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Abstract

Some pretty interesting mathematics, especially geometry, arises
naturally from thinking about bicycles and how they work. Why exactly
does a bicycle with round wheels roll smoothly on flat ground, and how
can we use the answer to this question to design a track on which a
bicycle with square wheels can ride smoothly? If you come across
bicycle tracks on the ground, how can you tell which direction it was
going? And just what was the answer to Keith Devlin’s question about
the area between bicycle tracks, anyway? We will discuss the answers
to these questions, and give lots of illustrations.
This talk should be accessible to undergraduates. Only an introductory
knowledge of complex numbers and vector calculus will be required.
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Bicycle wheels

1. Bicycle wheels
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Bicycle wheels Round bicycle wheels

How does a bicycle roll smoothly on flat ground?

Only wheel edge rolls on ground, carries rest of wheel with it.

As wheel rolls, center of wheel stays at constant height!

With axis at center of wheel, bicycle rides smoothly.
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Bicycle wheels Roulette curves

Roulette curves

Model the rolling wheel situation with roulette curves.

Definition

f = fixed curve, r = rolling curve.

r rolls along f without sliding, carrying whole plane with it, (rolling
transformations).

Roulette curve through point p = curve traced out by p under
rolling transformations.

Roulettes generalize other curves, like cycloids and involutes.
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Bicycle wheels Roulette curves

Parametrizing roulette curves

Recall:

C = the plane

z ∈ C = point or vector in plane

z 7→ w · z = linear transformation of plane

(fixed w ∈ C) (rotation if |w | = 1)
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Bicycle wheels Roulette curves

Parametrizing roulette curves

Parametrize fixed and rolling curves by

f, r : R→ C.

Assume:

Curves are initially tangent:

r(0) = f(0) and r′(0) = f ′(0).

Curves are parametrized at same speed:

|r′(t)| = |f ′(t)| 6= 0 for all t ∈ R.
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Bicycle wheels Roulette curves

Parametrizing roulette curves

Rt : C→ C, the time t rolling transformation
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Bicycle wheels Roulette curves

Parametrizing roulette curves

Definition

The rolling transformations generated by r rolling along f are the family

{Rt : C→ C | t ∈ R}

of rigid motions of the plane such that:

Rt matches up r and f at time t:

Rt

(
r(t)

)
= f(t).

Rt maps r so that it is tangent to f at time t:
d
ds Rt

(
r(s)

)∣∣
s=t

= f ′(t),

or equivalently

(DRt)r(t) r′(t) = f ′(t).
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Bicycle wheels Roulette curves

Parametrizing roulette curves

Each Rt is a rigid motion, (preserves distance), so can be written as a
rotation and translation:

p 7→ Rt(p) = a · p + b

for some a, b ∈ C with |a| = 1.

Can use above properties of Rt to show that

Rt(p) = f(t) + (p − r(t)) · f ′(t)

r′(t)
.

Alternatively . . .
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Bicycle wheels Roulette curves

Parametrizing roulette curves

Rt rotates r′(t) to f ′(t).

Rt also rotates p − r(t) to Rt(p)− f(t).
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Bicycle wheels Roulette curves

Parametrizing roulette curves

Note:

Multiplication by
f ′(t)

r′(t)
is a rotation, (since |f ′(t)| = |r′(t)|).

f ′(t)

r′(t)
· r′(t) = f ′(t).

f ′(t)

r′(t)
· (p − r(t)) = Rt(p)− f(t).

Rt(p) = f(t) + (p − r(t)) · f ′(t)

r′(t)
.
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Bicycle wheels Roulette curves

Why round wheels ride smoothly on flat ground

Let f parametrize real axis in C and r parametrize circle with radius a > 0
and center ai .

Steady Axle Property

The roulette through a circle’s center as it rolls along a line is a parallel
line, and the roulette keeps pace with the contact point between the circle
and the ground line.
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Bicycle wheels Roulette curves

Why round wheels ride smoothly on flat ground

Rt(ai) is determined:

vertically by ai ,

horizontally by f(t).

Steady Axle Equation

Rt(ai) = ai + Re
(
f(t)

)
.
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Bicycle wheels Polygonal bicycle wheels

Building a track for polygonal wheels

A polygon is made up of edges glued together at vertices.

Scheme for building the track

Build a piece of track for each polygon edge.

Glue the pieces together.

Check (and hope) it works.
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Bicycle wheels Polygonal bicycle wheels

Building a track for polygonal wheels
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Bicycle wheels Polygonal bicycle wheels

A piece of track for the polygon’s edge

Imagine polygonal wheel lying on real axis with axle a > 0 units above
ground.

Let r(t) = bottom edge of polygon = t,
f(t) = track we are trying to find.

To keep axle steady, must satisfy Steady Axle Equation:

ai + Re
(
f(t)

)
= Rt(ai)

= f(t) +
(
ai − r(t)

)
· f ′(t)

r′(t)

= f(t) + (ai − t) · f ′(t).
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Bicycle wheels Polygonal bicycle wheels

A piece of track for the polygon’s edge

Write f(t) = α(t) + β(t) i .
Then

ai + Re
(
f(t)

)
= f(t) + (ai − t) · f ′(t)

⇐⇒{
aα′(t)− t β′(t) + β(t) = a,

t α′(t) + a β′(t) = 0.

Also want f(0) = r(0) = 0,
so α(0) = β(0) = 0.

(system of ordinary, nonhomogeneous, first-order linear differential
equations)
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Bicycle wheels Polygonal bicycle wheels

A piece of track for the polygon’s edge


aα′(t)− t β′(t) + β(t) = a

t α′(t) + a β′(t) = 0
α(0) = β(0) = 0

Solution:

α(t) = a ln
(

t +
√

a2 + t2
)
− a ln a = a sinh−1(t/a).

β(t) = a−
√

a2 + t2 = a− a cosh
(
sinh−1(t/a)

)
.
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Bicycle wheels Polygonal bicycle wheels

Quick reminder

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
.
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Bicycle wheels Polygonal bicycle wheels

A piece of track for the polygon’s edge

Above solution gives:

r(t) = t,

f(t) = a sinh−1(t/a) +
[
a− a cosh

(
sinh−1(t/a)

)]
i .

(Note f ′(0) = r′(0) = 1 and |f ′(t)| = |r′(t)| = 1.)

Reparametrize with t = a sinh(s/a). Then

r(s) = a sinh(s/a),

f(s) = s + i [a− a cosh(s/a)] .

This is the graph of y = a− a cosh(x/a), an inverted catenary curve.
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Bicycle wheels Polygonal bicycle wheels

Catenaries!

Not actually a catenary.

y = A (1− cosh(Bx)),
where A ≈ 68.77 and B ≈ 0.01.

This is a flattened catenary. (AB 6= 1)
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Bicycle wheels Polygonal bicycle wheels

Catenaries!

Also not actually catenaries.

These are canaries.
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Bicycle wheels Polygonal bicycle wheels

Catenaries!

And these are flattened canaries.
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Bicycle wheels Polygonal bicycle wheels

How big is the piece of track?

If wheel = regular n-gon with axle a > 0 units above the ground:
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Bicycle wheels Polygonal bicycle wheels

How big is the piece of track?

We reach the end of the first edge when:

r(T ) = a tan(π/n),

a sinh(T/a) = a tan(π/n),

T = a sinh−1 (tan(π/n)) .
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Bicycle wheels Polygonal bicycle wheels

The whole track

T = a sinh−1 (tan(π/n)).
The track is the graph of

y = a− a cosh(x/a) for −T ≤ x ≤ T

together with all horizontal translations of it by integer multiples of 2T .

Cool fact!

As n gets larger:

T gets smaller, each track piece gets smaller, bumps in track get
smaller (although more frequent).

As polygon → circle, track → horizontal line!
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Bicycle wheels Polygonal bicycle wheels

Wise words

“If the world were scallop-shaped, then wheels would be square.”

— Krystal Allen
March 27, 2010
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Bicycle wheels Polygonal bicycle wheels

Things to check

Wheel fits snuggly into gluing points of track, i.e. when wheel rolls to
end of each edge, it balances perfectly on its vertex.
TRUE, by easy computation.

Wheel never gets stuck, i.e. wheel only intersects track tangentially.
FALSE for triangular wheels!
But TRUE for square wheels, pentagonal wheels, hexagonal wheels,
etc.
(Computation is hard.)
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Bicycle wheels Polygonal bicycle wheels

Demonstrations
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Bicycle tracks

2. Bicycle tracks
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Bicycle tracks Which way did it go?

Key facts about bicycles

Front and rear wheels stay fixed distance apart.

Rear wheel always points towards the front wheel.

Therefore:

Key Property of Bicycle Tracks

Tangent line to rear wheel track always intersects front wheel track a fixed
distance away.
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Bicycle tracks Which way did it go?

Which way did it go?

Why is this true? Because the rear wheel cannot turn. Therefore it moves
in the same direction as the bicycle frame is pointed, which is toward the
front wheel.

Why is (1) useful? At any instant, the direction of motion along a curve
is tangent to the curve. Thus we simply draw a tangent to the rear-wheel
curve. If we move along it toward where the front wheel was at that time,
we will hit the front-wheel curve and the distance between the point on the
rear-wheel curve and the point on the front-wheel curve will be the distance
between the wheels on the bicycle. If we draw the tangent line to the wrong
curve or go in the wrong direction on the tangent line, we may still hit the
other curve, but the distance between the two points can be anything and
will probably vary as we move along.

The following figure shows the track of a bicycle. We’ve used different
colors for the two tracks and made one of them dashed so that we can easily
tell them apart. The picture is roughly ten bicycle lengths long.

There are at least three ways we could determine that the green track is the
front wheel:

• As Holmes noted, the rear wheel track will be deeper, but we can’t see
that in the picture.

• As we’ve noted, the rear wheel will cross over the front wheel, which is
a bit hard to see in the picture.

• We can use the tangent line idea. If the green track is the rear wheel, a
tangent to it will intersect the red track one bicycle length away. Here
is a tangent that shows the green track cannot be the rear wheel.

2

Which is the rear wheel track?

Which way did the bicycle go?
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Bicycle tracks Which way did it go?

Which way did it go?

Why is this true? Because the rear wheel cannot turn. Therefore it moves
in the same direction as the bicycle frame is pointed, which is toward the
front wheel.

Why is (1) useful? At any instant, the direction of motion along a curve
is tangent to the curve. Thus we simply draw a tangent to the rear-wheel
curve. If we move along it toward where the front wheel was at that time,
we will hit the front-wheel curve and the distance between the point on the
rear-wheel curve and the point on the front-wheel curve will be the distance
between the wheels on the bicycle. If we draw the tangent line to the wrong
curve or go in the wrong direction on the tangent line, we may still hit the
other curve, but the distance between the two points can be anything and
will probably vary as we move along.

The following figure shows the track of a bicycle. We’ve used different
colors for the two tracks and made one of them dashed so that we can easily
tell them apart. The picture is roughly ten bicycle lengths long.

There are at least three ways we could determine that the green track is the
front wheel:

• As Holmes noted, the rear wheel track will be deeper, but we can’t see
that in the picture.

• As we’ve noted, the rear wheel will cross over the front wheel, which is
a bit hard to see in the picture.

• We can use the tangent line idea. If the green track is the rear wheel, a
tangent to it will intersect the red track one bicycle length away. Here
is a tangent that shows the green track cannot be the rear wheel.

2

Is the green (solid) one the rear wheel track?

Nope!
(Unless the bicycle is GIGANTIC!)
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Bicycle tracks Which way did it go?

Which way did it go?

Now we know that the red track is the rear wheel. Which way was the bicycle
moving? Here is a picture with some tangents drawn to the red track.

L: If it is moving to the left, then the front wheel will be to the left of the
rear wheel. Thus, if we follow a tangent line starting at the red track
and moving to the left one bicycle length, we should meet the green
track.

R: If the bicycle is moving to the right, then we would move to the right
on the tangent line.

It should be easy for you to see that the bicycle was moving to the right.

3 How We Drew the Curves

If you like technicalities, you might like to know how we plotted these curves.
Let (x, y) = (fx(t), fy(t)) and (x, y) = (rx(t), ry(t)) be the positions of the
front and rear wheels, respectively, at time t. Let L be the distance between
the wheels. The slope of the tangent to the rear wheel’s path is dy/dx =
r′
y(t)/r

′
x(t). Because of the way the rear wheel moves,

r′
y(t)

r′
x(t)

=
fy(t) − ry(t)

fx(t) − rx(t)
and L2 = (fy(t) − ry(t))

2 + (fx(t) − rx(t))
2.

Because of r′
x(t) and r′

y(t), it is easier to decide on a curve for the rear wheel
and then solve these two equations for the position of the front wheel.1 This
involves taking square roots and we need to decide on the sign of the square
root. Since we want the bicycle to be moving to the right, fx(t) > rx(t),

1We might view this as the rear wheel pushes the front wheel along, just as in an actual
bicycle. However, this “pushing” is not needed — (1) does not depend on how the bicyle
is powered.

3

Is the red (dashed) one the rear wheel track?

Yes!
And it went to the right!
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Bicycle tracks Which way did it go?

Tracks where this doesn’t work
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Bicycle tracks The area between tracks

Devlin’s question

At the end of his talk last semester, Keith Devlin asked:

How can you find the area between front and rear bicycle tire tracks?
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Bicycle tracks The area between tracks

Devlin’s question
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Bicycle tracks The area between tracks

Devlin’s question

The answer:

The area is swept out by the bicycle, i.e. by tangent vectors to the
rear wheel track.

Rearrange the tangent vector sweep into a tangent vector cluster!
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Bicycle tracks The area between tracks

Devlin’s question

The answer:

The area between front and rear bicycle tire tracks is

θ
2π · π L2 = 1

2 θL2,

where L = distance between tires and θ = change in bicycle’s angle.
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Bicycle tracks The area between tracks

Visual Calculus

This is an example of Visual Calculus, developed by Mamikon
Mnatsakanian. (See the Wikipedia article and notes by Tom Apostol.)

T. Goldberg (Cornell) Bicycle math March 30, 2010 42 / 45

http://en.wikipedia.org/wiki/Visual_Calculus
http://www.its.caltech.edu/~mamikon/VisualCalc.html
http://www.its.caltech.edu/~mamikon/BikeOvalLng.html


Bicycle tracks The area between tracks

Mamikon’s theorem

Mamikon’s Theorem

The area of a tangent sweep is equal to the area of its tangent cluster,
regardless of the shape of the original curve.
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Bicycle tracks The area between tracks

THE END

Thank you for listening.
(Don’t forget to tip your waiters and waitresses.)
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Bicycle tracks The area between tracks

THE END

Special thanks to

The Amazing Andrew Cameron
for all of his help with the square-wheel track!

And HAPPY BIRTHDAY tomorrow!
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