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Abstract

In this paper, we study the combinatorial Laplacian operator on the vector space of ori-
ented chains over R of a finite simplicial complex. We develop an easy method of computing
the matrix of this operator from the adjacencies of simplices in the simplicial complex, and
then apply this and results from linear algebra and simplicial homology to study prop-
erties of the Laplacian operator and its spectrum. We examine and explore connections
between the combinatorial structure of simplicial complexes and their Laplacian spectra.
Specific examples studied include certain classes of graphs and higher dimensional simpli-
cial complexes, in particular cones of simplicial complexes, especially simplicial cones of
dimension 2.
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1
Introduction

The main purpose of this paper is to study the connections in the properties of finite
simplicial complexes and the spectra of their Laplacian operators. This Laplacian operator
is a generalization of a relatively well-studied Laplacian operator from graph theory, which
in turn is, to a certain extent, a discrete version of the differential Laplacian operator. For
some history behind the development of Laplacian operators for graphs and simplicial
complexes, see the introduction of [DURE].

Our Laplacian for simplicial complexes is called a Combinatorial Laplacian, although for
brevity’s sake we usually drop the initial adjective, because it is a combinatorial invariant.
The Laplacian operator and its spectrum do not depend on the geometry of the underlying
simplicial complex, but instead in some way on how the various simplices in the complex
are connected to each other. Perhaps unfortunately, our Laplacian and its spectrum are in
no way topological invariants. The author has looked at literally dozens of 2-dimensional
simplicial complexes that are all homeomorphic to a closed disk, but the Laplacian operator
and spectra of any two of these examples were always quite different.

In Section 2.1, we state and prove many results about the theory of finitely-generated
free abelian groups. These results are not actually used in the rest of the paper, but
the work was done to prove that our work on Laplacians of simplicial complexes could
essentially be done with oriented chains over Z just as well as over R, even though we work
over R throughout the rest of the paper. Section 2.2 presents many known and important
results from linear algebra about eigenvalues and eigenvectors that will be used extensively
later.

In Chapter 3, we introduce the graph theory Laplacian, and then develop some basic
definitions concerning simplicial complexes before defining the Laplacian operator for sim-
plicial complexes in Section 3.3. In Section 3.4 we rework our definitions and results from
the rest of the section to develop reduced Laplacians of simplicial complexes, analogous
to reduced simplicial homology.
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In Chapter 4 we prove many extremely useful facts about the spectrum of the Laplacian
operator, as well as the spectra of the family of operators closely related to the Lapla-
cian. Finally, in Chapter 5 our work culminates in its application to specific families of
and structures found within simplicial complexes. Section 5.1 presents results about the
1-skeletons of simplicial complexes, which are essentially the graphs living within all sim-
plicial complexes. In this section we also characterize the Laplacian spectra of two major
classes of graphs, complete graphs and bipartite graphs.

Section 5.1 contains what is probably the most extensive and intense work of this project,
on cones of simplicial complexes of any dimension and simplicial cones of dimension 2 or
less. The major theorems contained in this section are then used to characterize completely
the Laplacian spectra of several families of simplicial cones, namely flapwheels, pinwheels,
asterisks, and simplices themselves.



2
Algebraic Preliminaries

2.1 Some Group Theory - Adjoint Homomorphisms

This section develops some definitions and results about homomorphisms between finitely
generated free abelian groups. Background information on free abelian groups can be
found in any text on abstract algebra, such as [FRA94, Section 4.4]. Most of the following
definition comes from [MUN84, page 21].

Definition. Let G be a free abelian group with basis {α1, . . . , αn}, and let g ∈ G. Then
g can be written uniquely as a finite sum

g =

n∑

i=1

kiαi

for k1, k2, . . . , kn ∈ Z. The column vector (k1k2 . . . kn)T , where the superscript T denotes
the usual matrix transpose, is called the coordinate vector of g relative to the given
basis for G. 4

It is usually clear from the context whether we are referring to a group element or its
coordinate vector, so we shall abuse notation and refer to both by the name of the element.

The fact that the coordinate vector representation defined above is unique follows from
the uniqueness of an element’s representation as the finite sum of basis elements. Also,
it is easy to see that the coordinate vector of the sum of two elements is the sum of the
coordinate vectors of those two elements. Finally, note that if the coordinate vectors of
two elements of a finitely generated free abelian groups are identical, then the elements
must be identical.

The following definition comes from [MUN84, page 55].

Definition. Let G and G′ be free abelian groups with finite bases {α1, . . . , αn} and
{β1, . . . , βm}, respectively. If f : G −→ G′ is a homomorphism, then for all j ∈ {1, 2, . . . , n}
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we have

f(αj) =

m∑

i=1

λijβi

for some unique integers λij . The m× n matrix whose ijth coordinate is given by λij for
all integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n is called the matrix of f relative to
the given bases for G and G′. 4

Let G be a free abelian group with finite basis {α1, . . . , αn}. For all x, y ∈ G, let 〈x, y〉
denote the standard dot product for vectors, as given in [FIS97, Chapter 6], performed on
the coordinate vectors of x and y. For all elements x, y ∈ G, since their coordinate vectors
have integer entries, we see that 〈x, y〉 must be an integer. Also, for all integers i and j

with 1 ≤ i, j ≤ n, we see that 〈αi, αj〉 is 1 if i = j and 0 if i 6= j. In this sense, this basis
for G is in some way similar to an orthonormal basis of a vector space.

The following results and proofs are modeled after those in [FIS97, Section 6.3]. The
goal of these theorems is to develop a notion of an adjoint homomorphism, similar to the
idea of an adjoint linear operator in linear algebra.

Lemma 2.1.1. Let G be a free abelian group with basis {α1, . . . , αn}. Let y, z ∈ G. If
〈x, y〉 = 〈x, z〉 for all x ∈ G, then y = z.

Proof. Suppose 〈x, y〉 = 〈x, z〉 for all x ∈ G. Then for x = y we obtain 〈y, y〉 = 〈y, z〉,
and for x = z we obtain 〈z, y〉 = 〈z, z〉. Since the coordinate vectors of y and z are
both real, we know that the dot product commutes here, so 〈y, z〉 = 〈z, y〉. Therefore,
subtracting the equation 〈z, z〉 = 〈z, y〉 from the equation 〈y, y〉 = 〈y, z〉, we see that
〈y−z, y−z〉 = 〈y, y〉−〈z, z〉 = 0. From [FIS97, Theorem 6.1], we know that 〈y−z, y−z〉 = 0
implies that y − z = ~0, so y = z.

Theorem 2.1.2. Let G be a free abelian group with basis {α1, . . . , αn}, and let h : G −→ Z

be a homomorphism. Then there exists a unique y ∈ G such that h(x) = 〈x, y〉 for all
x ∈ G.

Proof. Let y =
∑n

i=1 h(αi)αi, and let f : G −→ Z be the map given by f(x) = 〈x, y〉 for
all x ∈ G. Let a, b ∈ G. By standard properties of the dot product of vectors, we have

f(a+ b) = 〈(a+ b), y〉 = 〈a, y〉 + 〈b, y〉 = f(a) + f(b),

so f is a homomorphism.
Let j ∈ {1, 2, . . . , n}. Then f(αj) = 〈αj , y〉 = 〈αj ,

∑n
i=1 h(αi)αi〉 =

∑n
i=1 h(αi)〈αj , αi〉.

We know that summands of this last sum are 0 unless i = j, in which case the dot product
in the sum is 1, so the last sum reduces to h(αj). Since f and h agree on all basis elements
of G, it follows that f = h.

To show that y is unique, suppose h(x) = 〈x, y ′〉 for all x ∈ G, for some y′ ∈ G. Then
〈x, y〉 = 〈x, y′〉 for all x ∈ G, so it follows from Lemma 2.1.1 that y = y ′.

Theorem 2.1.3. Let G and G′ be free abelian groups with finite bases {α1, . . . , αn} and
{β1, . . . , βm}, respectively, and let H : G −→ G′ be a homomorphism. Then there exists a
unique homomorphism H∗ : G′ −→ G such that for all x ∈ G and y ∈ G′ we have

〈H(x), y〉 = 〈x,H∗(y)〉.
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Proof. Let y ∈ G′. Let g : G −→ Z be the map given by g(x) = 〈H(x), y〉 for all x ∈ G.
We will show that g is a homomorphism. Let a, b ∈ G. Recalling properties of the dot
product and that H is a homomorphism, we have

g(a + b) = 〈H(a+ b), y〉 = 〈H(a) +H(b), y〉 = 〈H(a), y〉 + 〈H(b), y〉 = g(a) + g(b).

By Theorem 2.1.2 we know there is a unique q ∈ G such that g(x) = 〈x, q〉 for all x ∈ G;
that is, 〈H(x), y〉 = 〈x, q〉 for all x ∈ G. We define a map H ∗ : G′ −→ G on the element
y ∈ G′ by H∗(y) = q. Since y was chosen arbitrarily, this process defines the map H ∗ on
every element in G′. We see that this map has the property that for all x ∈ G and y ∈ G′

we have 〈H(x), y〉 = 〈x,H∗(y)〉. We will now show that H∗ is a homomorphism.
Let c, d ∈ G′. For all x ∈ G, we have 〈x,H∗(c + d)〉 = 〈H(x), a + b〉 = 〈H(x), a〉 +

〈H(x), b〉 = 〈x,H∗(a)〉 + 〈x,H∗(b)〉 = 〈x,H∗(a) + H∗(b)〉. Since x is arbitrary, by
Lemma 2.1.1 we have H∗(a+ b) = H∗(a) +H∗(b).

To show that H∗ is unique, suppose U : G′ −→ G is a homomorphism such that for all
x ∈ G and y ∈ G′ we have 〈H(x), y〉 = 〈x,U(y)〉. Then 〈x,H∗(y)〉 = 〈H(x), y〉 = 〈x,U(y)〉
for all x ∈ G and y ∈ G′, so H∗(y) = U(y) for all y ∈ G′, so H∗ = U .

Definition. The homomorphism H∗ defined in the above result, under the conditions
given in the statement of the theorem, is called the adjoint homomorphism of H. 4
Lemma 2.1.4. Let G be a free abelian group with finite basis A = {α1, . . . , αn}, and let
y ∈ G. Then

y =

n∑

i=1

〈y, αi〉αi.

Proof. Let y =
∑n

i=1 aiαi be the unique representation of y with respect to the basis
A, where a1, a2, . . . , an ∈ Z. Let j ∈ {1, 2, . . . , n}. Then 〈y, αj〉 = 〈∑n

i=1 aiαi, αj〉 =∑n
i=1 ai〈αi, αj〉. The dot product in this last sum is 0 if i 6= j and 1 if i = j, so this sum

reduces to aj〈αj , αj〉 = aj . The lemma follows by replacing the coefficient ai with 〈y, αi〉
for all i ∈ {1, 2, . . . , n} in the unique representation of y with respect to A given at the
beginning of this proof.

Lemma 2.1.5. Let G and G′ be free abelian groups with finite bases A = {α1, . . . , αn}
and B = {β1, . . . , βm}, respectfully, and let H : G −→ G′ be a homomorphism. Let [H] be
the matrix of H with respect to the bases A and B. Then for all for all integers i and j

with 1 ≤ i ≤ m and 1 ≤ j ≤ n we have

[H]ij = 〈H(αj), βi〉.

Proof. Let j ∈ {1, 2, . . . , n}. By Lemma 2.1.4, we know that H(αj) =
∑m

i=1〈H(αj), βi〉βi.
By the definition of the matrix of a homomorphism, we see that the ijth entry of [H] is the
coefficient of βi in this sum for H(αj). It follows that [H]ij = 〈H(αj), βi〉 for all integers
i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Theorem 2.1.6. Let G and G′ be free abelian groups with finite bases A = {α1, . . . , αn}
and B = {β1, . . . , βm}, respectfully, and let H : G −→ G′ be a homomorphism. Let [H]
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denote the matrix of H with respect to the bases A and B, and let [H ∗] be the matrix of
H∗ with respect to these bases. Then

[H∗] = [H]T .

Proof. Let i and j be integers with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Using Lemma 2.1.5 and
the fact that the dot product of vectors with real entries is commutative, we have

[H∗]ij = 〈H∗(βj), αi〉 = 〈αi,H
∗(βj)〉 = 〈H(αi), βj〉 = [H]ji.

2.2 Some Linear Algebra - Eigenvalues and Eigenvectors

The purpose of this section is to build up a number of important tools from linear algebra
that we will have call to use in later sections.

Definition. A multiset is a pair M = (A,m), where A is a set and m is a function
m : A −→ N, where N denotes the nonnegative integers. We think of the multiset M as
containing each element a ∈ A a total of m(a) times. The function m is the multiplicity
function, and for each a ∈ A, the multiplicity of a is m(a). (In practice, we usually do
not explicitly mention the multiplicity function of a multiset.)

Given two finite multisets X and Y , we define the multiset union of X and Y , denoted
X ∪M Y , to be the multiset containing exactly the elements of X and Y with the multi-
plicity of an element in the multiset union given by the sum of that element’s multiplicities
in X and Y .

Let X be a multiset. We let (X)NZ be the multiset that is identical to X except that
(X)NZ does not contain 0. For all elements x and nonnegative integers i, we let [x]i denote
the element x with multiplicity i. Suppose the size of X is n ∈ Z+. For all integers m ≥ n,

we define the multiset
(
X
)

m
= X ∪M {[0]m−n}, and call it the scaled multiset of X

scaled to size m.
If X and Y are two finite, ordered multisets of equal size, we define the multiset sum

of X and Y , denoted X+MY , to be the ordered multiset with the same size as X and
Y whose elements are the component-wise sums of the elements of X and Y . (If one of
the multisets in the multiset sum consists of a single element with some multiplicity, then
we can relax the condition that the multisets be ordered, since in that case there is no
ambiguity.)

4
Let V,W be finite dimensional vector spaces over a field F , and let T : V −→ V be a

linear operator. The operator T is called diagonalizable if there exists a basis β for V
such that the matrix of T relative to β, denoted [T ]β , is a diagonal matrix. (The problem
of determining whether or not T is diagonalizable reduces to the problem of finding a basis
for V consisting of eigenvectors of T .)

The multiset of eigenvalues of T is the spectrum of T , denoted Spec(T ), and the
multiset of nonzero eigenvalues of T is denoted SpecNZ(T ). For each eigenvalue λ ∈ F of T ,
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we let Eλ(T ) denote the corresponding eigenspace. (If there is no confusion, sometimes we
drop the (T ).) The zero eigenspace of T , also known as the null space of T , is denotedN(T ),
and the union of the eigenspaces of T associated with nonzero eigenvalues is ENZ(T ).
The zero operator from V to W is written 0V,W , and the zero operator from V to V is
abbreviated 0V .

Definitions for all terms used in the rest of this section can be found in any text on linear
algebra, such as [FIS97]. We will now prove several basic results about the eigenvaleus and
eigenvectors of certain types linear operators.

The following result is stated in [FIS97, Exercise 15, page 356], although the proof given
here is ours.

Theorem 2.2.1 (Simultaneous Diagonalization). Let V be a finite dimensional inner
product space over a field F , and suppose T and U are self-adjoint linear operators on V

such that TU = UT . Then there exists a basis for V whose elements are eigenvectors of
both T and U .

Proof. Let λ1, . . . , λk ∈ F be the distinct eigenvalues of T . Let i ∈ {1, . . . , k}, and let
W = Eλi

(T ) be the eigenspace of T associated with the eigenvalue λi. We see immediately
that W is T -invariant (meaning that T (W ) ⊆ W ). In fact W is also U -invariant. Let
v ∈W . Then

T (U(v)) = U(T (v)) = U(λiv) = λiU(v),

so U(v) is an eigenvector of T associated with λi, so U(W ) ⊆W .
By [FIS97, Theorem 6.17] we know there is a basis {w1, . . . , wn} for V consisting of

eigenvectors of U , implying that U is diagonalizable. The same is true of T , so from this
and [FIS97, Theorem 5.16] we have that

V =

k⊕

i=1

Eλi
(T ).

Let j ∈ {1, . . . , n}, and let αj ∈ F denote the eigenvalue of U with which the basis
element wj is associated. By the definition of the direct sum, we know there is a represen-
tation of wj as the sum wj = vj1 +vj2 + . . .+vjk, where vji ∈ Eλi

(T ) for all i ∈ {1, . . . , k}.
Then

U(wj) = αjwj = αjvj1 + αjvj2 + . . .+ αjvjk (2.2.1)

and

U(wj) = U(vj1 + vj2 + . . . + vjk) = U(vj1) + U(vj2) + . . .+ U(vjk). (2.2.2)

Note that since every eigenspace of T is U -invariant we have U(vji) ∈ Eλi
(T ), and of

course also αjvji ∈ Eλi
(T ), for all i ∈ {1, . . . , k}. We see then that Equations 2.2.1

and 2.2.2 are sum representations of U(wj) with respect to the direct sum decomposition
of V into eigenspaces of T . By [FIS97, Theorem 5.15c] we know that such representations
are unique, so it must be that αjvij = U(vij), and so in fact vij is an eigenvector of U as
well as of T , for all i ∈ {1, . . . , k}.

Since the above arguments hold for arbitrary j ∈ {1, . . . , n}, we see that every element
of B = {v11, v12, . . . , v1k, v21, v22, . . . , v2k, . . . , vn1, vn2, . . . , vnk} is an eigenvector of both T
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and U . Furthermore, because wj = vj1 + vj2 + . . . + vjk for all j ∈ {1, . . . , n} and the set
{w1, . . . , wn} is a basis for V , it must be that the set B spans V . Therefore it follows from
[FIS97, Theorem 1.9] that some subset of B is a basis for V , and we see that the vectors
of this basis are eigenvectors of both T and U .

Lemma 2.2.2. Let V be a finite dimensional vector space over a field F , and let
W1,W2 ⊆ V be subspaces. Suppose B = {x1, x2, . . . , xn} is a basis for V such that
B1 = {x1, x2, . . . , xi} and B2 = {xj , xj+1, . . . , xn} are bases for W1 and W2, respectively,
for some i, j ∈ {1, 2, . . . , n}. Then

B1 ∩B2

is a basis for the subspace W1 ∩W2.

Proof. We know the intersection of two linearly independent sets is linearly independent,
so we must show that the intersection basis spans the intersection subspace.

If W1 ∩W2 = {0}, then their bases must be disjoint or else one of the basis elements
would be contained in the intersection. In this case the lemma’s desired result is certainly
satisfied. Suppose there is some nonzero v ∈ W1 ∩W2. Then v ∈ W1 and v ∈ W2, so we
have

a1x1 + a2x2 + . . .+ aixi = v = bjxj + bj+1xj+1 + . . .+ bnxn

for some scalars a1, a2, . . . , ai, bj , bj+1, . . . , bn.
First we must show that B1 and B2 are not disjoint. Suppose B1 and B2 are disjoint.

Then i < j, so from the above equations we have

a1x1 + . . .+ aixi + 0 · xi+1 + . . .+ 0 · xj−1 − bjxj − . . .− bnxn = 0.

Since B is linearly independent, this implies that a1 = · · · = ai = bj = · · · = bn = 0, which
means that v = 0, a contradiction. Therefore B1 and B2 are not disjoint, so j ≤ i.

This means that we can write

a1x1 + . . .+ ajxj + . . .+ aixi = v = bjxj + . . . + bixi + . . .+ bnxn,

and so

a1x1 + . . .+ aj−1xj−1 + (aj − bj)xj + . . . + (ai − bi)xi − bi+1xi+1 − . . .− bnxn = 0.

Since B is linearly independent, this implies that a1 = . . . = ai−1 = (ai − bi) = . . . =
(aj − bj) = bj+1 = . . . = bn = 0, so in fact v = aixi + . . . + ajxj = bixi + . . . + bjxj .
Therefore v ∈ span{xi, . . . , xj} = span(B1 ∩B2).

Lemma 2.2.3. Let V be a finite dimensional vector space over a field F , and let T
be an operator on V . Suppose T is diagonalizable, and let λ1, . . . , λk ∈ F denote the
distinct eigenvalues of T . If B is a basis of eigenvectors of T , then there exists a partition
{B1, . . . , Bk} of B such that Bi is a basis for Eλi

for all i ∈ {1, . . . , k}.

Proof. Let B = {x1, . . . , xn} be a basis of eigenvectors of T , and for each j ∈ {1, . . . , n}
let λj ∈ F denote the eigenvalue of T with which xj is associated. We first show that
there is an eigenvector in B for each eigenvalue of T . Let λ ∈ F be an eigenvalue of T .
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Then there is some nonzero v ∈ V such that T (v) = λv. Since B is a basis there exist
unique a1, . . . , an ∈ F such that v = a1x1 + . . . + anxn, and since v 6= 0 there must be
some j ∈ {1, . . . , n} such that aj 6= 0. Then

T (v) = λv = λa1x1 + . . .+ λanxn

and

T (v) = T (a1x1 + . . .+ anxn) = a1T (x1) + . . . + anT (xn) = a1λ1x1 + . . .+ anλnxn.

Since B is a basis, we have λaj = λjaj, and since aj 6= 0 we have λ = λj . Hence xj ∈ B is
an eigenvector associated with λ.

For each i ∈ {1, . . . , k} let Bi = Eλi
∩ B. Since the intersection of distinct eigenspaces

is {0}, we see that {B1, . . . , Bk} is a partition of B. Since T is diagonalizable, [FIS97,
Theorem 5.16] tells us that V is the direct sum of the eigenspaces of T . [FIS97, Theorem
5.15(d)] states that the union of bases for the subspaces of a direct sum forms a basis for
the direct sum itself, and this implies that the sum of the dimensions of the subspaces of
a direct sum is the dimension of the direct sum. Therefore

k∑

i=1

dim(Eλi
) = dim(V ) = n.

For each i ∈ {1, . . . , k}, since Bi ⊆ Eλi
and Bi is linearly independent, we have |Bi| ≤

dim(Eλi
). Suppose there is some j ∈ {1, . . . , k} such that |Bj | < dim(Eλj

). Then n =

|B| = |B1| + . . . + |Bk| <
∑k

i=1 dim(Eλi
) = n, a contradiction. Therefore, it must be that

|Bi| = dim(Eλi
), and hence Bi is a basis for Eλi

, for all i ∈ {1, . . . , k}.

Lemma 2.2.4. Let V be a finite dimensional vector space over a field F , and let T and
U be linear operators on V such that TU = 0V = UT . Then ENZ(T ) ⊆ N(U) and
ENZ(U) ⊆ N(T ).

Proof. Let x ∈ ENZ(T ), and suppose λ ∈ F is the nonzero eigenvalue of T with which
x is associated. Then ~0 = UT (x) = U(T (x)) = U(λx) = λU(x). Since λ 6= 0, it must be
that U(x) = ~0, so x ∈ N(U). Therefore ENZ(T ) ⊆ N(U).

The exact same argument holds with the roles of T and U reversed, implying that
ENZ(U) ⊆ N(T ).

The following is a very important result about pairs of operators on an inner product
space that have a very particular relationship to each other.

Theorem 2.2.5. Let V be a finite dimensional inner product space over a field F , and
let T and U be self-adjoint linear operators on V such that TU = 0V = UT . Then
SpecNZ(T + U) = SpecNZ(T ) ∪M SpecNZ(U) and N(T + U) = N(T ) ∩N(U).

Proof. Since T and U commute, by Theorem 2.2.1 we know there is a basis B consisting
of eigenvectors of both T and U . Let G = B ∩ ENZ(T ), the set of eigenvectors in B

associated with nonzero eigenvalues of T ; let H = B ∩ ENZ(U), the set of eigenvectors
in B associated with nonzero eigenvalues of U ; and let J = N(T ) ∩B ∩N(U), the set of
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eigenvectors in B associated with the eigenvalue 0 with respect to both T and U . We will
demonstrate that {G,H, J} is a partition of the basis B.

By Lemma 2.2.4 we know that an eigenvector associated with a nonzero eigenvalue with
respect to either T or U is in the nullspace of the other operator, so G and H are disjoint
subsets. Naturally any element in the nullspaces of both T and U cannot be in either G
or H, so J is disjoint from both G and H. We see that G,H, J are pairwise disjoint. Now
we will show that G ∪H ∪ J = B.

Let x ∈ B. We know that x is either in N(T ) or in ENZ(T ). If x ∈ N(T ), then either
x ∈ N(U) or x ∈ ENZ(U), meaning that x ∈ J or x ∈ H, respectively. On the other hand,
if x ∈ ENZ(T ) then we see that x ∈ G. Hence G ∪H ∪ J = B.

Now we will show that every element of B is an eigenvector of T + U . First, note that
by Lemma 2.2.4 we have G ⊆ N(U) and H ⊆ N(T ). Suppose x ∈ B. If x ∈ G, then
(T + U)(x) = T (x) + U(x) = λx + 0 = λx, where λ ∈ F is the nonzero eigenvalue
of T associated with x. If x ∈ H, then (T + U)(x) = T (x) + U(x) = 0 + λ′x = λ′x,
where λ′ ∈ F is the nonzero eigenvalue of U associated with x. Finally, if x ∈ J , then
(T + U)(x) = T (x) + U(x) = 0 + 0 = 0. Since G ∪H ∪ J = B, this implies that x is an
eigenvector of T + U .

Let λ1, . . . , λk ∈ F be the distinct nonzero eigenvalues associatated with the elements
of B, with respect to T +U . By Lemma 2.2.3, there is a partition {B1, . . . , Bk} of B such
that Bi is a basis for Eλi

(T + U) for all i ∈ {1, . . . , k}. Let j ∈ {1, . . . , k}.
Suppose λj 6= 0. In showing that B is composed of eigenvectors of T + U we saw that

this means that the elements in Bj are precisely the elements of B that are associated
with the eigenvalue λj with respect to either T or U , but not both, because G and H are
disjoint. Hence

dim(Eλj
(T )) + dim(Eλj

(U)) = |Bj | = dim(Eλj
(T + U)).

This means that the multiplicity of a nonzero eigenvalue in T + U is the sum of its
multiplicities in T and in U . Since we chose the nonzero eigenvalue λj arbitrarily, it
follows that

SpecNZ(T + U) = SpecNZ(T ) ∪M SpecNZ(U).

Suppose λj = 0. As before, in showing that B is composed of eigenvectors of T +U , we
saw that elements of B that are in the nullspace of T + U are precisely the elements of
J , which consists of those elements which are in the intersection of the nullspaces of both
T and U with the basis B. By Lemma 2.2.2, we see that J is a basis for the subspace
N(T ) ∩N(U) of V , so it must be that N(T + U) = span(Bj) = N(T ) ∩N(U).

Theorem 2.2.6. Let m and n be positive integers, let F be a field, and let U : Fm −→ F n

and T : F n −→ Fm be linear operators. Then SpecNZ(UT ) = SpecNZ(TU).

Proof. For all positive integers k, we let ~0k denote the zero column vector of dimension
k.

Suppose λ ∈ F is a nonzero eigenvalue of UT . Let x ∈ Fm be an eigenvector of UT
associated with λ. Then (UT )x = λx, so (TU)Tx = T (UT )x = Tλx = λ(Tx). If Tx = ~0n,
then λx = UTx = U(~0n) = ~0m, and since x is an eigenvector and so must be nonzero,
this implies that λ = 0, a contradiction. Therefore Tx 6= ~0n, so Tx is an eigenvector of
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TU associated with λ. A completely parallel argument to the one above shows that if y
is an eigenvector of TU associated with some nonzero eigenvalue λ′ ∈ F , then Ux is an
eigenvector of UT associated with λ′.

From these two results, we conclude that a nonzero λ ∈ F is an eigenvalue of UT iff it is
an eigenvalue of TU . We also have that U maps eigenvectors of TU to eigenvectors of UT
associated with the same eigenvalue, and that T maps eigenvectors of UT to eigenvectors
of TU associated with the same eigenvalue. Hence, for any nonzero eigenvalue λ ∈ F of
UT and TU , we can define the following two functions.

Let φ : Eλ(UT ) −→ Eλ(TU) and ψ : Eλ(TU) −→ Eλ(UT ) be given by

φ(x) = Tx

and

ψ(y) =
1

λ
Uy

for all x ∈ Eλ(UT ) and y ∈ Eλ(TU). For all x ∈ Eλ(UT ) and y ∈ Eλ(TU) we have

(ψ · φ)(x) =
1

λ
UTx =

1

λ
λx = x

and

(φ · ψ)(y) = T
1

λ
Uy =

1

λ
TUy =

1

λ
λy = y,

so φ and ψ are inverses. Therefore Eλ(UT ) and Eλ(TU) are isomorphic as subspaces, so
in particular they must have the same dimension. Since the dimension of an eigenspace
is the multiplicity of the eigenvalue with which that space is associated, it follows that
the eigenvalue λ has the same multiplicity in UT and TU . Since this holds for all nonzero
eigenvalues of UT and TU , it follows that SpecNZ(UT ) = SpecNZ(TU).

Now we turn our attention to a property of linear operators on an inner product space
that has a very important implication for the spectra of those operators.

Definition. Let V be a finite-dimensional vector space over R, and let T : V −→ V be a
linear operator. We say T is positive semidefinite if T is self-adjoint and

〈T (v), v〉 ≥ 0

for all vectors v ∈ V , where 〈, 〉 denotes the standard inner product over Rn. 4
Lemma 2.2.7. Let V be a finite-dimensional vector space over R, and let T : V −→ V be
a self-adjoint linear operator. Then T is positive semidefinite iff all of the eigenvalues of
T are nonnegative.

Proof. Suppose T is positive semidefinite. Let λ ∈ R be an eigenvalue of T , and let x ∈ V

be an eigenvector of T associated with λ. By definition we know that x 6= ~0, so by the
definition of positive semidefinite operators and properties of innerproducts we have

0 ≤ 〈T (x), x〉 = 〈λx, x〉 = λ〈x, x〉.

By the definition of inner products we know that 〈x, x〉 > 0. This implies that λ ≥ 0.
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Suppose all eigenvalues of T are nonnegative. By [FIS97, Theorem 6.17] there is an
orthonormal basis {x1, . . . , xn} for V consisting of eigenvectors of T . For each i ∈ {1, . . . , n}
let λi ∈ R be the eigenvalue of T associated with xi. Let v ∈ V be a nonzero vector. Then
there are a1, . . . , an ∈ R such that v =

∑n
i=1 aixi, so

〈T (v), v〉 = 〈T
(

n∑

i=1

aixi

)
,

n∑

j=1

ajxj〉 = 〈
n∑

i=1

aiT (xi),

n∑

j=1

ajxj〉

= 〈
n∑

i=1

aiλixi,

n∑

j=1

ajxj〉 =
n∑

i=1

λiai

n∑

j=1

aj〈xi, xj〉.

Since {x1, . . . , xn} is an orthonormal basis, we know that 〈xi, xj〉 is 0 if i 6= j and 1 if
i = j, for all i, j ∈ {1, . . . , n}. Therefore

n∑

i=1

λiai

n∑

j=1

aj〈xi, xj〉 =

n∑

i=1

λia
2
i .

For all i ∈ {1, . . . , n}, we know that a2
i ≥ 0, and by hypothesis that λi ≥ 0. Hence

〈T (v), v〉 =
∑n

i=1 λia
2
i ≥ 0. Since v ∈ V − {~0} was chosen arbitrarily, we have shown that

T is positive semidefinite.

Lemma 2.2.8. Let V and W be finite-dimensional vector spaces over R.

(1) If U : V −→ W is a linear transformation, then UU ∗ : W −→ W is positive semidefi-
nite.

(2) If S, T : V −→ V are positive semidefinite linear operators, then S + T : V −→ V is
positive semidefinite.

Proof. (1) Let w ∈ W be a nonzero vector. First note that UU ∗ is self-adjoint. By the
definition of adjoint operators and properties of the inner product, we have

〈UU∗(w), w〉 = 〈U ∗(w), U∗(w)〉 ≥ 0.

Therefore UU ∗ is positive semidefinite.
(2) Let v ∈ V be a nonzero vector. Then by properties of inner products we have

〈(S + T )(v), v〉 = 〈S(v) + T (v), v〉 = 〈S(v), v〉 + 〈T (v), v〉 ≥ 0.

Therefore S + T is positive semidefinite.

Finally, we present two results which may at first seem somewhat random, but which
will be quite important later.

Lemma 2.2.9. Let n be a positive integer, and let Un denote the n × n matrix whose
components are all 1. Then Spec(Un) = {[0]n−1, n}.
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Proof. Let u denote the column vector of dimension n whose components are all 1, and for
each i ∈ {1, 2, . . . , n} let bi denote the column vector of dimension n whose ith component
is 1 and whose other components are all 0. We will demonstrate that β = {u, b2, b3, . . . , bn}
is a basis for Rn. We see easily that the set {b2, b3, . . . , bn} is linearly independent, and it
is also clear that no vector with a nonzero first coordinate, such as u, could possibly be
in the span of this set. It follows by [FIS97, Theorem 1.8] that β is linearly independent.
Since |β| = n = dim(Rn), it must be that β is a basis for Rn.

We will now rewrite the matrix Un relative to the basis β. Note that

Unu =




n

n
...
n


 = nu and Unbi =




1
1
...
1


 = u

for all i ∈ {2, 3, . . . , n}. Therefore we have

[Un]β =




n 1 . . . 1
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 .

Since [Un]β is an upper triangular matrix, we see that its eigenvalues are n and 0, with
multiplicities 1 and n−1, respectively, unless n = 1, in which case n is its only eigenvalue.
Finally, since the eigenvalues of a linear transformation are invariant under a change of
basis, these must be the eigenvalues, with their multiplicities, for Un as well.

Lemma 2.2.10. Let A1, . . . , An be square matrices over a field F , and let

M =




A1 . . . 0
...

. . .
...

0 . . . An




be a diagonal block matrix. Then

Spec(M) = Spec(A1) ∪M . . . ∪M Spec(An).

Proof. The eigenvalues of M are the roots of the characteristic polynomial det(M − λI)
for M , where I is the identity matrix of the appropriate dimension. Note that

M − λI =




A1 − λI1 . . . 0
...

. . .
...

0 . . . An − λIn


 ,

where I1, . . . , In are identity matrices of appropriate dimensions. By [FIS97, Exercise 20,
page 218], we know that the determinant of a diagonal block matrix with two diagonal
blocks is the product of the determinants of the two matrices that are the diagonal blocks.
It follows inductively that the determinant of a diagonal block matrix is the product of



2. ALGEBRAIC PRELIMINARIES 21

the determinants of all of the matrices that are the diagonal blocks. Hence det(M −λI) =
det(A1 − λI1) . . . det(An − λIn), so therefore the roots of the characteristic polynomial of
M is the multiset union of the roots of the characteristic polynomials of A1, . . . , An. This
proves the lemma.



3
Combinatorial Laplacians of Simplicial Complexes

3.1 Laplacians in Graph Theory

There are many equivalent definitions of a graph in the sense of graph theory. See [WES96,
Section 1.1] for one such definition. We will denote the vertex set of a graph G by V (G)
and the edge set by E(G). As is standard, a loop is an edge that has a single vertex
for both endpoints, a graph has multiple edges if two vertices in the graph have more
than one edge between them, a finite graph is one with finite vertex and edge sets, and
a simple graph is one with no loops or multiple edges. The degree of a vertex v in a
graph G, denoted degG(v), is the number of edges in G containing v, and two vertices u
and v are adjacent in G, denoted u ∼ v, if there is an edge in G between u and v. The
following definition comes from [CHU96, page 316].

Definition. Let G be a finite simple graph with V (G) = {v1, . . . , vn}. The combinatorial
Laplacian matrix of G, denoted LG, is the n× n matrix given by

(LG)ij =





degG(vi), if i = j

−1, if vi and vj are distinct and
vi ∼ vj

0, if vi and vj are distinct and
non-adjacent

for all i, j ∈ {1, 2, . . . , n}. 4

Example 3.1.1. Take the graph from Figure 3.1.1, the border of a triangle with an edge
sticking off of one vertex. Vertices v1 and v2 have degree 2, vertex v3 has degree 3, and
vertex v4 has degree 1. Vertices v1, v2, and v3 are all adjacent to each other, and vertex
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v3 is adjacent to vertex v4. Hence in this case we have

LG =




2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


 .

♦

v

v

vv

1

2

3
4

Figure 3.1.1.

The following standard lemma connects the combinatorial Laplacian matrix of a graph
to the matrix representation of the boundary operator associated with that graph when
the graph is oriented and seen as a 1-dimensional simplicial complex. (See [MUN84] for
standard definitions of simplices, simplicial complexes, and associated ideas, including
orientations, chains, and boundary operators of simplicial complexes.)

Lemma 3.1.2. Let G be a finite simple graph, with V (G) = {v1, . . . vn} and E(G) =
{e1, e2, . . . , em}. Let the edges of G have arbitrary orientation, and let B1 be a matrix
representation of the boundary map ∂1 from the 1-chains over R to the 0-chains over R of
the oriented graph G. Then

LG = B1BT
1 .

This lemma is seen in Remark 3.3.5 to be a corollary of Theorem 3.3.4, a more general
result.

3.2 Simplicial Complexes – Preliminaries

This section discusses simplicial complexes and introduces some short new definitions
and results regarding them. Again, see [MUN84] for standard definitions of simplicial
complexes and associated ideas, including orientations, chains, and boundary operators.
Although [MUN84] uses chains over Z for the most part, we will find it more convenient
here to use chains over R, as in [DURE]. For easy notation we will sometimes make use
of the f -vector of a simplicial complex. If K is a finite simplicial complex of dimension
d, then the f-vector of K is the (d + 1)-dimensional vector (f0(K), f1(K), . . . , fd(K))T ,
where fi(K) denotes the number of i-simplices in K, for each integer i with 0 ≤ i ≤ d.
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For our purposes, an oriented simplicial complex is one in which all simplices in the
complex, except for vertices and ∅, are oriented. For any finite simplicial complex K and
any nonnegative integer d, the collection of d-chains of K, denoted Cd, is a vector space
over R. (However, the chains still form a group, and we will follow tradition and refer to
the set of chains of a given dimension as the chain group of that dimension.) A basis for
Cd is given by the elementary chains associated with the d-simplices of K, so Cd has finite
dimension fd(K). Also, if we look at elements of Cd as coordinates relative to this basis
of elementary chains, we have the standard inner product on these coordinate vectors,
and we see then that this basis of elementary chains is orthonormal. The dth boundary
operator is a linear transformation Cd −→ Cd−1, and it is denoted ∂d. As is standard, for
a simplicial complex of dimension k we define the (−1)-chain group and all chain groups
of dimension greater than k to be the zero vector space.

Definition. Let K be a finite simplicial complex. Two distinct d-simplices σ1, σ2 in K

are upper adjacent, denoted σ1 ∼U σ2, if both are faces of some (d + 1)-simplex τ in
K, called their common upper simplex. The upper degree of a d-simplex σ in K,
denoted degU (σ), is the number of (d+ 1)-simplices in K of which σ is a face.

Suppose K is oriented, and suppose σ1 and σ2 are d-simplices in K that are upper
adjacent with common upper (d+ 1)-simplex τ . We look at the signs of the coefficients of
these two simplices in the sum ∂d+1(τ). If the signs are the same, we say that σ1 and σ2

are similarly oriented with respect to τ ; if the signs of the coefficients are different, we
say the simplices are dissimilarly oriented. 4

Remark 3.2.1. Note that the equality or inequality of the signs of the coefficients of two
upper adjacent simplices in the sum representing the boundary of their common upper
simplex does not depend on the orientation of the common upper simplex, but only on the
orientations of the two upper adjacent simplices. Hence the similarity or dissimilarity of
two upper adjacent simplices does not depend on the orientation of their common upper
simplex. Also, it is standard to define a 0-simplex, typically called a vertex, as having only
one choice of orientation. Hence, if two vertices in a simplicial complex are upper adjacent,
then they are dissimilarly oriented with respect to their common upper 1-simplex. ♦

Example. For an example of the upper degree of a simplex, observe that in Figure 3.2.1,
the upper degree of edge a is 3. As an example of upper adjacency, note that two edges in a
simplicial complex are upper adjacent if they are both parts of a triangle in that complex.
Intuitively, if the two edges are oriented so that they are “pointing” in the same direction
around the triangle, then they are similarly oriented with respect to the triangle. If the
edges are “pointing” in opposite directions around the triangle, then they are dissimilarly
oriented. In Figure 3.2.2, edges a and b are upper adjacent and similarly oriented, while c
and d are upper adjacent and dissimilarly oriented. ♦

Remark. Typically, the degree of a vertex in a graph is the number of edges in the
graph containing it. In simple graphs, this definition of degree is seen to be a special case
of the more general notion of upper degree given above, because a simple graph, once
geometrically fixed, is really a 1-dimensional simplicial complex. ♦
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a

Figure 3.2.1.

a
b c d

Figure 3.2.2.

Lemma 3.2.2 (Uniqueness of Common Upper Simplex). Let K be a finite simplicial
complex, and let σ1, σ2 be two distinct d-simplices in K. If σ1 and σ2 are upper adjacent,
then their common upper (d+ 1)-simplex is unique.

Proof. Suppose τ1 and τ2 are (d+ 1)-simplices in K both of which contain both σ1 and
σ2 as faces. Then σ1 ∪ σ2 ⊆ τ1 ∩ τ2. The definition of simplicial complexes requires that
τ1 ∩ τ2 be a face of both τ1 and τ2. Since τ1 is a (d+1)-simplex and σ1 and σ2 are distinct
d-simplices, we see that the only face of τ1 containing both σ1 and σ2 is τ1 itself. Thus
τ1 = τ1∩τ2, which implies that τ1 is a face of τ2. Since τ1 and τ2 are both (d+1)-simplices,
this means that τ1 = τ2.

Definition. Let K be a finite simplicial complex. Two distinct d-simplices σ1, σ2 are
lower adjacent in K, denoted σ1 ∼L σ2, if both contain some nonempty (d− 1)-simplex
η in K as a face. This (d − 1)-simplex η is called their common lower simplex. The
lower degree of a d-simplex σ in K, denoted degL(σ), is the number of nonempty (d−1)-
simplices in K that are faces of σ.

Suppose K is oriented, and suppose that σ1 and σ2 are d-simplices in K that are lower
adjacent with common lower (d − 1)-simplex η. We look at the signs of the coefficients
of η in the sums ∂d(σ1) and ∂d(σ2). If the signs are the same, we say that η is a similar
common lower simplex of σ1 and σ2; if the signs of the coefficients are different, we say
η is a dissimilar common lower simplex. 4
Remark 3.2.3. We see immediately that if d > 0, then the lower degree of any d-simplex
in any simplicial complex is d+1. The lower degree of a vertex is 0. Since the only face that
two vertices can have in common is the empty set, no two vertices can be lower adjacent.

Note that whether the signs of the coefficients of a common lower simplex in the sums
representing the boundaries of two lower adjacent simplices are the same or different does
not depend on the orientation of the common lower simplex, but only on the orientations
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of the two lower adjacent simplices. Hence the similarity or dissimilarity of a common
lower simplex does not depend on its orientation. ♦

Example. Two edges in a simplicial complex are lower adjacent if they share a vertex in
that complex. Intuitively, if the two edges are oriented so that they are “pointing” either
both towards the shared vertex or both away from the shared vertex, then the vertex is
a similar common lower simplex. If the two edges are oriented so that one is “pointing”
away from the shared vertex and the other is “pointing” towards it, then the vertex is a
dissimilar common lower simplex. In Figure 3.2.2, edges a and b are lower adjacent with
dissimilar common lower simplex, while c and d are lower adjacent with similar common
lower simplex. ♦

Lemma 3.2.4 (Uniqueness of Common Lower Simplex). Let σ1 and σ2 be distinct
d-simplices of a simplicial complex K. If these two simplices are lower adjacent, then their
common lower simplex is the intersection of the two simplices. Consequently, the common
lower simplex of two simplices, if it exists, is unique.

Proof. Suppose η is a common lower simplex of σ1 and σ2. (Note that it follows from the
definition of lower adjacency that η 6= ∅ and d > 0.) Then η ⊆ σ1∩σ2. On the other hand,
by the definition of a simplicial complex, we know that σ1 ∩σ2 is a face of σ1, and we also
know that this must be a face of σ1 containing η. Note that since η is a (d − 1)-simplex,
there are precisely two faces of σ1 that contain η, namely η and σ1 itself. However, if
σ1 ∩ σ2 = σ1, then σ1 is a face of σ2, so σ1 = σ2, contradicting the fact that σ1 and σ2

are distinct. It follows that η = σ1 ∩σ2. Since any common lower simplex of two simplices
is actually equal to the intersection of the simplices, we see that any two common lower
simplices of two simplices must actually be identical.

Corollary 3.2.5. Two distinct d-simplices σ1 and σ2 of a finite simplicial complex K are
lower adjacent iff σ1 ∩ σ2 is a nonempty (d− 1)-simplex of K.

Lemma 3.2.6. Let K be a finite oriented simplicial complex, and let d be an integer with
0 < d ≤ dim(K). Let σ1 and σ2 be distinct and upper adjacent d-simplices of K, and let
τ be their common upper simplex. Then σ1 and σ2 are similarly oriented with respect to τ
iff they have a dissimilar common lower simplex.

Proof. Without loss of generality, let τ = 〈v0, v1, . . . , vd+1〉, and let σ1 = c1〈v1, v2, . . . , vd+1〉
and σ2 = c2〈v0, v2, . . . , vd+1〉, where c1 and c2 can each be either 1 or −1, depending on
the orientations of σ1 and σ2. Since d > 0 we know that d + 1 ≥ 2, so we see that
η = k〈v2, v3, . . . , vd+1〉 is a common lower simplex of σ1 and σ2, where k can be either 1 or
−1 depending on the orientation of η. Note that since c1, c2, k can each be 1 or −1, we know
that 〈v1, v2, . . . , vd+1〉 = c1σ1, and 〈v0, v2, . . . , vd+1〉 = c2σ2, and 〈v2, v3, . . . , vd+1〉 = kη.
Then

∂d+1(τ) = ∂d+1(〈v0, v1, . . . , vd+1〉)
= 〈v1, v2, . . . , vd+1〉 − 〈v0, v2, . . . , vd+1〉 + T = c1σ1 − c2σ2 + T

where T represents the part of the sum with which we are not concerned now. Similarly,
we see that

∂d(σ1) = ∂d(c1〈v1, v2, . . . , vd+1〉) = c1〈v2, v3, . . . , vd+1〉 + T1 = c1kη + T1
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and

∂d(σ2) = ∂d(c2〈v0, v2, . . . , vd+1〉) = c2〈v2, v3, . . . , vd+1〉 + T2 = c2kη + T2

where T1 and T2 represent the unimportant parts of the two sums.
(⇒) Suppose σ1 and σ2 are similarly oriented with respect to τ . Then the signs of the

coefficients of these two simplices in the sum ∂d+1(τ) must be the same, so it must be
that c1 = −c2, so c1 and c2 have opposite signs. Then the coefficients of η in ∂d(σ1) and
∂d(σ2), which are c1k and c2k, respectively, must have different signs. By definition, this
means that η is a dissimilar common lower simplex of σ1 and σ2.

(⇐) Suppose σ1 and σ2 are dissimilarly oriented with respect to τ . Then it must be
that c1 and c2 have the same sign, so then c1k and c2k both have the same sign, which
means that η is a similar common lower simplex of σ1 and σ2. The contrapositive of this
statement is, if η is a similar common lower simplex of σ1 and σ2 then σ1 and σ2 are
similarly oriented with respect to τ .

In the course of the above proof, we proved the following intuitive corollary.

Corollary 3.2.7. Let d > 0 be an integer. If two distinct d-simplices of a finite simplicial
complex are upper adjacent, then they are also lower adjacent.

3.3 Laplacians of Simplicial Complexes

Note that the matrices of the sole linear operators between trivial vector spaces, from the
trivial vector space to a vector space of dimension n, and from a vector space of dimension
n to the trivial vector space are the 1 × 1 zero matrix, a column vector with n entries all
of which are 0, and a row vector with n entries all of which are 0, respectively. (These are
the matrices of the boundary operator ∂d of a simplicial complex K in the cases where
d > dim(K) + 1, where d = dim(K) + 1, and where d = 0, respectively.)

For each boundary operator ∂d : Cd −→ Cd−1 ofK, we let Bd be the matrix representation
of this operator relative to the standard bases for Cd and Cd−1 with some orderings given
to them. We see that the number of rows in Bd is the number of (d − 1)-simplices in K,
and the number of columns is the number of d-simplices. Associated with the boundary
operator ∂d is its adjoint operator ∂∗d : Cd−1 −→ Cd. From [FIS97, Theorem 6.10], we
know that the transpose of the matrix for the dth boundary operator relative to the
standard orthonormal basis of elementary chains with some ordering, BT

d , is the matrix
representation of the dth adjoint boundary operator, ∂∗

d with respect to this same ordered
basis.

It is worth noting that the dth adjoint boundary operator of a finite oriented simpli-
cial complex K is in fact the same as the dth coboundary operator δd : Cd−1(K; R) −→
Cd(K; R) given in [FIS97, page 6], under the isomorphism C d(K; R) = Hom(Cd(K),R) ∼=
Cd(K).

The composition of two composable linear maps is a linear map. Two linear maps with
identical domains and codomains can be added by adding their values on any element in
their domain, and the sum of two such maps is clearly another linear map. The following
definition comes from [DURE].
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Definition. Let K be a finite oriented simplicial complex, and let d ≥ 0 be an integer.
The dth combinatorial Laplacian is the linear operator ∆d : Cd −→ Cd given by

∆d = ∂d+1 ◦ ∂∗d+1 + ∂∗d ◦ ∂d.

For convenience, we use the notations ∆UP
d = ∂d+1 ◦ ∂∗d+1 and ∆DN

d = ∂∗d ◦ ∂d, so that

∆d = ∆UP
d + ∆DN

d .
4

The dth Laplacian matrix ofK, denoted Ld, relative to some orderings of the standard
bases for Cd and Cd−1 of K, is the matrix representation of ∆d. Observe that

Ld = Bd+1BT
d+1 + BT

d Bd.

As above, for convenience, we use the notations LUP
d = Bd+1BT

d+1 and LDN
d = BT

d Bd, so

that Ld = LUP
d + LDN

d .

Example 3.3.1. Let K be the oriented simplificial complex given in Figure 3.3.1. Then
we calculate that

B2 =




1
−1
1
0


 and B1 =




1 1 0 0
0 −1 −1 0
−1 0 1 −1
0 0 0 1


 .

Therefore

L1 = B2BT
2 + BT

1 B1

=




1
−1
1
0



(

1 −1 1 0
)

+




1 0 −1 0
1 −1 0 0
0 −1 1 0
0 0 −1 1







1 1 0 0
0 −1 −1 0
−1 0 1 −1
0 0 0 1




=




3 0 0 1
0 3 0 0
0 0 3 −1
1 0 −1 2


 .

♦

a

b c

d
1

2

3
4

Figure 3.3.1.
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Note that ∂0 is the zero map for any simplicial complex, so B0 is a zero matrix. We see
then that ∂∗0 ◦ ∂0 is the zero map, and LDN

0 = BT
0 B0 is a zero matrix, so ∆0 = ∂1 ◦ ∂∗1

and L0 = LUP
d . Referring back to Lemma 3.1.2, yet to be demonstrated, we see that

our Laplacian matrix for simplicial complexes is a generalization of the combinatorial
Laplacian matrix defined in graph theory, because finite simple graphs can be seen as
simplicial complexes of dimension 1, embedded in some Euclidean space.

We now present several results that greatly ease the computation of the Laplacian matrix
of a simplicial complex.

Proposition 3.3.2. Let K be a finite oriented simplicial complex, and let d be an integer
with 0 ≤ d ≤ dim(K). Let {σ1, σ2, . . . , σn} be the d-simplices of K, and let {τ1, τ2, . . . , τm}
be the (d+ 1)-simplices of K. Let i, j ∈ {1, 2, . . . , n}. Then

(LUP
d )ij =





degU (σi), if i = j

1, if i 6= j and σi and σj are upper adjacent
and oriented similarly

−1, if i 6= j and σi and σj are upper adjacent
and oriented dissimilarly

0, if i 6= j and σi and σj are not upper adjacent.

Proof. First, if d = dim(K), then ∂d+1 : Cd+1 −→ Cd is the zero map from the trivial
vector space to another vector space, so we see that LUP

d+1 must be a zero matrix. Since in
this case there are no (d + 1)-simplices in K, no d-simplices are upper adjacent in K, so
the proposition follows.

Now, suppose d < dim(K). The ijth component of LUP
d+1 = Bd+1B∗

d+1 is the standard
dot product of the ith and jth rows of Bd+1. Let X and Y denote these rows, respectively.
As before, we will refer to the individual products of the components of X and Y in their
dot product as summands.

Suppose i = j. Let τk be a (d + 1)-simplex in K. If σi is a face of τk, then the kth
component of X is either 1 or −1, depending on the orientation of σi, so the kth summand
of X ·X is 1. If σi is not a face of τk, then the kth component of X is 0, so the kth summand
of X ·X is 0. It follows then that X ·X is the same as the number of (d+ 1)-simplicies in
K of which σi is a face, which is of course the upper degree of σi in K.

Suppose i 6= j. Let τk be a (d+1)-simplex in K. Suppose σi and σj are both faces of τk.
If σi and σj are similarly oriented, then the kth components of X and Y are either both
1 or both −1, so either way the kth summand of X · Y is 1. If σi and σj are dissimilarly
oriented, then of the kth components of X and Y , one is 1 and the other is −1, so the
kth summand in X · Y is −1. If σi is not a face of τk, then the kth component of X is 0.
Similarly for σj, so if either σi or σj is not a face of τk, then the kth summand of X · Y is
0.

We know by Lemma 3.2.2 that there is at most one (d + 1)-simplex in K containing
both σi and σj as faces. Therefore, if σi and σj are upper adjacent, then a single summand
of X · Y is either 1 or −1 and all the other summands are 0, so (LUP

d+1)ij = X · Y is either
1 or −1, depending on whether the two simplices are oriented similarly or dissimilarly,
respectively. If σi and σj are not upper adjacent, then all the summands of X · Y are 0,
so (LUP

d+1)ij = X · Y = 0.
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Proposition 3.3.3. Let K be a finite oriented simplicial complex, and let d be an integer
with 0 ≤ d ≤ dim(K). Let {σ1, σ2, . . . , σn} be the d-simplices of K. Let i, j ∈ {1, 2, . . . , n}.
Then

(LDN
d )ij =





degL(σi), if i = j

1, if i 6= j and σi and σj have a similar
common lower simplex

−1, if i 6= j and σi and σj have a dissimilar
common lower simplex

0, if i 6= j and σi and σj are not lower adjacent.

Proof. First, if d = 0, then since ∂0 : C0 −→ C−1 is the zero map from a finite dimensional
vector space to the trivial vector space, we know that LDN

d must be a zero matrix. Since
no vertices of a simplicial complex are lower adjacent, the proposition follows.

Suppose d > 0. The ijth component of LDN
d = B∗

dBd is the standard dot product of
the ith and jth columns of Bd. Let X and Y denote these columns, respectively, and let
{η1, η2, . . . , ηm} be the (d− 1)-simplices of K

Suppose i = j. Let ηk be a (d − 1)-simplex of K. If σi contains ηk as a face, then the
kth component of X is either 1 or −1, depending on the orientation of ηk, so the kth
summand of X ·X is 1. If σi does not contain ηk as a face, then the kth component of X
is 0, so the kth summand of X ·X is 0. It follows then that (LDN

d )ij = X ·X is the same
as the number of (d− 1)-faces of σi, which is the lower degree of σi in K.

Suppose i 6= j. Let ηk be a (d − 1)-simplex of K. Suppose σi ∩ σj = ηk, meaning by
Corollary 3.2.5 that σi and σj are lower adjacent. If ηk is a similar common lower simplex,
then the kth components of X and Y are either both 1 or both −1, so either way the
kth summand of X · Y is 1. If ηk is a dissimilar common lower simplex, then of the kth
components of X and Y , one is 1 and the other is −1, so the kth summand in X · Y is
−1. If ηk is not a face of σi, then the kth component of X is 0. Similarly for σj , so if ηk

is not a common lower simplex of σi and σj , then the kth summand of X · Y is 0.
We know by Lemma 3.2.4 that there is at most one (d− 1)-simplex in K that is a face

of both σi and σj. Therefore, if σi and σj have a similar common lower simplex, then a
single summand of X · Y is 1 and all the other summands are 0, so (LDN

d )ij = X · Y = 1.
If σi and σj have a dissimilar common lower simplex, then a single summand of X · Y is
−1 and all the other summands are 0, so (LDN

d )ij = X · Y = −1. If σi and σj are not
lower adjacent, then all the summands of X · Y are 0, so (LDN

d )ij = X · Y = 0.

Theorem 3.3.4 (Laplacian Matrix Theorem). Let K be a finite oriented simplicial
complex, let d be an integer with 0 ≤ d ≤ dim(K), and let {σ1, σ2, . . . , σn} denote the
d-simplices of K. Let i, j ∈ {1, 2, . . . , n}.
(1) If d = 0, then

(Ld)ij =





degU(σi), if i = j

−1, if σi and σj are distinct and
upper adjacent

0, if σi and σj are distinct and
not upper adjacent.
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(2) If d > 0, then

(Ld)ij =





degU (σi) + d+ 1, if i = j

1, if i 6= j and σi and σj are not upper adjacent
but have a similar common lower simplex

−1, if i 6= j and σi and σj are not upper adjacent
but have a dissimilar common lower simplex

0, if i 6= j and either σi and σj are upper adjacent
or are not lower adjacent.

Proof. (1) Suppose d = 0. We remarked at the beginning of this section that L0 = B1BT
1 .

In Remark 3.2.1 we noted that since vertices have only one choice of orientation, any two
vertices that are upper adjacent are dissimilarly oriented. We see that part (1) of this
theorem follows directly from Proposition 3.3.2.

(2) Suppose d > 0. If i = j, then by Proposition 3.3.2 and Proposition 3.3.3 we know that
(Ld)ii = (LUP

d )ii +(LDN
d )ii = degU (σi)+degL(σi). Since every simplex of dimension d > 0

has exactly d+ 1 (d− 1)-faces, we see that (Ld)ii = degU (σi) + d+ 1.
Suppose i 6= j. If σi and σj are not upper adjacent but have a similar common lower

simplex, then by Proposition 3.3.2 and Proposition 3.3.3 we know that (Ld)ij = (LUP
d )ij +

(LDN
d )ij = 0 + 1 = 1. If σi and σj are not upper adjacent but have a dissimilar common

lower simplex, then by these same propositions we know that (Ld)ij = (LUP
d )ij+(LDN

d )ij =
0 + (−1) = −1.

Suppose σi and σj are upper adjacent. If they are similarly oriented, then we know
by Lemma 3.2.6 that they have a dissimilar common lower simplex, so by the same two
propositions used above, we have that (Ld)ij = (LUP

d )ij + (LDN
d )ij = 1 + (−1) = 0. On

the other hand, if they are dissimilarly oriented, then they have a similar common lower
simplex, so (Ld)ij = (LUP

d )ij + (LDN
d )ij = (−1) + 1 = 0.

Finally, if σj and σi are not lower adjacent, then we know by the contrapositive of
Corollary 3.2.7 that they are not upper adjacent, so then by the same propositions referred
to above, we have that (Ld)ij = (LUP

d )ij + (LDN
d )ij = 0 + 0 = 0.

The Laplacian Matrix Theorem confirms our calculation of Example 3.3.1. (Or, our
calculation of Example 3.3.1 confirms the Laplacian Matrix Theorem, depending on your
point of view.)

Remark 3.3.5. Since a finite simple graph G can be viewed as a simplicial complex of
dimension 1, we conclude from Theorem 3.3.4 that the matrix LG from the definition in
Section 3.1 is the same as the zero Laplacian matrix of G as a simplicial complex. Since
the definition of the Laplacian matrix of simplicial complexes is in terms of the boundary
operator, we see that Lemma 3.1.2 follows from Theorem 3.3.4 as a corollary. ♦

Remark 3.3.6. Note that the above theorem implies that the value of the dth Laplacian
matrix of a simplicial complex really depends at most on the orientations of the d-simplices
of the complex, and not on orientations of simplices of other dimensions. ♦

From the Theorem 3.3.4, we deduce the following Corollary. Note that part (1) of this
Corollary is also a formula about the graph theory Laplacian matrix, since the graph



3. COMBINATORIAL LAPLACIANS OF SIMPLICIAL COMPLEXES 32

theory Laplacian is the same as the 0-dimensional Laplacian for simplicial complexes. The
formula in part (1) is a well-known equation in the study of graph theory Laplacians. It
came from [CHU96, page 317], and served as the inspiration for the formula of part (2).

Corollary 3.3.7. Let K be a finite oriented simplicial complex.

(1) Let v1, . . . , vm be the vertices of K, and let i ∈ {1, . . . ,m}. Then

∆0(vi) =
∑

vj∼U vi

(vi − vj).

(2) Let d be an integer with 0 < d ≤ dim(K), let σ1, . . . , σn be the oriented d-simplices
of K, and let i ∈ {1, . . . , n}. Then

∆d(σi) =
∑

σj∼Lσi

(σi + sijσj) +
∑

σk∼Uσi

(σi − sikσk),

where sij is 1 if σi and σj have a similar common lower simplex, and −1 if they
have a dissimilar common lower simplex, for all i, j ∈ {1, . . . , n}.

Proof. (1) Theorem 3.3.4 tells us exactly what each entry of L0 looks like, and the vertex
vi can be represented by the ith standard basis vector for Rm, which we will denote ei.
Then ∆0(vi) is the chain represented by the vector L0ei. This vector is the ith column of
L0, so we see that

∆0(vi) = degU (vi)vi −
∑

vj∼Uvi

vj.

The number of j ∈ {1, . . . ,m} − {i} for which vi is upper adjacent to vj is precisely the
upper degree of vi, so this formula reduces to

∆0(vi) =
∑

vj∼Uvi

(vi − vj).

(2) As in part (1), we see that ∆d(σi) is the chain represented by the vector Ldei, where
ei ∈ Rn is the ith standard basis vector. Again, this vector is the ith column of Ld. From
Theorem 3.3.4, we deduce that

∆d(σi) = (degU (σi) + d+ 1)σi +
∑

σj∼Lσi

sijσj −
∑

σk∼Uσi

sikσk,

because since any two upper adjacent simplices are also lower adjacent, subtracting the
two sums will cancel all terms containing a simplex σj that is upper adjacent to σi, which
is precisly what is required since the jth entry of the ith column of Ld is 0 if σj is upper
adjacent to σi. The coefficients sij account for the signs of the remaining entries, depending
on the similarity or dissimilarity of the relevant common lower simplices. Note that the
number of σj that are lower adjacent to σi is precisely d+1, and the number of σk that are
upper adjacent to σi is precisely degU (σi). Therefore the formula we calculated reduces to
the desired formula, namely

∆d(σi) =
∑

σj∼Lσi

(σi + sijσj) +
∑

σk∼Uσi

(σi − sikσk).
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Remark 3.3.8. Even though we are using chains over R, the information presented and
proved in Section 2.1 shows that all of our work, including defining the Laplacian oper-
ator and its matrix, could just as well be done over Z instead. Over Z, the chains of a
simplicial complex form a free abelian group, and the boundary operator and Laplacian
operators are both homomorphisms. As detailed in Section 2.1, free abelian groups are al-
gebraic structures that are like enough to vector spaces to allow matrix representations of
homomorphisms between them, and also to define adjoint homomorphisms whose matrix
representations are the transposes of the matrices of the original functions.

One reason we use R here is that it allows us to use results from linear algebra directly
on the Laplacian operator, which over R is a linear operator, rather than using these
same results indirectly on a matrix representation of a homomorphism instead of on the
homomorphism itself. Another very important reason to use vector spaces instead of free
abelian groups is that even though we can define the eigenvalues of a homorphism between
free abelian groups to be the eigenvalues of its matrix, the meaning of eigenvalues and
eigenvectors for the operator itself may be lost, because the vector representations of
elements of a free abelian group have only integer entries. Any non-integer eigenvalues have
little of their usual meaning for the homomorphism, and of course non-integer eigenvectors
do not exist in the chain groups. ♦

3.4 Reduced Laplacians of Simplicial Complexes

Let K be a finite oriented simplicial complex. It is standard to take ∅ to be a (−1)-
simplex of K, and suppose that every simplex in K contains ∅ as a face. Normally, the
set of (−1)-chains in K is defined to be the trivial vector space. Suppose we define the
set of (−1)-chains to be the vector space with singleton basis containing the elementary
chain corresponding to ∅. Then this vector space is isomorphic to R. In algebraic topology
it is sometimes useful to regard the (−1)-chain group to be isomorphic to R, and look
at something called the reduced homology groups of K, as in [MUN84]. We will call
the nontrivial vector space of chains with basis {∅} the augmented chain group of
dimension (−1), denoted C̃−1.

In this context, for all integers d > 0 we will speak of the augmented chain group of
dimension d, denoted C̃d, defined to be identical to Cd, the usual chain group of dimension
d. It is also standard to define an augmented boundary operator of dimension 0,
denoted ∂̃0 : C̃0 −→ C̃−1, as the linear operator given by ∂̃0(v) = ∅ for all v ∈ C̃0 = C0.
Similar to augmented chain groups, for all integers d > 0 we will speak of the augmented
boundary operator of dimension d, denoted ∂̃d, defined to be identical to ∂d, the
usual boundary operator of dimension d. Similarly to our nonreduced definitions, the
adjoint operator of ∂̃d will be denoted ∂̃∗d . The reduced combinatorial Laplacian of

dimension d, denoted ∆̃d, is the homomorphism from C̃d to C̃d given by

∆̃d = ∂̃d+1 ◦ ∂̃∗d+1 + ∂̃∗d ◦ ∂̃d.

Similarly to the unreduced case, for convenience we use the notations ∆̃UP
d = ∂̃d+1∂̃

T
d+1

and ∆̃DN
d = ∂̃T

d ∂̃d, so that ∆̃d = ∆̃UP
d + ∆̃DN

d .
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For all integers d ≥ 0, we let B̃d denote the standard matrix representation of ∂̃d. As
in the unreduced case, we know that B̃T

d is a matrix representation of ∂̃∗d . The reduced

Laplacian matrix of dimension d, denoted L̃d, is the matrix representation of ∆̃d, and
we see that

L̃d = B̃d+1B̃T
d+1 + B̃T

d B̃d.

Similarly to the unreduced case, for convenience we use the notations L̃UP
d = B̃d+1B̃T

d+1

and L̃DN
d = B̃T

d B̃d, so that L̃d = L̃UP
d + L̃DN

d .

Remark 3.4.1. Suppose that K contains n vertices. Then B̃0 is a row vector with n

entries all of which are 1. Hence B̃T
0 B̃0 is an n×n matrix all of whose entries are 1, which

we denoted Un in Lemma 2.2.9. Then

L̃0 = L0 + Un.

Also, we see immmediately that for any finite oriented simplicial complex K it must be
that ∆̃d = ∆d, and so also L̃d = Ld, for all integers d > 0. ♦

We will now reformulate our definitions and results from Sections 3.2 and 3.3 in terms
of reduced Laplacians.

Definition. Let K be a finite simplicial complex. Two distinct d-simplices σ1, σ2 are
reduced lower adjacent in K if both contain some (possibly empty) (d− 1)-simplex η
in K as a face. This (d− 1)-simplex η is called their reduced common lower simplex.
The reduced lower degree of a d-simplex σ in K, denoted deg �

L
(σ), is the number of

(possibly empty) (d− 1)-simplices in K that are faces of σ.
Suppose K is oriented and that σ1 and σ2 are d-simplices in K that are lower adjacent

with common lower (d − 1)-simplex η. We look at the signs of the coefficients of η in the
sums ∂d(σ1) and ∂d(σ2). If the signs are the same, we say that η is a similar reduced
common lower simplex of σ1 and σ2; if the signs of the coefficients are different, we say
η is a dissimilar reduced common lower simplex. 4

As before, if d > 0 then the reduced lower degree of any d-simplex in any simplicial
complex is d + 1; however, now any two vertices have a reduced common lower simplex,
namely ∅. Hence, for all integers d ≥ 0, the reduced lower degree of any d-simplex in a
simplicial complex is d+ 1. Also, since we assume the empty set has only one orientation,
we see that ∅ is a similar reduced common lower simplex of any two vertices in a simplicial
complex.

For any dimension greater than 0, the concepts of reduced lower adjacency and similar
or dissimilar reduced common lower simplices mean exactly the same as their analogues
in un-reduced Laplacians. Concepts of upper adjacency are uneffected when considering
reduced Laplacians.

We will find that the same results that we proved in Section 3.3 in the study of un-
reduced Laplacians hold true for the reduced case, except that we gain greater generality
in that all of our results now hold for the 0-dimensional case as well, whereas previously
some of them did not.

Lemma 3.4.2 (Uniqueness of Reduced Common Lower Simplex). Let σ1 and σ2

be distinct d-simplices of a simplicial complex K. If these two simplices are reduced lower
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adjacent, then their reduced common lower simplex is the intersection of the two simplices.
Consequently, the reduced common lower simplex of two simplices, if it exists, is unique.

Proof. For d > 0, the proof of this lemma is the same as for Lemma 3.2.4 in the un-
reduced case. If d = 0, then we note that the intersection of any two vertices is the empty
set, which is of course a reduced common lower simplex of the two vertices.

Corollary 3.4.3. Two distinct d-simplices σ1 and σ2 of a finite simplicial complex K are
reduced lower adjacent iff σ1 ∩ σ2 is a (d− 1)-simplex of K.

Lemma 3.4.4. Let K be a finite oriented simplicial complex, and let d be an integer with
0 ≤ d ≤ dim(K). Let σ1 and σ2 be distinct and upper adjacent d-simplices of K, and let
τ be their common upper simplex. Then σ1 and σ2 are similarly oriented with respect to τ
iff they have a dissimilar reduced common lower simplex.

Proof. If d > 0, the proof is the same as in the un-reduced case in Lemma 3.2.6. Suppose
d = 0. We know that any two upper adjacent vertices are dissimilarly oriented with respect
to their common upper simplex. Since σ1 and σ2 are vertices, we also know that they are
reduced lower adjacent, and that the empty set is a similar reduced common lower simplex
of them. Since two vertices cannot be similarly oriented with respect to a common upper
simplex, this completes the proof.

We again have the following corollary.

Corollary 3.4.5. Let d ≥ 0 be an integer. If two distinct d-simplices of a finite simplicial
complex are upper adjacent, then they are also reduced lower adjacent.

Since all definitions for reduced Laplacians are identical to their un-reduced analogues
in any dimension greater than 0, the following proposition is completely equivalent to its
analogue in the un-reduced case, namely Proposition 3.3.2.

Proposition 3.4.6. Let K be a finite oriented simplicial complex, and let d be an integer
with 0 ≤ d ≤ dim(K). Let {σ1, σ2, . . . , σn} be the d-simplices of K. Let i, j ∈ {1, 2, . . . , n}.
Then

(L̃UP
d )ij =





degU (σi), if i = j

1, if i 6= j and σi and σj are upper adjacent
and oriented similarly

−1, if i 6= j and σi and σj are upper adjacent
and oriented dissimilarly

0, if i 6= j and σi and σj are not upper adjacent.

The proof of the next proposition is nearly the same as the proof of Proposition 3.3.3,
except that here we can use one proof for all dimensions, instead of different proofs for
dimension 0 and dimensions greater than 0.

Proposition 3.4.7. Let K be a finite oriented simplicial complex, and let d be an integer
with 0 ≤ d ≤ dim(K). Let {σ1, σ2, . . . , σn} be the d-simplices of K. Let i, j ∈ {1, 2, . . . , n}.
Then
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(L̃DN
d )ij =





deg �

L
(σi), if i = j

1, if i 6= j and σi and σj have a similar
reduced common lower simplex

−1, if i 6= j and σi and σj have a dissimilar
reduced common lower simplex

0, if i 6= j and σi and σj are not reduced lower adjacent.

Proof. If d > 0, then the proof is the same as the proof of its un-reduced analogue,
Proposition 3.3.3. Suppose d = 0. Every vertex contains exactly one (−1)-face, the empty
set, so the reduced lower degree of any vertex is 1. Any two distinct vertices are reduced
lower adjacent, and the empty set is a similar reduced common lower simplex of them.
From Remark 3.4.1, we know that B̃T

0 B̃0 is a matrix whose entries are all 1. This proves
the proposition.

Propositions 3.4.6 and 3.4.7 look very much like their unreduced counterparts, but the
Reduced Laplacian Matrix Theorem is clearly slightly different, and essentially tidier, than
its unreduced counterpart, the Laplacian Matrix Theorem.

Theorem 3.4.8 (Reduced Laplacian Matrix Theorem). Let K be a finite oriented
simplicial complex, and let d be an integer with 0 ≤ d ≤ dim(K), and let {σ1, σ2, . . . , σn}
denote the d-simplices of K. Let i, j ∈ {1, 2, . . . , n}. Then

(L̃d)ij =





degU (σi) + d+ 1, if i = j

1, if i 6= j and σi and σj are not upper adjacent
but have a similar reduced common lower simplex

−1, if i 6= j and σi and σj are not upper adjacent
but have a dissimilar reduced common lower simplex

0, if i 6= j and either σi and σj are upper adjacent
or are not reduced lower adjacent.

Proof. The proof of this theorem is identical to the proof of part (ii) of this theorem’s
un-reduced analogue, Theorem 3.3.4, which proves the theorem if d > 0. The only reason
the same argument did not apply previously if d = 0 is that it relied on results that were
not true for d = 0, namely Corollary 3.2.7 and Lemmas 3.2.6 and 3.3.3. However, in the
reduced case, the analogues of these results, namely Corollary 3.4.5 and Lemmas 3.4.4
and 3.4.7, hold true for all integers d ≥ 0.

Again, we have the following Corollary. The proof of this result is identical to the proof
of Corollary 3.3.7 (2).

Corollary 3.4.9. Let K be a finite oriented simplicial complex. Let d be an integer with
0 ≤ d ≤ dim(K), let σ1, . . . , σn be the oriented d-simplices of K, and let i ∈ {1, . . . , n}.
Then

∆̃d(σi) =
∑

σj∼L̃
σi

(σi + sijσj) +
∑

σk∼Uσi

(σi − sikσk),
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where sij is 1 if σi and σj have a similar reduced common lower simplex, and −1 if they
have a dissimilar reduced common lower simplex, for all i, j ∈ {1, . . . , n}.



4
Laplacian Spectra of Simplicial Complexes

4.1 Spectra of ∆, ∆̃, ∆UP , and ∆DN

We now present some extremely useful and pretty results about the eigenvalues of Lapla-
cian operators.

Definition. Let K be a finite oriented simplicial complex, and let d be an integer with
0 ≤ d ≤ dim(K). Then the dth Laplacian spectrum of K, denoted Spec(∆d(K)), is the
multiset of eigenvalues of ∆d of K. 4
Theorem 4.1.1. Let K be a finite simplicial complex, and let d be an integer with 0 ≤ d ≤
dimK. Then Spec(∆d(K)) is independent of the choice of orientation for the d-simplices
of that complex.

Proof. By Theorem 3.3.4, it is apparent that the diagonal entries of a Laplacian matrix
are independent of orientation, and similarly we note that whether a nondiagonal entry
is zero or nonzero is independent of orientation as well. So, we see that only the signs of
the nonzero nondiagonal entries of the Laplacian matrix are dependent on orientation. If
d = 0, then this is not an issue, since all nondiagonal entries of L0 are either 0 or −1 for
any simplicial complex.

Suppose d > 0. Let {σ1, σ2, . . . , σn} denote the d-simplices of K. Suppose K1 is the
simplicial complex K with some arbitrary orientation given to the d-simplices, and that
K2 is also the complex K with the same orientations on the d-simplices as in K1 except
that σp has the opposite orientation in K2 as it does in K1, for some p ∈ {1, 2, . . . , n}. Let
Ld(K1) and Ld(K2) denote the dth Laplacian matrices of K1 and K2, respectively. Let σp

denote the elementary chain of this simplex with respect to its orientation given in K1,
and then −σp will denote the elementary chain of this same simplex with respect to its
orientation given in K2.

Suppose σi is lower but not upper adjacent with σp. Let η be the common lower simplex
of σi and σp. Note that ∂d(−σp) = −∂d(σp), so the coefficient of η in ∂d(−σp) has the
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opposite sign from its sign in ∂d(σp). Hence, if the coefficient of η in ∂d(σi) has the
same sign as its coefficient in ∂d(σp), then the coefficient in ∂d(σi) has the opposite sign
as its coefficient in ∂d(−σp). Similarly, if the coefficient of η in ∂d(σi) has the opposite
sign as its coefficient in ∂d(σp), then the coefficient in ∂d(σi) has the same sign as its
coefficient in ∂d(−σp). Therefore if σp and σi have a similar common lower simplex in K1,
then they have a dissimilar common lower simplex in K2, and vice versa. It follows that
(Ld(K1))pi = (Ld(K1))ip has the opposite sign of (Ld(K2))pi = (Ld(K2))ip.

Since this holds true for any σi with which σp is lower but not upper adjacent, we see
that Ld(K2) is the same as Ld(K1) except that every nondiagonal nonzero entry in row
p or in column p has the opposite sign. This result can be obtained by multiplying each
entry in row p by −1 and then multiplying each entry in column p by −1, because this
will not affect any zero entries, and the pth diagonal entry will be multiplied by −1 twice,
leaving it alone.

For each x ∈ {1, 2, . . . , n} let Jx denote the n× n matrix given by

(Jx)ij =





−1, if i = x = j

1, if x 6= i = j

0, otherwise.

For all x ∈ {1, 2, . . . , n} note that Jx is invertible and is in fact idempotent. Also, note
that for any n× n matrix A, multiplication on the left by Jx will yield a matrix identical
to A except with all the entries in row x multiplied by −1, and multiplication by Jx on
the right yields a matrix identical to A except with all the entries in column x multiplied
by −1.

We see then that Ld(K2) = JpLd(K1)Jp. Since Jp is idempotent, this means that
Ld(K2) and Ld(K1) are similar matrices. A well-known result in linear algebra states
that similar matrices have identical eigenvalues, (see [FIS97, page 240]), so it follows that
Spec(∆d(K1)) = Spec(∆d(K2)).

The above argument dealt with the case where the orientation of simplices of a particular
dimension in two geometrically identical finite simplicial complexes differed only in the
orientation of a single simplex. Since we are dealing with finite simplicial complexes, the
complete result of this theorem follows by a simple application of mathematical induction.

Example 4.1.2. In Figure 4.1.1, we have two oriented simplicial complexes K1 and K2

that are geometrically identical but have different orientations on their simplices. We
calculate that

L1(K1) =




3 0 0 0
0 3 0 −1
0 0 3 −1
0 −1 −1 2


 and L1(K2) =




3 0 0 0
0 3 0 −1
0 0 3 1
0 −1 1 2


 ,

but Spec(∆1(K1)) = {1, 3, 3, 4} = Spec(∆1(K2)). ♦

Definition. Let K be a finite oriented simplicial complex, and let d be an integer with 0 ≤
d ≤ dim(K). Then the dth reduced Laplacian spectrum of K, denoted Spec(∆̃d(K)),
is the multiset of eigenvalues of ∆̃d of K. 4
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Figure 4.1.1.

Theorem 4.1.3. Let K be a finite simplicial complex, and let d be an integer with 0 ≤ d ≤
dimK. Then Spec(∆̃d(K)) is independent of the choice of orientation for the d-simplices
of that complex.

Proof. If d > 0, then the dth reduced Laplacian matrix is the same as the dth Laplacian
matrix, so the proof here is the same as that in Theorem 4.1.1 for d > 0. Suppose d = 0.
From Remark 3.4.1, we know that each entry of the 0-dimensional reduced Laplacian ma-
trix L̃0 is 1 more than the corresponding entry in the 0-dimensional un-reduced Laplacian
matrix L0. From Theorem 3.3.4, we note that the values of the entries of L0 are inde-
pendent of the choice of orientation of the vertices, precisely because there is no choice of
orientation for vertices. It follows that the matrix L̃0 is in fact independent of the choice
of orientation of the vertices, so its eigenvalues are independent of this as well.

Remark. In Remark 3.3.6 we noted that the value of the dth Laplacian matrix of a
simplicial complex K, and clearly that of the dth reduced Laplacian matrix, depends only
on the orientations of the d-simplices. We have just seen that the eigenvalues of these
matrices do not depend on orientation at all!! This allows us to discuss the Laplacian
spectra, or reduced Laplacian spectra, of a finite simplicial complex without specifying
any orientations. ♦

The kernel of the Laplacian operator has a very fascinating and useful property. This
property is called the Combinatorial Hodge Theorem. The Combinatorial Hodge Theorem
is stated and proved in [YU83, Lemma 4], although there they use chains over Q instead
of R. The proof for chains over R is essentially the same. Note that this theorem requires
that we work with chains over a field, and is not generally true for chains over an arbitrary
group.

Theorem 4.1.4 (Combinatorial Hodge Theorem for Laplacians). Let K be a finite
simplicial complex. Then

Hi(K; R) ∼= N(∆i(K))

for each integer i with 0 ≤ i ≤ dim(K), where the isomorphism is as vector spaces over
R.

It may seem that the presence of both reduced and unreduced Laplacians in zero di-
mensions means that we have another set of eigenvalues to take into account for each
simplicial complex. Also, in [DURE], the definition of the Laplacian operator used by Du-
val and Reiner is actually the definition of what we call the reduced Laplacian, so it would
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be nice if there is some easy way to convert between their Laplacian spectra and ours,
even though reduced and unreduced Laplacians are only different in the case of dimension
0. The following result makes this connection.

Theorem 4.1.5. Let K be a finite simplicial complex with n vertices. Then

SpecNZ(∆̃0(K)) = SpecNZ(∆0(K)) ∪M {n},

and
Spec(∆̃d(K)) = Spec(∆d(K))

for all integers d > 0.

Proof. The second equation in the statement of the theorem follows from the fact that
for all integers d > 0 we have ∆d(K) = ∆̃d(K).

For the first equation, let {v1, v2, . . . , vn} denote the vertices of K. Recall the definition
of Un from Lemma 2.2.9. By Remark 3.4.1 we know that L̃0 = L0 + Un. We will show
that L0Un and UnL0 are both the n× n zero matrix, so that ∆0 and the linear operator
C0 −→ C0 represented by Un are mutually annihilating operators.

Let i, j ∈ {1, 2, . . . , n}. Making use of Theorem 3.3.4, we see that the ijth component
of L0Un is the sum of the components of the ith row of L0, which is

n∑

j=1

(L0)ij = degU vi +
∑

vk∼Uvi

(−1).

Since the upper degree of a vertex is precisely the number of vertices with which it is
upper adjacent, we see that this sum and hence this component must be 0. Similarly, the
ijth component of UnL0 is the sum of the components of the jth row of L0, which is

n∑

i=1

(L0)ij = degU vj +
∑

vk∼Uvj

(−1),

which must also be 0.
Since ∆0 and the operator given by Un are self-adjoint as well as mutually annihilat-

ing, it follows by Theorem 2.2.5 that SpecNZ(L0 + Un) = SpecNZ(L0) ∪M SpecNZ(Un).
From Lemma 2.2.9 we know that SpecNZ(Un) = {n}. Therefore SpecNZ(∆̃0(K)) =
SpecNZ(∆0(K)) ∪M {n}.

In the case of a connected complex, Theorem 4.1.5 can be made even more specific,
describing the actual spectra instead of the non-zero spectra.

Corollary 4.1.6. Let K be a connected finite simplicial complex with n vertices. Then

Spec(∆̃0(K)) = SpecNZ(∆0(K)) ∪M {n}.

Proof. From Theorem 4.1.4, we know that the dimension of the nullspace of ∆0, which
is the multiplicity of 0 as an eigenvalue of ∆0, is the dimension of the 0th homology group
of K. It is well known [MUN84, Theorem 7.1] that the dimension of the 0th homology
group of K is equal to the number of components of K, which in this case is 1. Therefore
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0 is an eigenvalue of multiplicity 1 of ∆0(K), so ∆0(K) has precisely n − 1 nonzero
eigenvalues. Since ∆̃0(K) can have only n eigenvalues, by Theorem 4.1.5 we see that
Spec(∆̃0(K)) = SpecNZ(∆0(K)) ∪M {n}.

The following lemma describes the very useful relationship between the spectrum of ∆,
and the spectra of ∆UP and ∆DN , in both non-reduced and reduced settings.

Lemma 4.1.7. Let K be a finite oriented simplicial complex, and let d ∈ Z be such that
0 ≤ d ≤ dim(K). Then

SpecNZ(∆d(K)) = SpecNZ(∆UP
d (K)) ∪M SpecNZ(∆DN

d (K))

and
SpecNZ(∆̃d(K)) = SpecNZ(∆̃UP

d (K)) ∪M SpecNZ(∆̃DN
d (K)).

Proof. As linear operators, we know that both ∆UP
d and ∆DN

d are self-adjoint. From
[MUN84, Lemma 5.3] we know that the image of the boundary operator of a given dimen-
sion is contained in the nullspace of the boundary operator of the next lower dimension,
and from [FIS97, Theorem 6.11 (c)] we know that the adjoint of the composition of two
linear operators is the composition in the opposite direction of the adjoints of the two
operators. Also, we see easily that the composition on either side of a linear operator with
the zero map of the proper dimension is the zero map of the proper dimension, and that
the adjoint of a zero map is another zero map. Taken altogether, these facts imply that

∆UP
d ◦ ∆DN

d = (∂d+1 ◦ ∂∗d+1) ◦ (∂∗d ◦ ∂d) = ∂d+1 ◦ (∂∗d+1 ◦ ∂∗d) ◦ ∂d

= ∂d+1 ◦ (∂d ◦ ∂d+1)
∗ ◦ ∂d = ∂d+1 ◦ 0∗ ◦ ∂d

= ∂d+1 ◦ 0 ◦ ∂d = 0.

In a similar fashion, we have

∆DN
d ◦ ∆UP

d = (∂∗d ◦ ∂d) ◦ (∂d+1 ◦ ∂∗d+1) = ∂∗d ◦ (∂d ◦ ∂d+1) ◦ ∂∗d+1

= ∂∗d ◦ 0 ◦ ∂∗d+1 = 0.

Therefore ∆UP
d and ∆DN

d are self-adjoint, mutually annihilating operators. Similarly for

∆̃UP
d and ∆̃DN

d . The desired results follow directly from Theorem 2.2.5.

This next lemma displays the relationship between the spectra of ∆UP and ∆DN , again
in both nonreduced and reduced settings.

Lemma 4.1.8. Let K be a finite simplicial complex. Then

SpecNZ(∆UP
d−1(K)) = SpecNZ(∆DN

d (K))

and
SpecNZ(∆̃UP

d−1(K)) = SpecNZ(∆̃DN
d (K))

for all positive integers d ≤ dim(K).

Proof. Since ∆UP
d−1 = ∂d∂

∗
d and ∆DN

d = ∂∗d∂d, and ∆̃UP
d−1 = ∂̃d∂̃

∗
d and ∆̃DN

d = ∂̃∗d ∂̃d, these
results follow immediately from Theorem 2.2.6.
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As remarked in [DURE, page 9], it is seen from Lemmas 4.1.7 and 4.1.8 that for a finite
simplicial complex the information carried by the spectra of ∆, the spectra of ∆UP , and
the spectra of ∆DN is essentially the same. Hence, in studying the Laplacian spectra we
can feel free to study the spectra of whichever of these three families of operators is most
convenient.

In 2 dimensions, we have this corollary, which is simply a special case of Lemma 4.1.7.

Corollary 4.1.9. Let K be a finite simplicial complex of dimension 2. Then

SpecNZ(∆1(K)) = SpecNZ(∆0(K)) ∪M SpecNZ(∆2(K)).

Proof. Note that Spec(∆0(K)) = Spec(∆UP
0 (K)) and Spec(∆2(K)) = Spec(∆DN

2 (K)),
because K is 2-dimensional. Then by Lemmas 4.1.7 and 4.1.8, respectively, we have
SpecNZ(∆1(K)) = SpecNZ(∆DN

1 (K)) ∪M SpecNZ(∆UP
1 (K)) = SpecNZ(∆UP

0 (K)) ∪M

SpecNZ(∆DN
2 (K)) = SpecNZ(∆0(K)) ∪M SpecNZ(∆2(K)).

4.2 Further Facts about Laplacian Spectra

Since the Laplacian matrix is the sum of compositions of linear operators with their
adjoints, it is self-adjoint. By Theorem 6.17 and the lemma preceding it in [FIS97], we
know that the Laplacian matrix is diagonalizable and that all of its eigenvalues are real.
From Lemmas 2.2.8 and 2.2.7, we know that the Laplacian operator is positive semidefinite,
and has only nonnegative eigenvalues. The following result goes even further, and presents
some good news for people who do not like fractions, (or bad news for people who like
them).

Theorem 4.2.1. Let K be a finite simplicial complex, and let i be an integer with 0 ≤
i ≤ dim(K). Then Spec(∆i(K)) contains no non-integer rational numbers.

Proof. The eigenvalues of ∆i(K) are the roots of its characteristic polynomial f(t) =
det(Li(K)− tIfi(K)), where Li(K) is the matrix of ∆i(K) relative to an arbitrary ordering
and orientation of the i-simplices ofK, and Ifi(K)) is the fi(K)×fi(K) identity matrix. We
know by Theorem 3.3.4 that Li(K) is an integer matrix, so it is easy to deduce that f(t) is
a polynomial over the integers. By [FIS97, Theorem 5.8], we know that the lead coefficient
of f(t) is (−1)fi(K). By the Rational Roots Theorem ([AMB77, Theorem 13.10]), we know
that the denominator of any rational root of a polynomial over the integers must be a
factor of the lead coefficient of that polynomial. Hence the only rational roots of f(t) have
denominator divisible by ±1, so they are integers. Therefore the only roots of f(t) are
integers or irrational numbers.

Example 4.2.2. Even though Laplacian spectra do not contain fractions, they can
definitely contain lots of irrational numbers. By the Laplacian Matrix Theorem, Theo-
rem 3.3.4, we can calculate that for the simplicial complex K in Figure 4.2.1 we have
that Spec(∆0(K)) consists of 0, 1

2(7 ±
√

13), and the three roots of the cubic polynomial
x3 −9x2 +23x−14, which are approximately 0.885092, 3.2541, 4.86081. Also, we calculate
that

Spec(∆2(K)) = {3, 3 ±
√

2}.
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Therefore, the Laplacian spectra of this simplicial complex is almost completely irrational,
although from its picture K seems like a most respectable and reasonable simplicial com-
plex.

However, many of the simplicial complexes we look at do have integer Laplacian spectra.
The main results from [DURE] proves that a large class of simplicial complexes, called
shifted complexes do have integer Laplacian spectra. ♦

Figure 4.2.1.

Many of our results are about connected simplicial complexes. The following lemma tells
us that dealing with the spectra of disconnected simplical complexes amounts to dealing
with the spectra of the complex’s components.

Lemma 4.2.3. Let K be a finite simplicial complex, and let its components be denoted
K1,K2, . . . ,Kn. Then

Spec(∆d(K)) = Spec(∆d(K1)) ∪M Spec(∆d(K2)) ∪M . . . ∪M Spec(∆d(Kn))

for all integers d with 0 ≤ d ≤ dimK.

Proof. Choose some ordering of the d-simplices of K such that the simplices of K1 are
listed first, followed by the simplices of K2, and so on until the simplices of Kn. It is clear
that if two d-simplices of K are in two different components of K, then they can be neither
upper nor lower adjacent. By similar reasoning, the upper and lower degrees of a d-simplex
of K must be equal to the upper and lower degrees of that simplex, respectively, in the
component of K containing the simplex. Therefore by Theorem 3.3.4 we have

Ld(K) =




Ld(K1) 0 . . . 0
0 Ld(K2) . . . 0
...

...
. . .

...
0 0 . . . Ld(Kn)




where the Laplacian matrices forK1,K2, . . . ,Kn are relative to orderings of the d-simplices
of these components given by the ordering of all the d-simplices of K, and where 0 in each
case denotes the zero matrix with appropriate dimensions. Therefore Lemma 2.2.10 implies
the desired result.

Although gluing two simplicial complexes together along a single simplex of both com-
plexes affects the Laplacian spectrum of the complex in some dimensions, it turns out that
some spectra are essentially undisturbed by the gluing.
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Lemma 4.2.4. Let K1 and K2 be finite simplicial complexes, and let K be a simplicial
complex formed by gluing K1 and K2 together along a d-simplex of each. Then

Spec(∆i(K)) = Spec(∆i(K1)) ∪M Spec(∆i(K2))

for all i ≥ d+ 2.

Proof. Let i ≥ d+2 be an integer. By Theorem 3.3.4, we know that the entries of the ith
Laplacian matrix are dependent only on upper and lower adjacencies and degrees, and we
know that this is dependent only on the relationships between (i−1), i, and i+1-simplices,
and not the simplices of any lower dimension than i−1. Note that the i-simplices of K are
exactly the i-simplices of K1 and K2; i.e. no i simplices are lost nor gained in the gluing.

Choose an ordering of the i-simplices of K such that the simplices of K1 come before
the simplices of K2. By what we stated above, it is clear that the relations between i-
simplices of K originally contained in K1 are the same as they were in K1, and similarly
for K2. Furthermore, if two i-simplices of K did not both come from either K1 or K2,
then they can be neither upper nor lower adjacent. By similar reasoning, the upper and
lower degrees of an i-simplex of K must be equal to the upper and lower degrees of that
simplex, respectively, in whichever ofK1 orK2 originally contained the simplex. Therefore,
we conclude that

Ld(K) =

(
Ld(K1) 0

0 Ld(K2)

)

and as in Lemma 4.2.3, this proves the lemma.

Example 4.2.5. Figure 4.2.2 shows two simplicial complexes being glued together along
a vertex. By Lemma 4.2.4, the 2-dimensional Laplacian spectrum of the complex on the
right is the multiset union of the 2-dimensional Laplacian spectra of the two complexes
on the left. ♦

Figure 4.2.2.

Finally, we state the following result without proof.
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Lemma 4.2.6. Let K and K ′ be finite simplicial complexes, and let n be a positive integer
such that the n-skeletons of K and K ′ are combinatorially equivalent. Then Spec(∆i(K)) =
Spec(∆i(K

′)) for all nonnegative integers i < n.

The proof of this lemma follows immediately from the Laplacian Matrix Theorem,
Theorem 3.3.4, which states that the Laplacian spectrum in a given dimension depends
only on the structures of simplicies in that dimension and the dimension above it, but no
simplices in dimensions higher than that.

Lemma 4.2.6 generalizes the following intuitive notion. If we start with a 1-dimensional
simplicial complex, we can “fill in” any boundary of a triangle in our complex with a
2-simplex, and not affect the 0 Laplacian spectrum.

Example 4.2.7. The two simplicial complexes in Figure 4.2.3 have the same 1-skeleton,
so by Lemma 4.2.6 they have the same Laplacian spectra in dimension 0. ♦

Figure 4.2.3.



5
Laplacian Spectra of Specific Complexes

5.1 Flapoid Clusters, Cliques, and Graphs

This section presents results about the 0th Laplacian spectrum of simplicial complexes,
which is essentially the spectrum of the graph theory Laplacian.

In graph theory, a graph consisting of n vertices with an edge between every pair of
distinct vertices is called a complete graph on n vertices. It is also sometimes called an
n-clique, which is how we shall refer to it here. The motivation behind the name clique is
that the vertices of a graph can be thought of as representing people, with an edge between
two vertices if the people represented by these vertices are friends. (See Figure 5.1.1.) Hence
a clique represents a set of people each pair of whom are friends.

Figure 5.1.1.

Example 5.1.1. Figure 5.1.2 displays a clique on 5 vertices, not a satanic symbol of
power. ♦

The Laplacian spectrum of a clique is given in the following result.



5. LAPLACIAN SPECTRA OF SPECIFIC COMPLEXES 48

Figure 5.1.2.

Proposition 5.1.2. Let n be a positive integer, and let G be an n-clique. Then

Spec(∆0(G)) = {0, [n]n−1}.

Proof. Since every vertex in G has upper degree n− 1 and every pair of distinct vertices
in G are upper adjacent to each other, the Theorem 3.3.4 implies that

L0(G) =




n− 1 −1 . . . −1
−1 n− 1 . . . −1
...

...
. . .

...
−1 −1 . . . n− 1


 .

By Remark 3.4.1 we deduce that

L̃0(G) =




n 0 . . . 0
0 n . . . 0
...

...
. . .

...
0 0 . . . n


 ,

so clearly Spec(∆̃0(G)) = {[n]n}. Since G is connected, Corollary 4.1.6 implies that
Spec(∆0(G)) = {0, [n]n−1}.

Keeping with the idea of vertices representing people and edges representing friendships,
we say that a vertex v of a finite simplicial complex K is popular if degU (v) = f0(K)−1;
that is, if the person represented by this vertex is friends with everyone else represented
by vertices of the complex.

Example 5.1.3. In Figure 5.1.3, the vertex v is popular, but that doesn’t necessarily
mean it’s happy. ♦

The presence of popular vertices in a simplicial complex has a very strong influence on
the 0th Laplacian spectra of that complex.

Lemma 5.1.4. Let K be a finite simplicial complex. Suppose there are vertices v1, . . . , vm

in K all of whom are popular, with 0 < m < f0(K). Then

[f0(K)]m ∈ Spec(∆0(K)).
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v

Figure 5.1.3.

Proof. Let n = f0(K) > 0. Let v1, v2, . . . , vm, . . . , vn denote the vertices of K. For each
i ∈ {1, . . . ,m} let ~xi be the n-dimensional vector whose ith entry is n−1 and whose other
entries are all −1.

Let i ∈ {1, . . . ,m}. We will compute the ith entry of L0(K)~xi. Since vi is upper adjacent
to all of the other vertices of K, by Theorem 3.3.4 the nondiagonal entries of the ith row of
L0(K) are all −1. Hence the ith entry of L0(K)~xi is (n− 1) degU (vi)+ (n− 1) = n(n− 1).

Now we will compute the other entries of L0(K)~xi. Let j ∈ {1, 2, . . . , n} − {i}. Using
Theorem 3.3.4, the only nonzero entries of the jth row of L0(K) are the jth entry, which
is degU (vj), and those corresponding to vertices to which vj is upper adjacent, which are
−1. One of these vertices must be vi, leaving precisely degU (vj) − 1 other vertices upper
adjacent to vj. From this information, we conclude that the jth entry of L0(K)~xi is

(−1)(n− 1) + (−1)(−1)(degU (vj) − 1) − degU (vj) = −n.

We see then that L0(K)~xi = n~xi, and since ~xi is nonzero it is an eigenvector of L0(K)
associated with the eigenvalue n.

To be sure of the multiplicity of n, we must check that x1, . . . , xm are linearly indepen-
dent. Suppose a1, . . . , am ∈ R are such that a1x1 + . . . amxm = ~0. Let i ∈ {1, . . . ,m− 1}.
From the ith and (i+ 1)st rows of this vector equation we obtain the equations

−(n− 1)ai + a1 + . . .+ ai−1 + ai+1 + . . .+ am = 0

and
−(n− 1)ai+1 + a1 + . . . + ai + ai+2 + . . . + am = 0.

Subtracting the second equation from the first, we find that −nai + nai+1 = 0, and since
n 6= 0 we have ai = ai+1. Since this holds for arbitrary i ∈ {1, . . . ,m − 1}, we have
a1 = a2 = . . . = am. Since m < n, we see that the last row of the above vector equation
yields the equation a1 + a2 . . . + am = 0. Hence ma1 = 0 so a1 = a2 = . . . = am = 0.
Therefore the vectors x1, . . . , xm are linearly independent.

We now have a second proof of our result on the Laplacian spectrum of a clique.

Second Proof of Proposition 5.1.2. We have an n-clique G. Note that each of the
vertices of G is popular, so Lemma 5.1.4 guarantees that [n]n−1 ∈ Spec(∆0(G)). By
Theorem 4.1.4, since G is connected, we also have 0 ∈ Spec(∆0(G)). This accounts for all
n eigenvalues of ∆0(G), so Spec(∆0(G)) = {0, [n]n−1}.

When a simplicial complex contains a popular vertex, the following conjecture seems to
be true, although no proof has yet been found by the author.
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Conjecture 5.1.5. Let K be a finite simplicial complex containing a popular vertex. Then
f0(K) is the largest element of Spec(∆0(K)).

We will now investigate patterns in the Laplacian spectra in a class of 2-dimensional
simplicial complexes called flapwheels. Intuitively, a flapwheel is a single edge with some
number of triangular flaps hanging from it.

Definition. Let n be a positive integer. An n-flapwheel is a simplicial complex consisting
of n distinct 2-simplices, called flaps, whose intersection is a single 1-simplex, called the
axis. The two vertices of the axis are called axial vertices, and the vertices of the
flapwheel not contained in the axis are called flap vertices. 4

Figure 5.1.4 depicts a 5-flapwheel.

Figure 5.1.4.

We see easily that for all positive integers n, any n-flapwheel has exactly n+ 2 vertices
and 2n+ 1 edges. The following theorem completely categorizes the Laplacian spectra of
flapwheels. We will present its proof shortly, after developing a little more machinery.

Theorem 5.1.6. Let F be an n-flapwheel, where n is some positive integer. Then
Spec(∆0(F )) = {0, [2]n−1, n + 2, n + 2} and Spec(∆1(F )) = {[2]2n−2, n + 2, n + 2, n + 2}
and Spec(∆2(F )) = {[2]n−1, n+ 2}.

The following structures derive their name from their similarity to the flaps of flapwheels.
In a general simplicial complex, a flap looks like a triangle glued onto the complex along
a single edge. Often there are several flaps glued onto the complex on the same edge. In
the 2-dimensional simplicial complex of Figure 5.1.5, the three left-most vertices are flap
vertices of three flaps in the complex.

Figure 5.1.5.

The structures described below are a broad generalization of flaps, but they were first
noticed by the author in the case of flaps, and are named as they are for this reason.



5. LAPLACIAN SPECTRA OF SPECIFIC COMPLEXES 51

Definition. Let K be a simplicial complex, and let V be the set of vertices of K. The
vertex neighborhood of a vertex v ∈ V is the set V Neigh(v) = {x ∈ V | x ∼U v}.

A flapoid cluster is a subset F = {v1, v2, . . . , vn} ⊆ V of vertices of K such that n ≥ 2,
the vertices in F are pairwise non-upper adjacent, and

V Neigh(v1) = V Neigh(v2) = . . . = V Neigh(vn).

The set of vertices in the common vertex neighborhood of the vertices of a flapoid cluster
F is called the community of F , and is denoted Com(F ). 4
Example 5.1.7. In Figure 5.1.6, vertices 1 through 3 form a flapoid cluster, and their
community is vertices 4 through 7. ♦

1 2

3

4

5

6
7

Figure 5.1.6.

The motivation for defining flapoid clusters is to state the following result about the
zero Laplacian spectrum.

Theorem 5.1.8. Let K be a finite simplicial complex, and suppose K contains distinct
flapoid clusters F1, F2, . . . , Fk with |Com(F1)| = |Com(F2)| = . . . = |Com(Fk)| = d. Then

[d]|F1|+|F2|+...+|Fk|−k ∈ Spec(∆0(K)).

Proof. Let n be the number of vertices in K. For each i ∈ {1, 2, . . . , k}, let ni = |Fi|
and let vi1, vi2, . . . , vini

denote the vertices in Fi. Choose some ordering L of the vertices
of K such that L begins v11, v12, . . . , v1n1

, v21, v22, . . . , v2n2
, . . . , vk1, vk2, . . . , vknk

. For each
i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , ni}, let L(vij) be the integer such that vij is the L(vij)th
entry in the ordering L.

Let i ∈ {1, 2, . . . , k}. Recall that by the definition of flapoid clusters, we have ni > 1.
For each j ∈ {2, . . . , ni} let ~wij be the vector whose L(vi1)th entry is −1, whose L(vij)th
entry is 1, and all of whose other entries are 0. Let Vi = { ~wi2, ~wi3, . . . , ~wini

}.
Let j ∈ {2, . . . , ni}. We will compute L0(K) ~wij . Note that in making this computation,

since only two entries of ~wij are nonzero, we need only consider the L(vi1)th and the
L(vij)th columns of L0(K). Furthermore, since vij is adjacent only to the vertices in
Com(Fi), by Theorem 3.3.4 the only nonzero entries of these two columns are the entries
corresponding to the vertices in Com(Fi) and vi1 and vij .

Since each of the vertices in Com(Fi) are upper adjacent to both vi1 and vij , we see that
the entries of L0(K) ~wij corresponding to these vertices are all (−1×−1)+(−1×1) = 1−1 =
0. The entries of the L(vi1)th and the L(vij)th columns of L0(K) corresponding to vi1 and
vij are diagonal entries, and therefore by Theorem 3.3.4 are equal to the upper degrees of
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vi1 and vij, respectively, both of which are d by the definition of flapoid clusters. We see
then that the L(vi1)th and the L(vij)th entries of L0(K) ~wij are −d and d, respectively.
Since all the other entries of L0(K) ~wij are 0, we see then that L0(K) ~wij = d ~wij , so ~wij is
an eigenvector of L0(K) associated with d.

It is immediately clear that the ni − 1 vectors in Vi are linearly independent, and
furthermore that the vectors in V1 ∪ V2 ∪ . . . ∪ Vk are linearly independent, since the
vertices of F1, F2, . . . , Fk are distinct. Since |V1 ∪ V2 ∪ . . . ∪ Vk| =

∑k
i=1(|Fi| − 1) = |F1| +

|F2|+. . .+|Fk|−k, this means that the dimension of Ed(L0(K)), the eigenspace associated
with the eigenvalue d, satisfies dim(Ed(L0(K))) ≥ |F1| + |F2| + . . .+ |Fk| − k.

Example 5.1.9. If we examine the case of flapoid clusters with community of size 2, we
see that this is like a set of flaps with a common edge, except that we do not require that
the flaps be triangles, or that they even have an edge in common! In a sense, all we require
is the outline of the flaps.

For instance, let G be the simplicial complex pictured in Figure 5.1.7. This is a polygonal
circle on four vertices, sometimes banally referred to as the boundary of a square. Each pair
of opposite vertices forms a flapoid with two elements, and each flapoid has community of
size 2, so Theorem 5.1.8 implies that {2, 2} ⊆ Spec(∆0(G)). Furthermore, since G has only
one component, by Theorem 4.1.4 we know that 0 is contained inG’s zero spectrum as well.
Allowing ourselves to pluck a result from several pages ahead before its time, we see that
G satisfies the hypotheses of Lemma 5.1.12, so the zero spectrum of G contains f0(G) = 4.
Therefore Spec(∆0(G)) = {0, 2, 2, 4}. A quick calculation confirms this result. ♦

Figure 5.1.7.

We are now prepared to prove Theorem 5.1.6.

Proof of Theorem 5.1.6. The n flap vertices of the flapwheel form a flapoid cluster
whose common community is the two axial vertices. Therefore by Theorem 5.1.8 we have
[2]n−1 ∈ Spec(∆0(F )). The two axial vertices of F are popular, so by Lemma 5.1.4, since
2 < n + 2, we have [n + 2]2 ∈ Spec(∆0(F )). Finally, because F is connected, we have
0 ∈ Spec(∆0(F )). This accounts for all of Spec(∆0(F )).

Now we investigate Spec(∆2(F )). We give the 2-simplices of F some arbitrary ordering.
Since there are no 3-simplices in F , the upper degree of each 2-simplex in F is 0. Note
that every pair of 2-simplices share a lower simplex, and it is clear that we can orient the
2-simplices so that the axis of F is a similar common lower simplex of each pair of flaps.
(If a and b are the axial vertices of F , for each flap vertex f let the 2-simplex that forms
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this flap have the orientation 〈f, a, b〉.) By Theorem 3.3.4, we have

L2 =




3 1 . . . 1
1 3 . . . 1
...

...
. . .

...
1 1 . . . 3


 .

Again, let ~u denote the n-dimensional column vector whose components are all 1. For
each i ∈ {1, 2, . . . , n − 1}, let ~vi denote the n-dimensional column vector whose coordi-
nates are all 0 except that the last coordinate is −1 and the ith coordinate is 1. We will
demonstrate that {~v1, ~v2, . . . , ~vn−1, ~u} is a basis for C2 consisting of eigenvectors of L2.
(Similarly to before, if n = 1, then we ignore ~v1, ~v2, . . . , ~vn−1. In what follows, note that
the same arguments essentially hold if n = 1 and we have no such vectors ~v1, ~v2, . . . , ~vn−1.)

Suppose there are k1, k2, . . . , kn ∈ R such that

k1 ~v1 + k2 ~v2 + . . . + kn−1 ~vn−1 + kn~u = ~0.

By the definitions of these vectors, it follows that ki + kn = 0 for all i ∈ {1, 2, . . . , n− 1},
and also that −k1 − k2 − . . . − kn−1 + kn = 0. From this first equation, it follows that
kn = −ki for all i ∈ {1, 2, . . . , n− 1}, so the second equation becomes (n− 1)kn + kn = 0,
so nkn = 0. Since n 6= 0, this implies that kn = 0, so k1 = k2 = . . . = kn−1 = 0. Therefore
{~v1, ~v2, . . . , ~vn−1, ~u} is linearly independent, and since this set contains n elements it must
be a basis for C2.

Now, note that

L2~u =




3 1 . . . 1
1 3 . . . 1
...

...
. . .

...
1 1 . . . 3







1
1
...
1


 =




3 + (n− 1)
3 + (n− 1)

...
3 + (n− 1)


 =




n+ 2
n+ 2

...
n+ 2


 = (n+ 2)~u,

so ~u ∈ En+2(L2). Observe also that

L2~vi =




3 1 . . . 1
1 3 . . . 1
...

...
. . .

...
1 1 . . . 3







0
...
0
1
0
...
0
−1




=




1 − 1
...

1 − 1
3 − 1
1 − 1

...
1 − 1
1 − 3




=




0
...
0
2
0
...
0
−2




= 2~vi

for all i ∈ {1, 2, . . . , n− 1}, where the middle coordinate in each column vector in between
the vertical dots is the ith coordinate,so ~vi ∈ E2(L2). Since {~v1, ~v2, . . . , ~vn−1, ~u} is a basis
for C2, it follows that Spec(∆2(F )) = {n+ 2, [2]n−1}.

The statement about Spec(∆1(F )) follows immediately from Corollary 4.1.9 and our
results about Spec(∆0(F )) and Spec(∆2(F )).
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The following definition describes a situation related to that of cliques, except here you
have a subset of vertices in a simplicial complex who have exactly the same friends and
who are all friends with each other.

Definition. Let K be a simplicial complex, and let V be the set of vertices of K. A
neighborly clique is a subset C = {v1, v2, . . . , vn} ⊆ V of vertices of K such that n ≥ 2
and V Neigh(vi) = Com(C) ∪ (C − {vi}) for each i ∈ {1, 2, . . . , n}, where Com(C) =⋂n

i=1 V Neigh(vi) is the community of C. 4
Example 5.1.10. In Figure 5.1.8, vertices 1 through 3 form a neighborly clique, and their
community is vertices 4 through 7. ♦

1

2

3

4

5

6

7

Figure 5.1.8.

It is clear from their definitions that flapoid clusters and neighborly cliques are similar
in some way. Keeping with the metaphor behind the term “clique”, we can think of a
flapoid clusters as representing the situation where a set of people are all friends with the
same people, but are not friends with each other. There are then two ways to compare
flapoid clusters and neighborly cliques. We can think of a neighborly clique as a flapoid
cluster except that all of the vertices in the flapoid cluster are upper adjacent to each
other. Another way we could think of a neighborly clique is as a flapoid cluster except
with cliques instead of individual vertices. Whatever the mental picture in mind, we find
that neighborly cliques are enough like flapoid clusters that we can obtain a similar result
about the zero Laplacian spectrum.

Theorem 5.1.11. Let K be a finite simplicial complex, and suppose K contains distinct
neighborly cliques C1, C2, . . . , Ck with |C1 ∪ Com(C1)| = |C2 ∪ Com(C2)| = . . . = |Ck ∪
Com(Ck)| = d. Then

[d]|C1|+|C2|+...+|Ck|−k ∈ Spec(∆0(K)).

Proof. Let n be the number of vertices in K. For each i ∈ {1, 2, . . . , k}, let ni = |Ci|
and let vi1, vi2, . . . , vini

denote the vertices in Ci. Choose some ordering L of the vertices
of K such that L begins v11, v12, . . . , v1n1

, v21, v22, . . . , v2n2
, . . . , vk1, vk2, . . . , vknk

. For each
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i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , ni}, let L(vij) be the integer such that vij is the L(vij)th
entry in the ordering L.

Let i ∈ {1, 2, . . . , k}. Recall that by the definition of neighborly cliques we have ni > 1.
For each j ∈ {2, . . . , ni} let ~wij be the vector whose L(vi1)th entry is −1, whose L(vij)th
entry is 1, and all of whose other entries are 0. Let Vi = { ~wi2, ~wi3, . . . , ~wini

}.
Let j ∈ {2, . . . , ni}. We will compute L0(K) ~wij . Note that in making this computation,

since only two entries of ~wij are nonzero, we need only consider the L(vi1)th and the
L(vij)th columns of L0(K). Furthermore, since vij is adjacent only to the vertices in
C − {vi} and Com(Ci), by Theorem 3.3.4 the only nonzero entries of these two columns
are the entries corresponding to the vertices in Ci and Com(Ci) and vi1 and vij.

Since every vertex in Ci − {vi1, vij} and Com(Ci) is upper adjacent to both vi1 and
vij , we see that the entries of L0(K) ~wij corresponding to these vertices are all (−1 ×
−1)+(−1×1) = 1−1 = 0. The entries of the L(vi1)th and the L(vij)th columns of L0(K)
corresponding to vi1 and vij are diagonal entries, and therefore by Theorem 3.3.4 are equal
to the upper degrees of vi1 and vij, respectively, both of which are |Ci| − 1 + |Com(Ci)| =
d− 1 by the definition of neighborly cliques. Since vi1 and vij are upper adjacent, we note
also that the L(vij)th entry of the L(vi1)th column of L0(K) and the the L(vi1)th entry of
the L(vij)th column of L0(K) are both −1. We see then that the L(vi1)th and the L(vij)th
entries of L0(K) ~wij are −(d − 1) − 1 = −d and (d − 1) − (−1) = d, respectively. Since
all the other entries of L0(K) ~wij are 0, we see then that L0(K) ~wij = d ~wij , so ~wij is an
eigenvector of L0(K) associated with d.

It is immediately clear that the ni − 1 vectors in Vi are linearly independent, and
furthermore that the vectors in V1 ∪ V2 ∪ . . . ∪ Vk are linearly independent, since the
vertices of C1, C2, . . . , Ck are distinct. Since |V1 ∪ V2 ∪ . . . ∪ Vk| =

∑k
i=1(|Ci| − 1) =

|C1| + |C2| + . . . + |Ck| − k, this means that the dimension of Ed(L0(K)), the eigenspace
associated with the eigenvalue d, satisfies dim(Ed(L0(K))) ≥ |C1|+|C2|+. . .+|Ck|−k.

We finish this section by characterizing the Laplacian spectra of one last family of
graphs.

Definition. Let G be a finite simplicial complex of dimension 1. Suppose there is a
partition X,Y of the vertices G such that X and Y are nonempty, every pair of vertices
from X and Y is upper adjacent, and the vertices in X are pairwise non-upper adjacent,
and the vertices in Y are pairwise non-upper adjacent. If |X| = m and |Y | = n, then G is
called a complete bipartite graph on m and n vertices. 4

In Figure 5.1.9, we have a complete bipartite graph on 4 and 3 vertices.

Figure 5.1.9.
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Lemma 5.1.12. Let K be a finite simplicial complex, and let V ⊆ K be the vertex set of
K. Suppose there are disjoint and nonempty subsets X,Y ⊆ V such that V = X ∪ Y and
x is upper adjacent to y for all x ∈ X and y ∈ Y . Then

f0(K) ∈ Spec(∆0(K)).

Proof. Let |X| = n and |Y | = m, and let x1, . . . , xn and y1, . . . , ym be the vertices of X
and Y , respectively. We will use the ordering of V given by x1, . . . , xn, y1, . . . , ym. Since
every vertex in X is upper adjacent to every vertex in Y , we see easily that we can view
L0(K) as the block matrix

L0(K) =

(
A −1n×m

−1m×n B

)
,

where A and B are square matrices of dimensions n and m, respectively, and −1n×m and
−1m×n are matrices all of whose entries are −1 and whose dimensions are given by their
subscripts.

Let ~v denote the n + m dimensional vector whose ith component is −m if 1 ≤ i ≤ n,
and n if n < i ≤ n+m. We will compute L0(K)~v.

Let i ∈ {1, . . . , n}. The ith entry of L0(K)~v is the dot product of the ith row of L0(K)
and ~v. We note that the ith diagonal entry of L0(K) will be multiplied by −m in this dot
product, and that degU (xi) is exactly m plus the number of vertices in X to which xi is
upper adjacent. Using the Theorem 3.3.4, we calculate that the dot product determining
the ith entry of L0(K)~v is −mdegU (xi), plus a term (−m)(−1) for each of the vertices in
X to which xi is upper adjacent, plus a term n(−1) for each of the vertices in Y to which
xi is upper adjacent; that is

−mdegU (xi) + (−m)(−1)(degU (xi) −m) + (−1)nm = (n+m)(−m).

Since i was chosen arbitrarily, this implies that the first n entries of L0(K)~v are all (n+
m)(−m).

By completely similar reasoning, we see that for each j ∈ {n + 1, . . . , n+m}, we have
that the jth entry of L0(K)~v is

(−1)(−m)n+ ndegU (xi) + n(−1)(degU (xi) − n) = (n+m)n.

Therefore L0(K)~v = (n +m)~v = f0(K)~v. Since ~v 6= ~0, we see that ~v is an eigenvector
of L0(K) associated with the eigenvalue f0(K).

Proposition 5.1.13. Let m and n be positive integers, and let G be a complete bipartite
graph on m and n vertices. Then

Spec(∆0(G)) = {0, [m]n−1, [n]m−1,m+ n}.

Proof. Since G is connected, we know by Theorem 4.1.4 that 0 ∈ Spec(∆0(G)). Notice
that X is a flapoid cluster whose community is Y , and that Y is a flapoid cluster whose
community is X. By Theorem 5.1.8 we have [m]n−1, [n]m−1 ∈ Spec(∆0(G)). Finally, by
Lemma 5.1.12 we have m + n = f0(G) ∈ Spec(∆0(G)). This accounts for all eigenvalues
of ∆0(G).
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5.2 Cones, Cones, and More Cones

Given any simplicial complex, we can form a new simplicial complex of one dimension
higher by an operation called coning. For a formal definition of the cone of a simplicial
complex see [MUN84, page 43]. Intuitively, we form the cone of a simplicial complex K

by taking a point w completely separate from the complex and then forming new (d+ 1)-
simplices by combining the point w with each d-simplex in K. We denote the cone of K
with the point w by w∗K, and we will call w the coning vertex of w∗K and K the base
of w ∗K. In Figure 5.2.1, we see the cone of the simplicial complex K with coning vertex
w. In this picture, the front two triangles of the tetrahedron of w ∗K are left transparent,
and all other simplices of w ∗K −K are shaded lighter than the shading of the simplices
of K.

K

w

w

w * K

Figure 5.2.1.

A simplicial complex is a cone, sometimes called a simplicial cone, if it contains a
subcomplex G and a vertex w such that K = w ∗G. Cones are extensively studied objects
in topology and combinatorial algebra. The operation of coning a simplicial complex is a
very interesting one combinatorially, because the cone of a simplicial complex is another
simplicial complex, and often certain properties of the original complex are predictably
altered by the process of coning. Such is the case to some extent for Laplacian spectra, as
we will soon see. First we need a definition and lemma.

Definition. Let K be a finite oriented simplicial complex, let w be a vertex such that
w ∗K is well-defined, and let d ∈ Z be nonnegative. Each d-simplex σ ∈ (w ∗K) −K has
exactly one face that is a (d−1)-simplex in K; we call this (d−1)-simplex the presimplex
of σ, and we denote it p(σ). We define the presimplex of w to be p(w) = ∅.
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Let σ ∈ (w ∗K) −K be a d-simplex. The orientation of p(σ) in K can be represented
by a list of its vertices [v1 . . . vd]. The standard orientation of σ induced by p(σ) is
the orientation given by

(−1)d[v1 . . . vd, w].

We say that w ∗K has the standard orientation induced by K if every simplex in K
has the same orientation in both K and w ∗K, and if every simplex in (w ∗K) −K has
the standard orientation induced by its presimplex. 4
Lemma 5.2.1. Let K be a finite oriented simplicial complex, let w be a vertex such that
w ∗K is well-defined, let w ∗K have the standard orientation induced by K, and let d ∈ Z

be nonnegative.

(1) For all distinct d-simplices σ1, σ2 ∈ (w ∗ K) −K, we have that σ1 and σ2 are up-
per adjacent in w ∗ K iff p(σ1) and p(σ2) are upper adjacent in K. If σ1, σ2 and
p(σ1), p(σ2) are upper adjacent, then σ1 and σ2 are similarly oriented iff p(σ1) and
p(σ2) are similarly oriented.

(2) For all d-simplices σ ∈ K and σ′ ∈ (w ∗K) −K, we have that σ and σ′ are upper
adjacent in w ∗ K iff the coefficient of p(σ ′) in ∂̃d(σ) is nonzero. If σ and σ′ are
upper adjacent in w ∗K, then they are similarly or dissimilarly oriented in w ∗K iff
the coefficient of p(σ′) in ∂̃d(σ) is −1, or +1, respectively.

Proof. (1) Let σ1, σ2 ∈ (w ∗ K) − K be distinct d-simplices. Suppose p(σ1) and p(σ2)
are upper adjacent. Then there is a d-simplex ζ ∈ K containing both p(σ1) and p(σ2) as
faces. Then w ∗ ω is a (d + 1)-simplex in w ∗K, and it must contain w ∗ p(σ1) = σ1 and
w∗p(σ2) = σ2 as faces, so σ1 and σ2 are upper adjacent. Now suppose σ1 and σ2 are upper
adjacent. Then there is a (d+1)-simplex τ ∈ w ∗K that contains σ1 and σ2 as faces. Note
also that τ contains w, so τ ∈ (w ∗K) −K. Then p(τ) is a d-simplex in K, and we see
that p(τ) contains both p(σ1) and p(σ2) as faces, so p(σ1) and p(σ2) are upper adjacent.

Therefore p(σ1) and p(σ2) are upper adjacent iff σ1 and σ2 are upper adjacent. Now we
must show that the similarities and dissimilarities match.

Suppose each of p(σ1), p(σ2) and σ1, σ2 are upper adjacent. By Lemma 3.4.4, we know
that each pair p(σ1), p(σ2) and σ1, σ2 are similarly oriented with respect to their common
upper simplex iff the pair share a dissimilar reduced common lower simplex. We will show
that p(σ1) and p(σ2) share a similar reduced common lower simplex iff σ1 and σ2 share a
similar reduced common lower simplex, which will therefore suffice to complete our proof
of part (1).

Let

p(σ1) = s1[v1v2 . . . vd−1x] and p(σ2) = s1[v1v2 . . . vd−1y],

where s1 and s2 are each ±1, depending on orientations. By the definition of standard
induced orientation we have that

σ1 = (−1)ds1[v1v2 . . . vd−1xw] and σ2 = (−1)ds1[v1v2 . . . vd−1yw].

The common reduced lower simplex of p(σ1) and p(σ1) is η = ±[v1v2 . . . vd−1], with
the sign depending on the orientation of η. Since the coefficients of η in ∂̃d−1(p(σ1))
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and ∂̃d−1(p(σ2)) are ±(−1)d−1s1 and ±(−1)d−1s2, respectively, we see that η is a similar
reduced common lower simplex of p(σ1) and p(σ1) iff s1 = s2. The reduced common lower
simplex of σ1 and σ2 is η′ = ±[v1v2 . . . vd−1w], with the sign depending on the orientation
of η′. Since the coefficients of η′ in ∂̃d(σ1) and ∂̃d(σ2) are ±(−1)d−1(−1)ds1 = ∓s1 and
±(−1)d−1(−1)ds2 = ∓s2, we see that η′ is a similar reduced common lower simplex of
σ1 and σ2 iff s1 = s2. Therefore p(σ1) and p(σ2) share a similar reduced common lower
simplex iff σ1 and σ2 share a similar reduced common lower simplex.
(2) Let σ ∈ K and σ′ ∈ (w ∗ K) −K be d-simplices. Suppose the coefficient of p(σ ′) in
∂̃d(σ) is nonzero, meaning that p(σ′) is a face of σ. Then w ∗ σ is a (d + 1)-simplex in
w ∗K that contains both σ and w ∗ p(σ′) = σ′ as faces, so σ and σ′ are upper adjacent
in w ∗K. Suppose σ and σ′ are upper adjacent in w ∗K. Then σ and σ ′ must be lower
adjacent in w ∗K, and there must be some (d − 1)-simplex that is a face of both σ and
σ′. This (d − 1)-simplex must be in K and must also be a face of σ ′, so it must be p(σ′).
Since p(σ′) is a proper face of σ, this presimplex must be contained in ∂̃d(σ).

Now we must show that the similarities match up. Suppose σ and σ ′ are upper adjacent.
Then they are reduced lower adjacent with reduced common lower simplex p(σ ′). Let
p(σ′) = [v1v2 . . . vd]. Then σ′ = (−1)d[v1v2 . . . vdw]. Then the coefficient of p(σ′) in ∂̃d(σ

′) is
(−1)d(−1)d = +1. Since p(σ′) is the common lower simplex of σ and σ ′, using Lemma 3.4.4
this implies that σ and σ′ are upper adjacent in w∗K and similarly, or dissimilarly oriented,
iff they are reduced lower adjacent in w ∗K with dissimilar, or similar, reduced common
lower simplex iff the coefficient of p(σ ′) in ∂̃d(σ) is −1, or +1, respectively.

Now we are prepared to prove a very important result about cones of simplicial com-
plexes. This theorem was first proved in [DURE, Corollary 4.11], where it is actually a
corollary of a much stronger and more general result, but the proof given here is entirely
our own, and surprisingly is seen to rest largely on the Reduced Laplacian Matrix Theo-
rem, Theorem 3.4.8. We state this result in our own notation, which looks rather different
from the original statement of this result. Recall the definitions of multiset sum and scaled
multiset from the definitions at the beginning of Section 2.2.

Theorem 5.2.2. Let K be a finite simplicial complex, let w be a vertex such that w ∗K
is well-defined, and let d ∈ Z be nonnegative. Then

SpecNZ(∆̃UP
d (w ∗K)) = {[1]fd(K)} +M Spec(∆̃d(K)).

Proof. Let fd(K) = m and fd−1(K) = n. Let σ1, . . . , σm ∈ K and σm+1, . . . , σm+n ∈
(w ∗K) −K be all the d-simplices of w ∗K, and for all i ∈ {1, . . . , n} let ηi = p(σm+i).
Note that since each (d− 1)-simplex in K corresponds to a d-simplex in (w ∗K)−K, the
set {η1, . . . , ηn} represents all the (d − 1)-simplices of K. This proof proceeds in several
steps.
STEP (1): First we will demonstrate that

L̃UP
d (w ∗K) =

(
L̃UP

d (K) + Im B̃T
d (K)

B̃d(K) L̃UP
d−1(K)

)
,

where Im is the m×m identity matrix.
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Let i, j ∈ {1, . . . ,m}. Suppose i = j. Then by the Reduced Laplacian Matrix Theorem,
Theorem 3.4.8, the ith diagonal entry of L̃UP

d (w ∗K) is the upper degree of σi in w ∗K.
Note that the upper degree of σi in w ∗K is precisely one more that its upper degree in
K, because there is only one (d + 1)-simplex in (w ∗ K) − K that contains σi, namely
w ∗ σi. Suppose i 6= j. Then by the Reduced Laplacian Matrix Theorem, the ijth entry of
L̃UP

d (w ∗K) is 0 if σi and σj are not upper adjacent in w ∗K, and +1 or −1 if they are
upper adjacent and similarly or dissimilarly oriented, respectively. Note that there cannot
be a (d + 1)-simplex in w ∗ K containing both σi and σj that is not in K, so these two
d-simplices are upper adjacent in w ∗ K iff they are upper adjacent in K. Also, by the
definition of the induced standard orientation of w ∗K, the orientations of σi and σj in K

and w ∗K are identical. Therefore, we see that the ijth component of L̃UP
d (w ∗K) is the

same as the ijth component of L̃UP
d (K). It follows then that the m×m upper left block

of L̃UP
d (w ∗ K) is identical to L̃UP

d (K) + Im, where the latter matrix is calculated with
respect to the ordered basis {σ1, . . . , σm}.

Let i, j ∈ {m + 1, . . . ,m + n}. Suppose i = j. Then by the Reduced Laplacian Matrix
Theorem the ith diagonal entry of L̃UP

d (w ∗K) is the upper degree of σi in w ∗K. It is not
difficult to see that the number of (d+ 1)-simplices in w ∗K containing σi ∈ (w ∗K)−K

as a face is the same as the number of d-simplices in K containing p(σi) = ηi−m. Therefore
the upper degree of σi in w ∗K is equal to the upper degree of ηi−m in K. Now, suppose
i 6= j. By Lemma 5.2.1(1), we know that σi and σj are upper adjacent iff p(σi) = ηi−m and
p(σj) = ηj−m are upper adjacent K, and that if each pair of simplices is upper adjacent
then the pairs are similarly, or dissimilarly, oriented simulataneously. Therefore, we see
that the n× n lower right block of L̃UP

d (w ∗K) is identical to L̃UP
d−1(K), where the latter

matrix is calculated with respect to the ordered basis {η1, . . . , ηn}.
Let i ∈ {m + 1, . . . ,m + n} and j ∈ {1, . . . m}. By the Reduced Laplacian Matrix

Theorem, Theorem 3.4.8(2), and the definition of the matrix representation of ∂̃d(K), the
ijth entry of L̃UP

d (w ∗ K) is 0 if σi and σj are not upper adjacent in w ∗ K; and +1 or
−1 if they are upper adjacent and similarly or dissimilarly oriented, respectively, which is
the case iff the coefficient of p(σi) = ηi−m in ∂̃d(σj) is −1, or +1, respectively, which is

the case iff the ijth entry of B̃d(K) is −1 or +1, respectively, where B̃d(K) is the matrix
of ∂̃d(K) with respect to the ordered bases {σ1, . . . , σm} and {η1, . . . , ηn} for the d-chains
and (d − 1)-chains of K, respectively. Therefore, it follows that the lower left block of
L̃UP

d (w ∗K) is identical to B̃d(K). Since L̃UP
d (w ∗K) is a symmetric matrix, this implies

that the upper right block of L̃UP
d (w ∗K) is identical to B̃T

d (K).
STEP (2): (In this part, we will be doing many calculations with block matrices and block
vectors. The reader should verify that the dimensions of appropriate blocks match up
throughout our calculations.) Let

X =

(
L̃UP

d + Im −B̃T
d

−B̃d L̃UP
d−1

)
=

(
B̃d+1B̃T

d+1 + Im −B̃T
d

−B̃d B̃dB̃T
d

)

and

Y =

(
L̃d + Im 0

0 0

)
=

(
B̃d+1B̃T

d+1 + B̃T
d B̃d + Im 0

0 0

)
.
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(For simplicity, in this step we will omit the arguments from our matrix symbols, and
assume that every matrix is with respect to K.) We will demonstrate that Spec(X) =
Spec(Y ).

Let

P =

(
Im B̃T

d

−B̃d In

)
.

Keeping in mind that ∂̃i∂̃i+1 is the zero transformation, and hence B̃iB̃i+1 is the zero
matrix, for all nonnegative integers i, the reader should verify that

PX = Y P =

(
B̃d+1B̃T

d+1 + B̃T
d B̃d + Im B̃T

d B̃dB̃T
d + B̃T

d

0 0

)
.

Now if we can show that P is invertible, then it follows that X = P −1Y P . From [FIS97,
Exercise 12(a), page 249], it would then follow that Spec(X) = Spec(Y ). We prove that
P is invertible indirectly. Let

Q =

(
Im −B̃T

d

B̃d In

)
.

Then

PQ =

(
Im B̃T

d

−B̃d In

)(
Im −B̃T

d

B̃d In

)
=

(
B̃T

d B̃d + Im 0

0 B̃dB̃T
d + In

)

=

(
B̃T

d B̃d 0

0 B̃dB̃T
d

)
+ Im+n =

(
B̃T

d 0

0 B̃d

)(
B̃d 0

0 B̃T
d

)
+ Im+n

=

(
B̃T

d 0

0 B̃d

)(
B̃T

d 0

0 B̃d

)T

+ Im+n.

Label the first term in the last equality A. By Lemma 2.2.8 we know that A represents a
positive semidefinite linear operator, so by Lemma 2.2.7 the eigenvalues of A are nonnega-
tive. Note also that adding Im+n to A has the effect of adding 1 to each eigenvalue, so that
Spec(A+ Im+n) = {1, 1, . . . , 1}+M Spec(A). Therefore the eigenvalues of PQ = A+ Im+n

are strictly positive. This means that 0 is not an eigenvalue of PQ, which means that the
nullspace of the operator represented by PQ is trivial, which implies that PQ is invertible.
Then

det(P ) det(Q) = det(PQ) 6= 0,

so det(P ) 6= 0, so P is invertible.
STEP (3): Putting Steps (1) and (2) together, we have proven that

Spec(∆UP
d (w ∗K)) = Spec(X) = Spec(Y ) = {[0]n} ∪M

(
{[1]m} +M Spec(∆̃d(K))

)
.

Since the elements of {[1]m} +M Spec(∆̃d(K)) are strictly positive, this implies that

SpecNZ(∆̃UP
d (w ∗K)) = {[1]fd(K)} +M Spec(∆̃d(K)).



5. LAPLACIAN SPECTRA OF SPECIFIC COMPLEXES 62

From Lemma 4.1.7 and Theorem 5.2.2 we immediately have the following corollary.

Corollary 5.2.3. Let K be a finite simplicial complex, let w be a vertex such that w ∗K
is well-defined, and let d ∈ Z be nonnegative. Then

SpecNZ(∆̃d(w ∗K)) = {[1]fd(K)+fd−1(K)} +M

(
Spec(∆̃d(K)) ∪M Spec(∆̃d−1(K))

)
.

In the case of 2-dimensional cones, Theorem 5.2.2 leads to some truly fascinating results.

Theorem 5.2.4. Let K be a finite simplicial cone of dimension less than or equal to 2,
with base G ⊆ K. Then

SpecNZ(∆0(K)) =

[
{[1]f0(G)−1}+M

(
SpecNZ(∆0(G))

)
f0(G)−1

]
∪M {f0(G) + 1} (5.2.1)

and
Spec(∆2(K)) = {[1]f1(G)}+M

(
SpecNZ(∆0(G))

)
f1(G)

. (5.2.2)

Proof. Let v be a vertex of K such that K = v ∗ G. Note that f1(G) = f2(K) and
f0(G) + 1 = f0(K).

We know that ∆0(K) = ∆UP
0 (K) = ∆̃UP

0 (K), so by Theorem 5.2.2 and Lemma 4.1.7
we have

SpecNZ(∆0(K)) = {[1]f0(G)}+MSpec(∆̃0(G))

= {[1]f0(G)}+M

(
SpecNZ(∆̃DN

0 (G)) ∪M SpecNZ(∆̃UP
0 (G))

)
f0(G)

.

It follows from Lemma 2.2.9 that SpecNZ(∆̃DN
0 (G)) = SpecNZ(Uf0(G)) = {f0(G)}, and

as before we see that SpecNZ(∆̃UP
0 (G)) = SpecNZ(∆0(G)). Therefore

SpecNZ(∆0(K)) = {[1]f0(G)}+M

(
SpecNZ(∆0(G)) ∪M {f0(G)}

)
f0(G)

=

[
{[1]f0(G)−1}+M

(
SpecNZ(∆0(G))

)
f0(G)−1

]
∪M {f0(G) + 1}.

Since K is at most 2-dimensional, we know ∆2(K) = ∆DN
2 (K), and also that

SpecNZ(∆DN
2 (K)) = SpecNZ(∆UP

1 (K)) = SpecNZ(∆̃UP
1 (K)). Therefore by Theo-

rem 5.2.2 it follows that

SpecNZ(∆2(K)) = {[1]f1(G)}+MSpec(∆̃1(G))

= {[1]f1(G)}+M

(
SpecNZ(∆̃DN

1 (G)) ∪M SpecNZ(∆̃UP
1 (G))

)
f1(G)

.

Lemma 4.1.8 and some simplification yield that SpecNZ(∆̃DN
1 (G)) = SpecNZ(∆̃UP

0 (G)) =

SpecNZ(∆0(G)) and SpecNZ(∆̃UP
1 (G)) = SpecNZ(∆̃DN

2 (G)) = SpecNZ(∆DN
2 (G)) =

SpecNZ(∆2(G)). Furthermore, since K is at most 2-dimensional it must be the case that G
is at most 1-dimensional, so ∆2(G) is a zero matrix and SpecNZ(∆2(G)) = ∅. Finally, The-
orem 4.1.4 implies that H2(K; R) ∼= N(∆2(K)), and since H2(K; R) is zero dimensional
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since K is a cone, we know 0 is not in Spec(∆2(K)), so SpecNZ(∆2(K)) = Spec(∆2(K)).
Therefore

Spec(∆2(K)) = {[1]f1(G)}+M

(
SpecNZ(∆0(G))

)
f1(G)

.

Theorem 5.2.5. Let K be a finite simplicial cone of dimension less than or equal to 2.

(i) If f0(K) ≥ f2(K) + 2, then

Spec(∆0(K)) = Spec(∆2(K)) ∪M {0, [1]f0(K)−f2(K)−2, f0(K)}.

(ii) If f0(K) < f2(K) + 2, then

Spec(∆0(K)) ∪M {[1]f2(K)−f0(K)+2} = Spec(∆2(K)) ∪M {0, f0(K)}.

Proof. Let K = v ∗G. Note that f0(G) + 1 = f0(K) and f1(G) = f2(K).
For part (i), suppose f0(K) ≥ f2(K) + 2. Then f0(K) − 2 ≥ f2(K). Then from Equa-

tions 5.2.1 and 5.2.2 of Theorem 5.2.4, and recalling that f0(G) + 1 = f0(K) and
f1(G) = f2(K), we have

SpecNZ(∆0(K)) =

[
{[1]f0(K)−2}+M

(
SpecNZ(∆0(G))

)
f0(K)−2

]
∪M {f0(K)}

=

[
{[1]f2(K)}+M

(
SpecNZ(∆0(G))

)
f2(K)

]

∪M

[
{[1]f0(K)−f2(K)−2}+M{[0]f0(K)−f2(K)−2}

]
∪M {f0(K)}

= Spec(∆2(K)) ∪M {[1]f0(K)−f2(K)−2, f0(K)}.

The last expression in this chain of equalities has exactly f2(K)+f0(K)−f2(K)−2+1 =
f0(K) − 1 elements. Hence we conclude that

Spec(∆0(K)) = Spec(∆2(K)) ∪M {0, [1]f0(K)−f2(K)−2, f0(K)}.

For part (ii), suppose f0(K) < f2(K) + 2. Then f2(K) > f0(K) − 2. Also, from Theo-
rem 4.1.4 we know 0 ∈ Spec(∆0(G)), so SpecNZ(∆0(G)) has no more than f0(G) − 1 =
f0(K)−2 < f2(K) elements, so at least f2(K)−(f0(K)−2) = f2(K)−f0(K)+2 elements

of
(
SpecNZ(∆0(G))

)
f2(K)

are 0. Then from Equations 5.2.1 and 5.2.2 of Theorem 5.2.4

we have

Spec(∆2(K)) = {[1]f2(K)}+M

(
SpecNZ(∆0(G))

)
f2(K)

=

[
{[1]f0(K)−2}+M

(
SpecNZ(∆0(G))

)

f0(K)−2

]

∪M

[
{[1]f2(K)−f0(K)+2}+M{[0]f2(K)−f0(K)+2}

]

= [SpecNZ(∆0(K)) − {f0(K)}] ∪M {[1]f2(K)−f0(K)+2}.
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The last expression in this chain of equalities has exactly |SpecNZ(∆0(K))|− 1+ f2(K)−
f0(K) + 2 = |SpecNZ(∆0(K))| + f2(K) − f0(K) + 1 elements, and since this must be the
same number as f2(K), we see that |SpecNZ(∆0(K))| = f0(K)− 1, so SpecNZ(∆0(K)) =
Spec(∆0(K)) − {0}. Therefore

Spec(∆0(K)) ∪M {[1]f2(K)−f0(K)+2} = Spec(∆2(K)) ∪M {0, f0(K)}.

We will now discuss some families of cones. If we take the cone of a polygonal circle,
the result is called a pie. This object is so-named because it looks like a pie in the shape
of a polygon cut into slices. The cone on a polygonal arc is called a fan. The cone on a
set of disjoint edges is called a pinwheel. The cone on a set of disjoint points is called an
asterisk. Finally, the cone of an asterisk is a flapwheel, so in a sense a flapwheel is a sort
of double cone.

In Figure 5.2.2, we have (i) a 6-pie, (ii) 4-fan, (iii) a 3-pinwheel, (iv) a 5-asterisk, and
(v) a 5-flapwheel. In each picture, the labeled vertex is the coning vertex.

a

b

c d

e

(i) (ii)

(iii) (iv)

(v)

Figure 5.2.2.

Since all of these objects are cones, Theorem 5.2.5 tells us that essentially all of their
Laplacian spectra information is contained in the graph theory spectrum of these objects.
Beyond this, the spectra of pies and fans seem to show few decipherable patterns. How-
ever, it turns out that the Laplacian spectra of pinwheels, asterisks, and flapwheels are
completely determined by Theorems 5.2.5 and 5.1.8.
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Lemma 5.2.6. Let P be a pinwheel, and let f2(P ) = n > 0. Then Spec(∆0(P )) =
{0, [1]n−1, [3]n, 2n + 1} and Spec(∆1(P )) = {[1]n−1, [3]2n, 2n + 1} and Spec(∆2(P )) =
{[3]n}.

Proof. Note first that f0(P ) = 2f2(P )+1 = 2n+1 and f1(P ) = 3n. It is easy to see that
for all positive integers m the inequality 2m ≥ m + 1 holds. That P is nontrivial means
that n ≥ 1, so f0(P ) = 2n+ 1 ≥ n+ 2 = f2(P ) + 2. Hence by Theorem 5.2.5 we have

Spec(∆0(P )) = Spec(∆2(P )) ∪M {0, [1]n−1, 2n+ 1}.
None of the 2-simplices of P are upper adjacent to each other, so by Theorem 3.3.4 we
see that L2(P ) = 3In, where In is the n × n identity matrix, so Spec(∆2(P )) = {[3]n}.
Therefore Spec(∆0(P )) = {0, [1]n−1, [3]n, 2n+ 1}.

The statement about Spec(∆1(P )) follows from Corollary 4.1.9, and the fact that
f1(P ) = 3n.

Lemma 5.2.7. Let A be an asterisk, and let f0(A) = n > 0. Then Spec(∆0(A)) =
{0, [1]n−2, n} and Spec(∆1(A)) = {[1]n−2, n}.

Proof. Since A contains no 2-simplices, by Theorem 5.2.5 we have Spec(∆0(A)) =
Spec(∆2(P ))∪M {0, [1]n−2, n} = {0, [1]n−2, n}. Since A is 1-dimensional, we have ∆1(A) =
∆DN

1 (A). Since ∆0(A) = ∆UP
0 (A) and A has one fewer edges than vertices, we see by

Lemma 4.1.8 that Spec(∆1(A)) = SpecNZ(∆0(A)) = {[1]n−2, n}.

Viewing flapwheels as simplicial cones, we now have another proof of Theorem 5.1.6.

Alternate proof of Theorem 5.1.6. As a reminder, we have a flapwheel F with n > 1
flaps. As noted above, we see that F is combinatorically equivalent to a cone on an asterisk
A with n+1 vertices. By Equation 5.2.1 from the proof of Theorem 5.2.4, and Lemma 5.2.7
above, we have

SpecNZ(∆0(F )) =

[
{[1]f0(F )−2}+M

(
SpecNZ(∆0(A))

)
f0(F )−2

]
∪M {f0(F )}

=
[
{[1]n}+M

(
SpecNZ(∆0(A))

)
n

]
∪M {n+ 2}

=
[
{[1]n}+M

(
{[1]n−1, n+ 1}

)
n

]
∪M {n+ 2}

=
[
{[1]n}+M{[1]n−1, n+ 1}

]
∪M {n+ 2}

= {[2]n−1, n+ 2} ∪M {n+ 2}
= {[2]n−1, n+ 2, n+ 2}.

By counting, we see that we are short by a single eigenvalue to get from SpecNZ(∆0(F ))
to Spec(∆0(F )), so Spec(∆0(F )) = {0, [2]n−1, n+ 2, n+ 2}.

Now, by Equation 5.2.2 from Theorem 5.2.4, and Proposition 5.2.7 above, we have

Spec(∆2(F )) = {[1]f2(F )}+M

(
SpecNZ(∆0(A))

)
f2(F )

= {[1]n}+M

(
{[1]n−1, n+ 1}

)

n

= {[2]n−1, n+ 2}.
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As mentioned at the end of the original proof of Theorem 5.1.6, the result about
Spec(∆1(F )) follows directly from our results about Spec(∆0(F )) and Spec(∆2(F )).

Finally, since a simplex is itself a simplicial complex, we are able to use our results about
cones to prove the following tidy fact about the Laplacian spectra of simplices.

Proposition 5.2.8. Let n ∈ Z be nonnegative, and let σn denote the n-simplex. Then

Spec(∆̃i(σn)) = {[n+ 1]fi(σn)}

for all nonnegative i ∈ Z.

Proof. The key observation is that for each nonnegative n ∈ Z we have that σn+1 is
combinatorially equivalent to a cone of σn. We then prove this proposition by induction
on n.

If n = 0, then we have σ0 is a single vertex, so L̃0(σ0) = (1), so Spec(∆̃0(σ0)) =
{1}. Suppose n ∈ Z is positive such that the proposition holds for σn−1. Let i ∈ Z be
nonnegative. Then σn is a cone of σn−1, so by Theorem 5.2.2 and the induction hypothesis
we have

SpecNZ(∆̃UP
i (σn)) = {[1]fi(σn−1)} +M

(
SpecNZ(∆̃i(σn−1))

)
fi(σn−1)

= {[1]fi(σn−1)} +M {[n]fi(σn−1)}
= {[n+ 1]fi(σn−1)}.

By a completely similar argument we see that

SpecNZ(∆̃UP
i−1(σn)) = {[n+ 1]fi−1(σn−1)}.

By the work the work in the preceding paragraph and Lemmas 4.1.7 and 4.1.8 we have
that

SpecNZ(∆̃i(σn)) = SpecNZ(∆̃UP
i (σn)) ∪M SpecNZ(∆̃DN

i (σn))

= SpecNZ(∆̃UP
i (σn)) ∪M SpecNZ(∆̃UP

i−1(σn))

= {[n+ 1]fi(σn−1)} ∪M {[n+ 1]fi−1(σn−1)}
= {[n+ 1]fi(σn−1)+fi−1(σn−1)}.

Observe that by a standard combinatorial identity

fi(σn−1) + fi−1(σn−1) =

(
n

i+ 1

)
+

(
n

i

)
=

(
n+ 1

i+ 1

)
= fi(σn).

Since Spec(∆̃i(σn)) has exactly fi(σn) elements, it follows that

Spec(∆̃i(σn)) = SpecNZ(∆̃i(σn)) = {[n+ 1]fi(σn−1)+fi−1(σn−1)} = {[n+ 1]fi(σn)}.



6
Directions for Further Research

Clearly there are many open questions concerning Laplacians of simplicial complexes. For
one thing, all of the results presented in this project, with the exception of the Combi-
natorial Hodge Theorem, Theorem 4.1.4, work in the direction of predicting parts of the
Laplacian spectra by knowing about the structure of the underlying simplicial complex.
What would probably be more interesting and useful, although certainly much harder,
would be to be able to predict the structure of a simplicial complex from its Laplacian
spectra. This seems like an extremely difficult problem, and we have no immediate intu-
ition as to a good place to start on it.

A somewhat related question, although probably much easier, is to find two simplicial
complexes that are combinatorially distinct, but whose Laplacian spectrum is the same in
all dimensions. In all of the examples examined, we failed to find any such example. This
seems much more like poor luck than evidence that the Laplacian spectra of a simplicial
complex is unique.

The really fascinating next direction to take research in this area, from the author’s
point of view, would be to develop some form of weighted Laplacian operator. This could
be done by forming weighted boundary maps for the vector spaces of chains of the complex,
and then defining the weighted Laplacian from these. This has been done and very much
studied in the case of graphs, where there is the choice of having either vertex or edge
weights. (See [CHU96], for instance.) The hope is that by being careful and clever enough,
some metric information could be insinuated into the boundary maps, so that the weighted
Laplacian spectra might reflect the geometry of a specific simplicial complex.

Ideally, the study of weighted Laplacian spectra of simplicial complex could lead to a
number of important things. Hopefully, many of the results developed in this paper might
have neat generalizations for the weighted case, with the specifics of the generalizations
having something to do with geometric properties. Also, the usefulness and accuracy of
simplicial complexes as models of smooth manifolds or the like in many cases depends on
specifying the particular geometry of the simplicial complex. Hence any geometric infor-
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mation from the weighted Laplacian spectra could be beneficial in these cases.

This is the end. Thank you for reading this.

Timothy E. Goldberg
May 2002
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