HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY

TIMOTHY E. GOLDBERG

These are notes for a talk given in the Lie Groups Seminar at Cornell University
on Friday, September 25, 2009. In retrospect, perhaps a more accurate title would
have been An introduction to Dirac and generalized complex geometry.

ABSTRACT. Generalized complex (GC) geometry is a relatively new field of study
that has its roots in Dirac geometry, and can be seen as generalizing Poisson, com-
plex, and symplectic geometry. Many concepts and methods from symplectic ge-
ometry have been generalized and applied to GC geometry. For instance, in 2006
Yi Lin and Susan Tolman developed a notion of generalized Hamiltonian actions
and generalized moment maps. These maps have proven to have many properties
analogous to their symplectic counterparts.

In this talk, I will give an introduction to GC geometry and generalized Hamil-
tonian actions, and discuss the reduction of a GC manifold by a generalized Hamil-
tonian action.
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INTRODUCTION

Dirac geometry was developed by Theodore Courant [1] and Alan Weinstein.
Generalized complex (GC) geometry was developed by Nigel Hitchin [3], Marco
Gualtieri [2], and Gil Cavalcanti. A GC structure on a manifold is a Dirac structure
satisfying an additional condition.

1. DIRAC STRUCTURES

For any n-dimensional real vector space V, the associated vector space V :=
V @& V* carries a natural non-degenerate symmetric bilinear form (, -) of signature
(n,m), defined by

1
=5 (@alv) + B(w)
for all u + &, v + 3 € V. We will use the same notation for the complex linear
extension of this bilinear form to the complexification

Ve:=(Va V) ®C.

(w4 o, v+ B)

These bilinear forms will henceforth be referred to as the standard metrics on V
and V.

Definition 1.1. A linear subspace E of V or V¢ is isotropic if (e,e’) = 0 for all
e,e’ € E. A maximal isotropic subspace of V, (i.e. isotropic with real dimension
n), is called a linear Dirac structure on V. A maximal isotropic complex subspace
of V¢, (i.e. isotropic with complex dimension n), is called a complex linear Dirac
structureon V.

Let T: Vi — V; be a linear map between finite-dimensional real vector spaces.
Elements w; = w40 € Vi, Wy, = uy+a, € V, are related by T, denoted wy ~1 w,,
if T(wq) =urand T*(xy) = «q. If B4 C V4, E, C 'V, are real linear Dirac structures,
then T is a Dirac map if

E,; = {W] € V7| 3w, € E; such that wy ~t Wz}.

The definitions are similar for the complex case.

Let M be an n-dimensional manifold. The Pontryagin bundle, or generalized
tangent bundle, of M is

™ =TM & T"M.
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The standard metric on each fiber of TM induces a smoothly varying metric on
the bundle, and by complex linear extension on the bundle’s complexification

The Lie bracket of vector fields defines a skew-symmetric bilinear bracket on
I'(TM), the space of smooth sections of TM — M. This can be extended to a
skew-symmetric bilinear bracket on I'(TM), called the Courant bracket, defined

by

X4+ o, Y+ B] :=[X, Y] + LxPp —Lycx—%d(ﬁ(x) —«(Y)).

This extends complex linearly to a bracket on I'(TcM).

Definition 1.2. A smooth vector subbundle E C TM is an almost Dirac structure
if E, is a linear Dirac structure on T, M for all x € M. An almost Dirac structure E
is a Dirac structure if I'(E) is closed under the Courant bracket.

A smooth map ¢: M; — M, between manifolds is a Dirac map with respect to
almost Dirac structures E; € TM; and E, C TM, if

G TMy = T goMa2
is a Dirac map with respect to Eq|, and Ej|,, forall x € M;.

Complex analogues of these notions are defined in the obvious ways.
Example 1.3.

(1) Let B € T (A*(TM)) be a smooth bivector on M. We will view this as a
smoothly-varying skew-symmetric bilinear form on covectors, which hence
induces a bundle map B*: T*M — TM defined over each x € M by
o — B(e, ) for « € TiM, under the identification (T7M)* = T M. Define
Eg C TM by

Eg = graph(B) ={B(x) + a | x € T*"M}.

This is an almost Dirac structure on M, and it is a Dirac structure if and
only if [B, B] = 0, (the Schouten—Nijenhuis bracket), i.e. if and only if B is a
Poisson structure on M.

(2) LetQ el (/\Z(T*M)) be a smooth differential 2-form on M. This induces
abundle map Q": TM — T*M defined over each x € M by v — Q(v, ) for
v € TyM. Define En, C TM by

Eq = graph(Q) ={u+ Q°(u) |ue TM).
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This is an almost Dirac structure on M, and it is a Dirac structure if and
only if dQ) = 0, i.e. if and only if Q is a presymplectic structure on M.

2. GENERALIZED COMPLEX STRUCTURES

Definition 2.1. Let V be a finite-dimensional real vector space. A linear GC struc-
ture on V is a complex linear Dirac structure E C V¢ such that V¢ = E @ E,
(i.e. ENE = {0)). Let p: Vc @ Vi — V¢ be the natural projection. The type of this
GC structure is the complex codimension of p(E) in V¢:

type(E) = dim¢ V¢ — dime p(E).

Let M be a manifold. An almost generalized complex structure on M is a
smooth vector subbundle E C T¢M such that E, is a linear GC structure on T¢ ,M
for each x € M. An almost GC structure E is a generalized complex structure if
I'(E) is closed under the Courant bracket.

Equivalently, an almost GC structure is an complex almost Dirac structure E on
M such that the intersection E N E is the image of the zero section of TcM — M,
and a GC structure is an almost GC structure such that I'(E) is Courant-closed.

For each x € M, the type of an almost GC structure E C T¢M at x is the type of
E.in T¢ xM:

type, (E) = type(Ex) = dim¢ T¢ xM — dimc p(E),
where here p is the natural projection TcM & TEM — TeM.

Proposition 2.2. Let V be a real vector space. There is a natural bijective correspondence
between the following two structures.

(1) Linear GC structureson V, E C Ve.
(2) Orthogonal linear §: V. — V such that % = —id.

Idea of proof.

(1) = (2): Define J¢: V¢ — V¢ with (+i)-eigenspace E and (—i)-eigenspace E.
Since Ve =E@ Eand V = {x +X | x € V¢}, we can write

V={e+eleeckE}

Forall e € E, we have Jc(e + €) = ie — ie = ie + ie € V. Therefore J¢ preserves V.
Put J := (Jc) lv.
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(2) = (1): Let E be the (+i)-eigenspace of the complex linear extension J¢ of
d. O

Proposition 2.3. Let M be a manifold. There is a natural bijective correspondence be-
tween the following two structures.

(1) Almost GC structures on M, E C T¢cM.
(2) Orthogonal bundle maps J: TM — TM such that 3> = —id.

Example 2.4.

(1) Let w be a non-degenerate differential 2-form on M, and let w’: TM —
T*M be the associated bundle map. Because w is non-degenerate w’ is an
isomorphism. We denote its inverse by w?. Define the map Jo: TM — TM

by
0 —wt
Jo = (wb 0 ) '

The (+i)-eigenbundle of this map is
Eo= graph(—iwb) ={X—iw’(X)| X e TcM},

where here w” denotes the complex linear extension of the original map.
This is an almost GC structure on M, and it is a GC structure if and
only if dw = 0, i.e. if and only if w is a symplectic structure on M. Since
p(E) =TcM,
type, (Ey) =0

for all x € M.

(2) LetI: TM — T M be an almost complex structure on M, i.e. a bundle map
such that I = —id. Define the map J;: TM — TM by

-1 0
81:(0 I*>>

where I': T*"M — T*M s the dual of I. Let TcM = T ;M & T 1M be the
eigenbundle decomposition of Tcm with respect to I, and TcM = T7 M@
T5.1M be the dual decomposition. The (+i)-eigenbundle of J; is

Er=ToiM @ T M.

This is an almost GC structure on M, and it is a GC structure if and only
if I is integrable, i.e. if and only if I is a complex structure on M. Since
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p(E) =TcM,
type (Ex) =2n—m=n
for all x € M.

Cool Fact 2.5. Let M be a manifold with GC structure J: TM — TM, and let
p: TM @ T*M — T M be the natural projection. Set

M=po(Jlrm): T'M — TM.
Then IT is a Poisson structure on M.
The map IT is skew-symmetric for the following reason. Write J in terms of its
B), and note that B = TT. It is not

C D
hard to show that the adjoint of J with respect to the natural metric on TM is

tangent and cotangent coordinates, § = (

c* A*
also have J~' = —J. This implies, among other things, that B* = —B.

(D B ) Since J is orthogonal, this also represents J~'. Because J* = —id, we

Note that if § = J, for a symplectic form w on M, then TT = —w? is the Poisson
structure on M induced by the symplectic structure, (up to +).

Definition 2.6. Suppose j: S — M is a submanifold of a manifold M with GC
structure E C TcM. For each x € S, let

Esl :={w € Tc,S | 3w’ € E, such that w ~ w'},

and put Es = | J, 5 Esl,. Each Eg|, is a complex linear Dirac structure on T¢ S, but
the total space is not in general a smooth bundle; however, if it is a smooth bundle
then Eg is a GC structure on S. In this case, we call (S, Es) a generalized complex
submanifold of (M, E).

3. GENERALIZED COMPLEX HAMILTONIAN ACTIONS

Definition 3.1. Let M be a manifold with GC structure given equivalently by
J: TM — TMand E C TcM. Let G be a Lie group acting smoothly on M. This
induces an action of G on the Pontryagin bundle TM of M by

g (9, (g7")%)
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for g € G. We say that G acts by symmetries of the GC structure if the action
G ~ TM commutes with , i.e. if the diagram

™ —~ TM
(9*,(9‘)*)i J{(g*,(g‘)*)
™ T ™

commutes for all g € G. This is equivalent to requiring that the complex Dirac
structure E be stable under the complex linear extension of G ~ TM to an action
G~ TcM.

Example 3.2. Let G be a Lie group acting smoothly on a manifold M. If w is a
symplectic structure on M, then the action preserves w if and only if the action is
by symmetries of J,. The same is true if we replace w with a complex structure I
on M.

Definition 3.3. Let M be a manifold with a GC structure given equivalently by
J: TM — TM and E C T¢cM, and let G be a Lie group acting on M by symmetries
of this GC structure. This action is generalized Hamiltonian if there exists a G-
equivariant map p: M — g* such that, for all £ € M,

Em=—J(du®) or equivalently & — idut e E.

Here p®: M — R is the smooth function defined by p%(x) = (u(x), &) for all
x € M. The map p is called a moment map for the action of G on (M, J).

Example 3.4.

(1) Let (M, w) be a symplectic manifold, and let G be a Lie group acting on
(M, w) in a Hamiltonian fashion with moment map ®: M — g*. Recall
that this means the G-action is symplectic, the map @ is G-equivariant,
and for all & € g we have

dO® = w(&m, ).

Let J,, be the GC structure on M induced by w. The action of G on (M, )
is generalized Hamiltonian, and @ is a generalized moment map. To see
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why, observe that forall £ € g
Em—idp® € By, = graph (—iw’) &= —iw’(§u) = —idp®
= w'(En) =dut
&= w(em, ) =dp®
(2) Let a Lie group G act on a complex manifold (M, I) preserving 1. This ac-
tion is generalized Hamiltonian with respect to J; if and only if it is trivial,
because p(E;) C T¢M contains no non-trivial real vectors. If u: M — g*
is a generalized moment map, then (E,M — idua) |X € Eil,, and hence &ml,,
forallx e M, & € g.
(3) As noted in [4, page 205], a generalized moment map pu: M — g*is also a

Poisson moment map for the G-action with respect to the Poisson structure
M:=po (Jr-m) on M.

4. GENERALIZED COMPLEX REDUCTION

Theorem 4.1 ([4]). Let a compact Lie group G act on a GC manifold (M, E) in a Hamil-
tonian fashion with moment map p: M. — g*. Let Z = u'(0) and suppose G acts freely
onZ.

(1) (Z,E2) is a GC submanifold of (M, E).

(2) The quotient space My := Z/G inherits a natural GC structure Eo C TcM,.
(3) The quotient projection p: Z — M is a Dirac map with respect to £ and E,.
(4) Forall x € Z we have

typep(x](Eo) = type (E).
Sketch of proof of (2). For each x € M, define

oMl = {&ml | & €g) and  dyl = {du®| | &€ g

The total spaces gm and du are subspaces of TM and T*M, respectively, but are
not generally linear subbundles because they may not have constant rank. How-
ever, note that for all x € Z we have

. (dul)’

TxZ = (dmx)o and Tp(x)(Z/G) y
9M|x

where the superscript o denotes the annihilator.
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Now, fix x € Z. We will construct a linear GC structure Jo|, on T}y (Z/G). Put
P = (gm @ dp)l,. Since P is a J-invariant subspace of TyM and g is orthogonal, we
can restrict J to a map J: P — P+, where the superscript | denotes the perpen-
dicular space with respect to the natural metric on T,M. Since P is also isotropic,
we can take quotients by P to obtain a map J: P+/P — P~ /P. Note that both J and
J square to negative the identity.

Let V = T M. Observe that P = (gm @ dp)l, = (PNV) & (PN V*) and P+ =
(PAV*)*® (PNV)°, so

PL  (PNVH)P@ (PNV) _ (PNVH  (PNV)°

P PAvVia(Pnve) . PAV CPAve

~

One can show that the spaces (Eg—x,{o and <[PQX/)O> are naturally isomorphic.

Therefore

PL _ (POVY) ((va*)o)*

P PNV PNV

_ (dul) ((dux)")
ElM|X QM|X

=T,x(Z/G) @ T;‘,(X)(Z/G)

Ty (Z/G).

Therefore the complex structure J on P~ /P induces a complex structure Jo b(x) ON
Tpx)(Z/G) = TpxyMo. It remains to check that this varies smoothly with x € Z
and that its (+i)-eigenbundle is closed under the Courant bracket. These details
can be found in [4]. O

Remark 4.2.

(1) As noted in [4], in the context of the hypotheses of Theorem 4.1 if the GC
structure and moment map come from a symplectic structure and moment
map, then the GC structure on the quotient is exactly the one induced by
the symplectic structure on the quotient.

(2) From Theorem 4.1, one can prove that if a € g is a value of p such that G
acts freely on u~' (Coadg(a)), then the quotient M, = pu' (Coadg(a)) /G
inherits a natural GC structure J,. This is accomplished by using the GC
version of the “shifting trick”, as described in [4].



10 TIMOTHY E. GOLDBERG

REFERENCES

[1] Theodore James Courant. Dirac manifolds. Trans. Amer. Math. Soc., 319(2):631-661, 1990.

[2] Marco Gualtieri. Generalized complex structures. PhD thesis, University of Oxford, 2003.

[3] Nigel Hitchin. Generalized Calabi-Yau manifolds. Q. J. Math., 54(3):281-308, 2003.

[4] Yi Lin and Susan Tolman. Symmetries in generalized Kahler geometry. Comm. Math. Phys.,
268(1):199-222, 2006.

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14850-4201
E-mail address: goldberg@math.cornell.edu
URL: http://www.math.cornell.edu/ goldberg



