df of a
smooth real-valued function f, which is a smooth 1-form.

(If f : M → R is smooth, recall the relationship between>>>f and df. If p ∈M and
~v ∈ >>>pM, then (df)p(~v) is defined to be the unique real number such that

(>>>pf)(~v) = (df)p(~v) ·
∂

∂t

∣∣
t=f(p)

,

where ∂
∂t

denotes the canonical positively-oriented unit length vector field on R.)

We consider a vector field v on a smooth manifold M to be a function v : M →
>>>M from the manifold to its tangent bundle. A point in the tangent bundle is a
pair consisting of a point in the manifold and a tangent vector at that point. A
vector field is required to be a section of the tangent bundle, meaning that when
evaluated at a point p ∈M, that point is the first entry in the pair specified by the
element v(p) ∈ >>>M. We always use the notation

v(p) = (p, vp) ∈ >>>M,

, where v is a vector field on M, p ∈M, and vp ∈ >>>pM. These same constructions
lead to similar notation for differential forms and arbitrary tensor fields on the
manifold, which are sections of various other vector bundles over M. For exam-
ple, the differential df of a smooth real-valued function f : M → R is a section of
the cotangent bundle>>>∗M ofM, and so for each p ∈Mwe use the notation

df(p) = (p, (df)p) .

1. LIE GROUPS

An excellent source for most of the material presented here, and much more
besides, is [2]. Their notation even agrees with ours!

1.1. Beginning Details.

Definition 1.1. A Lie group is a group Gwith the structure of a smooth manifold,
such that the inversion and multiplication maps

G → G, x 7→ x−1 and G×G → G, (x, y) 7→ xy

are smooth. It can be shown that it suffices to assume that multiplication is smooth.
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A Lie group G comes with a lot of structure. There is a distinguished element
e ∈ G, the group identity. This means there is a distinguished tangent space,
>>>eG ⊂>>>G. For each g ∈ G, we obtain three maps:

(1) left multiplication: Lg : G → G, h 7→ gh;
(2) right multiplication: Rg : G → G, h 7→ hg; and
(3) conjugation: Ψg : G → G, h 7→ Lg ◦ Rg−1(h) = Rg−1 ◦ Lg(h) = ghg−1.

Notice that Lg andΨg are group homomorphisms, but Rg is a group anti-homomorphism.
All three of these maps are smooth, and in fact they are all diffeomorphisms. The
inverses of Lg, Rg, and Ψg are Lg−1 , Rg−1 , and Ψg−1 , respectively. Since Lg and Ψg
are also group homomorphisms, they are Lie group isomorphisms. Also, note that
the left and right multiplication maps commute with each other: for all g, h ∈ G,
we have Lg ◦ Rh = Rh ◦ Lg.

Remark 1.2. For whatever reason, most of Lie theory is centered around the left
multiplication maps, but it could just as well have been developed using the right
multiplication maps. ♦

The three maps above are canonical with respect to the Lie group structure.
Therefore all tangent spaces of G are canonically isomorphic. For g, h ∈ G, we
have the canonical linear isomorphisms

>>>g(Lhg−1) : >>>gG →>>>hG and >>>g(Lgh−1) : >>>hG → >>>gG.
Thus all tangent spaces of G are canonically isomorphic to the distinguished tan-
gent space of G,>>>eG.

Let g ∈ G. Because Ψg(e) = geg−1 = e, we have a canonical operator on the
distinguished tangent space >>>eG, given by >>>eΨg : >>>eG → >>>eG. We denote this
map by Adg. Since Ψg is a diffeomorphism, Adg = >>>eΨg is a linear isomorphism,
so Adg ∈ GL(TeG), so

Ad : G → GL(>>>eG)

is a group representation of G, called the adjoint representation.

Recall that GL(>>>eG) is the inverse image of the open set R \ {0} under the
continuous (and smooth) map det : gl(>>>eG) → R, so it is an open subset of the
vector space gl(>>>eG). Thus GL(>>>eG) is a smooth manifold with tangent bundle
GL(>>>eG) × gl(>>>eG). Therefore the tangent map of Ad at the identity e is a map



>>>e Ad : >>>eG → gl(>>>eG). By slightly restructuring the domain and codomain, we
obtain a map

ad : >>>eG×>>>eG → >>>eG, (X, Y) 7→ adX(Y) := (>>>e Ad)(X) Y.

Note that ad is linear in both X and Y, so ad is bilinear.

1.2. The Exponential Map and Useful Curves.

For each Lie group G, we have the exponential map, expG : TeG → G. We usu-
ally omit the subscript from exp if there is no confusion. It is defined by means of
one-parameter subgroups, which we will not discuss here. The exponential map
is characterized by the fact that if X ∈ >>>eG and s, t ∈ R, then

exp ((s+ t)X) = exp(sX) · exp(tX) (= exp(tX) · exp(sX)) ,

and the following Lemma.

Lemma 1.3. Let X ∈ >>>eG, and let c : R → G be the smooth curve given by t 7→ exp(tX).
Then c ′(0) = X.

(Recall that the derivative c ′ of a smooth curve c is defined by

c ′(t) :=>>>c(t)c
(
∂

∂s

∣∣∣∣
s=t

)
,

where ∂
∂s

denotes the canonical positively-oriented unit length vector field on R.)

Note that GL(>>>eG) is a Lie group under multiplication, and that its tangent
space at the identity is essentially gl(>>>eG). Therefore we have a map

expGL(>>>eG) : gl(>>>eG) → GL(>>>eG).

Since adX ∈ gl(>>>eG) for all X ∈ >>>eG, we have

expGL(>>>eG) (adX) ∈ GL(>>>eG).

It is natural to ask what element of GL(>>>eG) this might be.

Theorem 1.4. Let X ∈ >>>eG. Then

AdexpG(X) = expGL(>>>eG) (adX) .



Remark 1.5. Dropping the subscripts from the exponential maps, we obtain the
commutative diagram

g ad //

exp

��

gl(TeG)

exp
��

G
Ad

// GL(TeG)

♦

Combining Theorem 1.4 and Lemma 1.3 yields the following result.

Proposition 1.6. Let X, Y ∈ >>>eG, and let c : R → >>>eG be the smooth curve given by
t 7→ Adexp(tX)(Y). Then

c ′(0) = (adX(Y)) .

2. THE LIE ALGEBRA OF A LIE GROUP

2.1. General Lie Algebras.

Definition 2.1. A Lie algebra is a real vector space L equipped with a skew-
symmetric bilinear map L × L → L, (v,w) 7→ [v,w], called a bracket, which
satisfies the Jacobi identity:

[u, [v,w]] + [v, [w,u]] + [w, [u, v]] = 0

for all u, v,w ∈ L. 4

Two standard examples are the set of vector fields on a manifold with the Lie
bracket, or the set of n× n real (or complex) matrices with the bracket

[A,B] := AB− BA.

2.2. The Tangent Space at the Identity.

The tangent space >>>eG of G at the identity is a real vector space. Using the
three classes of maps inherent in the Lie group structure, we can equip>>>eG with
a bracket that makes it a Lie algebra. The vector space TeG with this bracket is
denoted g, and called the Lie algebra of the Lie group G.

Each step in the construction of the Lie bracket for g is natural, in the sense that
it is preserved by smooth homomorphisms between Lie groups. Let H be another



Lie group and ρ : G → H be a smooth homomorphism. The naturality of each step
below will be shown by a commutative diagram involving G, H, and ρ.

G
ρ //

Ψg
��

H

Ψρ(g)

��
G ρ

// H

As described above, for each g ∈ G, we obtain a Lie group isomorphismΨg : G →
G and a linear isomorphism Adg : >>>eG → >>>eG. Then Adg ∈ GL(>>>eG), so we have
a smooth homomorphism Ad : G → GL(>>>eG).

>>>eG
>>>eρ //

Adg
��

>>>eH
Ad(ρ(g))

��
>>>eG >>>eρ

// >>>eH

We define a bracket on >>>eG by [X, Y] = adX(Y). It remains to be shown that
this bracket is anti-symmetric and satisfies the Jacobi identity. We will not prove
this here, although it will follow from the fact that the Lie bracket of vector fields
satisfies these properties.

>>>eG
>>>eρ //

adX
��

>>>eH
ad(>>>eρ)(X)

��
>>>eG >>>eρ

// >>>eH

2.3. Left-Invariant Vector Fields.

Definition 2.2. Let f : M → N be a diffeomorphism between smooth manifolds,
and let v ∈ Vec(M) and w ∈ Vec(N). The pushforward of v by f is defined by

(f∗v)q :=
(
>>>f−1(q)f

) (
vf−1(q)

)
for q ∈ N, and the pullback of w by f is defined by

(f∗w)p :=
(
>>>f(p)f

−1
) (
wf(p)

)



for p ∈M. Note that

f∗w = (f−1)∗w and f∗v = (f−1)∗v.

4

Definition 2.3. A vector field v ∈ Vec(G) is called left-invariant if

(>>>hLg) (vh) = vLg(h) = vgh

for all g, h ∈ G. This means the following diagram commutes for each g ∈ G.

G
v //

Lg
��

>>>G
>>>Lg

��
G v

// >>>G

We denote the set of all left-invariant vector fields on G by L(G). 4

Remark 2.4. Let v ∈ L(G). Then>>>Lg ◦ X = X ◦ Lg for all g ∈ G. Thus

>>>Lg ◦ X ◦ (Lg)
−1 = X and (>>>Lg)−1 ◦ X ◦ Lg = X

for all g ∈ G. Certainly if a vector field satisfies either of the above equations
for all g ∈ G it must be left-invariant. Therefore L(G) is the set of vector fields
invariant under pushforward by left multiplication, which is also the set of vector
fields invariant under pullback by left multiplication. ♦

The set L(G) is clearly a real vector space, but it is not clear what its dimension
is. There’s no reason to assume that the dimension be finite, but it is. It’s actually
quite a surprise.

Recall the Lie bracket of vector fields. This can be defined in terms of flows
of vector fields, or in terms of derivations. Let v,w ∈ Vec(G) be vector fields,
let Φtv, Φtw denote their respective flows, and let Dv,Dw denote their respective
associated derivations. Then the Lie bracket [v,w] ∈ Vec(G) is the unique vector
field such that

[v,w] = Lvw :=
d

dt
(Φtv)

∗w
∣∣
t=0
,

or equivalently,
D[v,w] = Dv ◦Dw − Dw ◦Dv.



The pushforward of vector fields by diffeomorphisms preserves the Lie bracket.
(See page 144 in [1].) Since left-invariant vector fields can be categorized as those
that are invariant under pushforward by all left multiplications, this implies that
the Lie bracket of two left-invariant vector fields is also left-invariant. Therefore
L(G) equipped with the Lie bracket of vector fields is a Lie algebra.

2.4. >>>eG ∼= L(G) as Vector Spaces.

We have two Lie algebras associated with G: the tangent space at the identity,
>>>eG, with the bracket induced by ad, and the left-invariant vector fields, L(G),
with the Lie bracket. In this section we will demonstrate that they are isomorphic
as vector spaces.

Define a map ν : >>>eG → Vec(G) by

ν(X)g =>>>eLg(X)

for all X ∈ >>>eG and g ∈ G. Because tangent maps are linear, so is ν. For all
X ∈ >>>eG and g, h ∈ Gwe have

(>>>hLg) (v(X)h) = (>>>hLg) (>>>eLh(X)) = >>>e(Lg◦Lh)(X) =>>>eLgh(X) = ν(X)gh = ν(X)Lg(h).

Therefore ν(X) is left invariant, so ν really is a map >>>eG → L(G). Its inverse is
(immediately) given by the map

L(G) → >>>eG, v 7→ ve ∈ >>>eG.

2.5. >>>eG ∼= L(G) as Lie Algebras.

To show that >>>eG and L(G) are isomorphic as Lie algebras as well as vector
fields, we must show that the map

ν : >>>eG → L(G)

preserves the brackets, i.e.

ν(adX Y) = [ν(X), ν(Y)]

for all X, Y ∈ >>>eG. Since the Lie bracket of vector fields can be described easily in
terms of flows, it might be helpful to know what the flows of these vector fields
look like.

Claim 2.5. Let X ∈ >>>eG and g ∈ G. Then the flow of ν(X) through g is the curve
c : R → G given by

c(t) = g · exp(tX).



Proof. Note first that c(0) = g · exp(~0) = ge = g. Now, let t ∈ R. Then

c ′(t) =
d

ds

∣∣
s=t
c(t) =

d

ds

∣∣
s=0
c(s+ t)

=
d

ds

∣∣
s=0
g · exp ((s+ t)X)

=
d

ds

∣∣
s=0
g · exp tX · exp sX

=
d

ds

∣∣
s=0
Lg·exp tX (exp sX)

=
(
>>>eLg·exp tX

) (
d

ds

∣∣
s=0

exp sX
)

=
(
>>>eLg·exp tX

)
(X)

= ν(X)g·exp tX

= ν(X)c(t).

QED

Theorem 2.6. Let X, Y ∈ >>>eG. Then

ν (adX(Y)) = [ν(X), ν(Y)] .

Proof. From Claim 2.5, we know that the flow of ν(X) at time t ∈ R is the map
G → G given by Rexp(tX). Let g ∈ G. From the definition of the Lie bracket of
vector fields in terms of Lie derivatives, we have

[ν(X), ν(Y)]g =
(
Lν(X) (ν(Y))

)
g

=
d
dt

∣∣∣
t=0

((
Rexp tX

)∗
ν(Y)

)
g
.



By the definitions of the pullback of vector fields and ν(Y), the properties of left
and right multiplication, and the chain rule, we have((

Rexp tX
)∗
ν(Y)

)
g

=
(
>>>g·exp tX(Rexp tX)

−1
) (
ν(Y)g·exp tX

)
= >>>g·exp tX(Rexp tX)

−1 ◦>>>e(Lg·exp tX)(Y)

= >>>e
(
(Rexp tX)

−1 ◦ Lg·exp tX
)
(Y)

= >>>e
(
R(exp tX)−1 ◦ Lg ◦ Lexp tX

)
(Y)

= >>>e
(
Lg ◦ Lexp tX ◦ R(exp tX)−1

)
(Y)

= >>>e
(
Lg ◦ Ψexp tX

)
(Y)

= (>>>eLg) ◦
(
>>>eΨexp tX

)
(Y)

= (>>>eLg)
(
Adexp tX(Y)

)
.

Since >>>eLg is a linear map, it commutes with d
dt . Using this and Proposition 1.6,

we conclude that

[ν(X), ν(Y)]g =
d
dt

∣∣∣
t=0

((
Rexp tX

)∗
ν(Y)

)
g

=
d
dt

∣∣∣
t=0

(>>>eLg)
(
Adexp tX(Y)

)
= (>>>eLg)

(
d
dt

∣∣∣
t=0

Adexp tX(Y)

)
= (>>>eLg) (adX(Y))

= ν (adX(Y))g ,

as desired. QED
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