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An orientation of a vector space is represented by an ordered basis of the
vector space. We think of an orientation as a twirl, namely the twirl that rotates
the first basis vector to the second, and the second to the third, and so on. Two
ordered bases represent the same orientation if they generate the same twirl. (This
amounts to the linear transformation taking one basis to the other having positive
determinant.) If you think about it carefully, there are only ever two choices of twirls,
and hence only two choices of orientation.

Because each Rn has a standard choice of ordered basis, {e1, e2, . . . , en} (where ei

is has 1 in the ith coordinates and 0 everywhere else), each Rn has a standard choice
of orientation. The standard orientation of R is the twirl that points in the positive
direction. The standard orientation of R2 is the counterclockwise twirl, moving from
e1 = (1, 0) to e2 = (0, 1). The standard orientation of R3 is a twirl that sweeps from
the positive x direction to the positive y direction, and up the positive z direction.
It’s like a directed helix, pointed up and spinning in the counterclockwise direction
if viewed from above. See Figure 1.

An orientation of a curve, or a surface, or a solid body, is really a choice of
orientations of every single tangent space, in such a way that the twirls all agree
with each other. (This can be made horribly precise, when necessary.)

There are several ways for a manifold to pick up an orientation.

(1) From the surrounding space. If the manifold is n-dimensional and sits
in Rn, then the manifold can just pick up the standard orientation of Rn.
Examples of this are a curve living in the line R, or a surface living in the
plane R2, or a solid body living in the space R3.

(2) From the parametrization. If the manifold is the image of a function,
then you can give the manifold the orientation that comes from the standard
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Figure 1: The standard orientations of R, R2, and R3.

orientation of the function’s domain. For example, suppose S is a surface that
is given by the image of the map k : R2 → R3, (u, v) 7→ k(u, v). Then at each
p ∈ R2, the total derivative of k at p is a linear map, dkp : R2 → R3. Really,
we should think of dkp as a linear map from the tangent plane of R2 at p to
the tangent plane of S at k(p). Since the standard basis e1 = (1, 0), e2 = (0, 1)

of R2 generates the twirl that is the standard orientation of R2, it makes sense
to give the tangent plane to S at k(p) the twirl, or orientation, given by the
ordered basis {dkp(e1), dkp(e2)}. See Figure 2. Of course, we can also compute
these vectors with the formulas

dkp(e1) =
∂k

∂u
(p) and dkp(e2) =

∂k

∂v
(p).

So if you parametrize a surface, or indeed any manifold, and you’re unsure
which orientation you’ve given it with that particular parametrization, you
can compute these tangent vectors and think about what twirl they represent.

(3) From picking a side. (This only applies to an n-dimensional manifold sitting
in Rn+1, like a surface sitting in R3.) Picking a side of a manifold means
choosing a continuous normal vector field on the manifold. we think of the
normal vectors as pointing at the side we picked. If you can choose one of
these, you can choose another one by having each vector point in the opposite



Figure 2: Orientation induced by parametrization. Here, ku = ∂k
∂u

and kv = ∂k
∂v

.

direction. In fact, a manifold is orientable exactly if you can choose a normal
vector field, i.e. exactly if it has two different sides. The Möbius strip is the
standard example of a nonorientable manifold, because it only has one side.
You cannot find a continuous normal vector field on the Möbius strip.

So suppose we pick a side of the manifold, meaning a continuous normal vector
field. There are two ways to orient the manifold, two choices of twirl. The
choice of twirl, or orientation, induced by our choice of side is the one which, if
we lift the twirl in the direction of the normal vector, we obtain the standard
twirl of the vector space Rn+1 in which it sits. For a surface S in R3 and a choice
of normal vector field, the induced representation on S is the one which, when
viewed from the arrow of one of the normal vectors, is twirling counterclockwise.
If we look at the surface from the other side, this orientation will be the one
twirling clockwise. Imagine an inner tube floating on the surface of a swimming
pool, and imagine someone sets it spinning. Whichever direction it looks to be
spinning from out of the water, from under the water it will be looking to be
spinning the other direction.

(4) From being a boundary. If your manifold is actually the boundary ∂M of
another manifold M, and if M is oriented, then there is a standard way that
∂M inherits an orientation. If M is orientable, then so is its boundary ∂M, so
there are two choices of continuous normal vector fields on ∂M. One of them
will point toward M (or inside), and the other will point away from M (or



outside). For the inherited orientation on ∂M, we choose the normal vectors
that point to the outside, and then take the orientation that this induces on
∂M, as in (3) above.

For a surface S which is equal to the boundary of an oriented solid M, I like
to imagine the induced orientation as a little boat. The boat has a mast, and
we know which direction the boat is pointing. The solid M is the water, and
the surface S is the surface of the water, and the boat floats on S. The mast
points in the normal direction to the outside of M. The induced orientation
on S is always the one which spins our boat to the left. See Figure 3.

Figure 3: A little boat on a torus, at the mercy of a fierce counterclockwise orienta-
tion. Note that the mast points in the outward normal direction to the surface.

For a curve C which is equal to the boundary of an oriented solid S, I like to
imagine that S is a swimming pool and C is the boundary of the pool. We can
find the induced orientation, or direction, of C by imagining in what direction
we would need to move around the pool to generate the given twirl of the water
in the pool.

Notice that there’s no particular reason that we use the outward pointing nor-
mal vectors to induce orientation on boundaries. We could just as easily use
the inward pointing normal. (Although in this case, Stokes’ theorem would
need an extra minus sign, wouldn’t it?) I suspect that we use the outward
pointing normal because we like to imagine that we are viewing the surface
from the outside. Or maybe all of us like to imagine little boats floating on the
surface.



From the discussion above, we can see why if we are going to glue two oriented
manifolds M1 and M2 together along their common boundary to form a third man-
ifold, then M1 and M2 must induce the opposite orientations on their boundaries.
See Figure 4.

Figure 4: Opposite orientations attract.

Here are the main points regarding integrals.

• You can integrate a function Rn → R over a region of Rn. Here a region
of Rn essentially means an n-dimensional manifold, or the union of some n-
dimensional manifolds, in Rn. Essentially, orientations don’t come into it.
These are the usual integrals you were familiar with before this class.

• You can integrate a differential form of degree n over an oriented n-dimensional
manifold, or over the union of some oriented n-dimensional manifolds. If you
switch the given orientation on the manifold to its opposite, the value of the
integral is negated.

• Integrals of functions and integrals of differential forms are not unrelated.
Given a region R in Rn, give it the orientation induced by the standard orien-
tation of Rn. Given a function f : R → R defined on R, form the differential
n-form α = f dx1 . . . dxn. Then the integral of f over R equals the integral of
α over R with this orientation.


