
HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY

TIMOTHY E. GOLDBERG

These are notes for a talk given in the Lie Groups Seminar at Cornell University
on Friday, September 25, 2009. In retrospect, perhaps a more accurate title would
have been An introduction to Dirac and generalized complex geometry.

ABSTRACT. Generalized complex (GC) geometry is a relatively new field of study
that has its roots in Dirac geometry, and can be seen as generalizing Poisson, com-
plex, and symplectic geometry. Many concepts and methods from symplectic ge-
ometry have been generalized and applied to GC geometry. For instance, in 2006
Yi Lin and Susan Tolman developed a notion of generalized Hamiltonian actions
and generalized moment maps. These maps have proven to have many properties
analogous to their symplectic counterparts.

In this talk, I will give an introduction to GC geometry and generalized Hamil-
tonian actions, and discuss the reduction of a GC manifold by a generalized Hamil-
tonian action.

CONTENTS

Introduction 2

1. Dirac structures 2

2. Generalized complex structures 4

3. Generalized complex Hamiltonian actions 6

4. Generalized complex reduction 8

References 10

Date: September 25, 2009.
1



2 TIMOTHY E. GOLDBERG

INTRODUCTION

Dirac geometry was developed by Theodore Courant [1] and Alan Weinstein.
Generalized complex (GC) geometry was developed by Nigel Hitchin [3], Marco
Gualtieri [2], and Gil Cavalcanti. A GC structure on a manifold is a Dirac structure
satisfying an additional condition.

1. DIRAC STRUCTURES

For any n-dimensional real vector space V , the associated vector space V :=

V ⊕V∗ carries a natural non-degenerate symmetric bilinear form 〈·, ·〉 of signature
(n,n), defined by

〈u+ α, v+ β〉 :=
1

2
(α(v) + β(u))

for all u + α, v + β ∈ V. We will use the same notation for the complex linear
extension of this bilinear form to the complexification

VC := (V ⊕ V∗)⊗ C.

These bilinear forms will henceforth be referred to as the standard metrics on V
and VC.

Definition 1.1. A linear subspace E of V or VC is isotropic if 〈e, e ′〉 = 0 for all
e, e ′ ∈ E. A maximal isotropic subspace of V, (i.e. isotropic with real dimension
n), is called a linear Dirac structure on V . A maximal isotropic complex subspace
of VC, (i.e. isotropic with complex dimension n), is called a complex linear Dirac
structure on V .

Let T : V1 → V2 be a linear map between finite-dimensional real vector spaces.
Elementsw1 = u1+α1 ∈ V1,w2 = u2+α2 ∈ V2 are related by T , denotedw1 ∼T w2,
if T(u1) = u2 and T ∗(α2) = α1. If E1 ⊂ V1, E2 ⊂ V2 are real linear Dirac structures,
then T is a Dirac map if

E1 = {w1 ∈ V1 | ∃w2 ∈ E2 such that w1 ∼T w2}.

The definitions are similar for the complex case.

Let M be an n-dimensional manifold. The Pontryagin bundle, or generalized
tangent bundle, ofM is

TM :=>>>M⊕>>>∗M.
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The standard metric on each fiber of TM induces a smoothly varying metric on
the bundle, and by complex linear extension on the bundle’s complexification

TCM := (>>>M⊕>>>∗M)⊗R C.

The Lie bracket of vector fields defines a skew-symmetric bilinear bracket on
Γ(>>>M), the space of smooth sections of >>>M → M. This can be extended to a
skew-symmetric bilinear bracket on Γ(TM), called the Courant bracket, defined
by [

X+ α, Y + β
]

:= [X, Y] + LXβ− LYα−
1

2
d
(
β(X) − α(Y)

)
.

This extends complex linearly to a bracket on Γ(TCM).

Definition 1.2. A smooth vector subbundle E ⊂ TM is an almost Dirac structure
if Ex is a linear Dirac structure on TxM for all x ∈M. An almost Dirac structure E
is a Dirac structure if Γ(E) is closed under the Courant bracket.

A smooth map φ : M1 → M2 between manifolds is a Dirac map with respect to
almost Dirac structures E1 ⊂ TM1 and E2 ⊂ TM2 if

φ∗ : >>>xM1 → >>>φ(x)M2

is a Dirac map with respect to E1|x and E2|φ(x), for all x ∈M1.

Complex analogues of these notions are defined in the obvious ways.

Example 1.3.

(1) Let B ∈ Γ
(
∧2(>>>M)

)
be a smooth bivector on M. We will view this as a

smoothly-varying skew-symmetric bilinear form on covectors, which hence
induces a bundle map B] : >>>∗M → >>>M defined over each x ∈ M by
α 7→ B(α, ·) for α ∈ >>>∗xM, under the identification (>>>∗xM)∗ ∼= >>>xM. Define
EB ⊂ TM by

EB = graph(B) = {B(α) + α | α ∈ >>>∗M}.

This is an almost Dirac structure on M, and it is a Dirac structure if and
only if [B,B] = 0, (the Schouten–Nijenhuis bracket), i.e. if and only if B is a
Poisson structure onM.

(2) Let Ω ∈ Γ
(
∧2(>>>∗M)

)
be a smooth differential 2-form on M. This induces

a bundle mapΩ[ : >>>M → >>>∗M defined over each x ∈M by v 7→ Ω(v, ·) for
v ∈ >>>xM. Define EΩ ⊂ TM by

EΩ = graph(Ω) = {u+Ω[(u) | u ∈ >>>M}.
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This is an almost Dirac structure on M, and it is a Dirac structure if and
only if dΩ = 0, i.e. if and only ifΩ is a presymplectic structure onM.

2. GENERALIZED COMPLEX STRUCTURES

Definition 2.1. Let V be a finite-dimensional real vector space. A linear GC struc-
ture on V is a complex linear Dirac structure E ⊂ VC such that VC = E ⊕ E,
(i.e. E ∩ E = {0}). Let ρ : VC ⊕ V∗C → VC be the natural projection. The type of this
GC structure is the complex codimension of ρ(E) in VC:

type(E) = dimC VC − dimC ρ(E).

Let M be a manifold. An almost generalized complex structure on M is a
smooth vector subbundle E ⊂ TCM such that Ex is a linear GC structure on TC,xM

for each x ∈ M. An almost GC structure E is a generalized complex structure if
Γ(E) is closed under the Courant bracket.

Equivalently, an almost GC structure is an complex almost Dirac structure E on
M such that the intersection E ∩ E is the image of the zero section of TCM → M,
and a GC structure is an almost GC structure such that Γ(E) is Courant-closed.

For each x ∈M, the type of an almost GC structure E ⊂ TCM at x is the type of
Ex in TC,xM:

typex(E) = type(Ex) = dimC>>>C,xM− dimC ρ(E),

where here ρ is the natural projection>>>CM⊕>>>∗CM → >>>CM.

Proposition 2.2. Let V be a real vector space. There is a natural bijective correspondence
between the following two structures.

(1) Linear GC structures on V , E ⊂ VC.
(2) Orthogonal linear J : V → V such that J2 = −id.

Idea of proof.

(1) ⇒ (2): Define JC : VC → VC with (+i)-eigenspace E and (−i)-eigenspace E.
Since VC = E⊕ E and V = {x+ x | x ∈ VC}, we can write

V = {e+ e | e ∈ E}.

For all e ∈ E, we have JC(e+ e) = ie− ie = ie+ ie ∈ V. Therefore JC preserves V.
Put J := (JC) |V.
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(2) ⇒ (1): Let E be the (+i)-eigenspace of the complex linear extension JC of
J. �

Proposition 2.3. Let M be a manifold. There is a natural bijective correspondence be-
tween the following two structures.

(1) Almost GC structures onM, E ⊂ TCM.
(2) Orthogonal bundle maps J : TM → TM such that J2 = −id.

Example 2.4.

(1) Let ω be a non-degenerate differential 2-form on M, and let ω[ : >>>M →
>>>∗M be the associated bundle map. Because ω is non-degenerate ω[ is an
isomorphism. We denote its inverse byω]. Define the map Jω : TM → TM
by

Jω :=

(
0 −ω]

ω[ 0

)
.

The (+i)-eigenbundle of this map is

Eω = graph(−iω[) = {X− iω[(X) | X ∈ >>>CM},

where hereω[ denotes the complex linear extension of the original map.
This is an almost GC structure on M, and it is a GC structure if and

only if dω = 0, i.e. if and only if ω is a symplectic structure on M. Since
ρ(E) =>>>CM,

typex(Eω) = 0

for all x ∈M.
(2) Let I : >>>M → >>>M be an almost complex structure onM, i.e. a bundle map

such that I2 = −id. Define the map JI : TM → TM by

JI :=

(
−I 0

0 I∗

)
,

where I∗ : >>>∗M → >>>∗M is the dual of I. Let>>>CM = >>>1,0M⊕>>>0,1M be the
eigenbundle decomposition of>>>CM with respect to I, and>>>CM =>>>∗1,0M⊕
>>>∗0,1M be the dual decomposition. The (+i)-eigenbundle of JI is

EI =>>>0,1M⊕>>>∗1,0M.

This is an almost GC structure onM, and it is a GC structure if and only
if I is integrable, i.e. if and only if I is a complex structure on M. Since
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ρ(E) =>>>CM,

typex(Eω) = 2n− n = n

for all x ∈M.

Cool Fact 2.5. Let M be a manifold with GC structure J : TM → TM, and let
ρ : >>>M⊕>>>∗M → >>>M be the natural projection. Set

Π := ρ ◦ (J|>>>∗M) : >>>∗M →>>>M.
Then Π is a Poisson structure onM.

The map Π is skew-symmetric for the following reason. Write J in terms of its

tangent and cotangent coordinates, J =

(
A B

C D

)
, and note that B = Π. It is not

hard to show that the adjoint of J with respect to the natural metric on TM is(
D∗ B∗

C∗ A∗

)
. Since J is orthogonal, this also represents J−1. Because J2 = −id, we

also have J−1 = −J. This implies, among other things, that B∗ = −B.

Note that if J = Jω for a symplectic form ω on M, then Π = −ω] is the Poisson
structure onM induced by the symplectic structure, (up to ±).

Definition 2.6. Suppose j : S ↪→ M is a submanifold of a manifold M with GC
structure E ⊂ TCM. For each x ∈ S, let

ES|x := {w ∈ TC,xS | ∃w ′ ∈ Ex such that w ∼j w
′},

and put ES =
⋃
x∈S ES|x. Each ES|x is a complex linear Dirac structure on TC,xS, but

the total space is not in general a smooth bundle; however, if it is a smooth bundle
then ES is a GC structure on S. In this case, we call (S, ES) a generalized complex
submanifold of (M,E).

3. GENERALIZED COMPLEX HAMILTONIAN ACTIONS

Definition 3.1. Let M be a manifold with GC structure given equivalently by
J : >>>M → >>>M and E ⊂ TCM. Let G be a Lie group acting smoothly on M. This
induces an action of G on the Pontryagin bundle TM ofM by

g 7→ (
g∗, (g

−1)∗
)
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for g ∈ G. We say that G acts by symmetries of the GC structure if the action
G y TM commutes with J, i.e. if the diagram

TM
(g∗,(g−1)∗)

��

J // TM
(g∗,(g−1)∗)

��
TM

J
// TM

commutes for all g ∈ G. This is equivalent to requiring that the complex Dirac
structure E be stable under the complex linear extension of G y TM to an action
G y TCM.

Example 3.2. Let G be a Lie group acting smoothly on a manifold M. If ω is a
symplectic structure on M, then the action preserves ω if and only if the action is
by symmetries of Jω. The same is true if we replace ω with a complex structure I
onM.

Definition 3.3. Let M be a manifold with a GC structure given equivalently by
J : TM → TM and E ⊂ TCM, and let G be a Lie group acting onM by symmetries
of this GC structure. This action is generalized Hamiltonian if there exists a G-
equivariant map µ : M → g∗ such that, for all ξ ∈M,

ξM = −J(dµξ) or equivalently ξM − i dµξ ∈ E.

Here µξ : M → R is the smooth function defined by µξ(x) := 〈µ(x), ξ〉 for all
x ∈M. The map µ is called a moment map for the action of G on (M, J).

Example 3.4.

(1) Let (M,ω) be a symplectic manifold, and let G be a Lie group acting on
(M,ω) in a Hamiltonian fashion with moment map Φ : M → g∗. Recall
that this means the G-action is symplectic, the map Φ is G-equivariant,
and for all ξ ∈ g we have

dΦξ = ω(ξM, ·).

Let Jω be the GC structure onM induced byω. The action ofG on (M, Jω)

is generalized Hamiltonian, and Φ is a generalized moment map. To see
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why, observe that for all ξ ∈ g

ξM − i dµξ ∈ Eω = graph
(
−iω[

)⇐⇒ −iω[(ξM) = −i dµξ⇐⇒ ω[(ξM) = dµξ⇐⇒ ω(ξM, ·) = dµξ.

(2) Let a Lie group G act on a complex manifold (M, I) preserving I. This ac-
tion is generalized Hamiltonian with respect to JI if and only if it is trivial,
because ρ(EI) ⊂ >>>CM contains no non-trivial real vectors. If µ : M → g∗

is a generalized moment map, then
(
ξM − i dµξ

)∣∣
x
∈ EI|x, and hence ξM|x,

for all x ∈M, ξ ∈ g.
(3) As noted in [4, page 205], a generalized moment map µ : M → g∗ is also a

Poisson moment map for the G-action with respect to the Poisson structure
Π := ρ ◦ (J|>>>∗M) onM.

4. GENERALIZED COMPLEX REDUCTION

Theorem 4.1 ([4]). Let a compact Lie group G act on a GC manifold (M,E) in a Hamil-
tonian fashion with moment map µ : M → g∗. Let Z = µ−1(0) and suppose G acts freely
on Z.

(1) (Z, EZ) is a GC submanifold of (M,E).
(2) The quotient spaceM0 := Z/G inherits a natural GC structure E0 ⊂ TCM0.
(3) The quotient projection p : Z → M0 is a Dirac map with respect to EZ and E0.
(4) For all x ∈ Z we have

typep(x)(E0) = typex(E).

Sketch of proof of (2). For each x ∈M, define

gM|x := {ξM|x | ξ ∈ g} and dµ|x := {dµξ
∣∣
x

| ξ ∈ g}.

The total spaces gM and dµ are subspaces of >>>M and >>>∗M, respectively, but are
not generally linear subbundles because they may not have constant rank. How-
ever, note that for all x ∈ Zwe have

>>>xZ = (dµ|x)
◦ and >>>p(x)(Z/G) ∼=

(dµ|x)
◦

gM|x
,

where the superscript ◦ denotes the annihilator.
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Now, fix x ∈ Z. We will construct a linear GC structure J0|x on Tp(x)(Z/G). Put
P = (gM ⊕ dµ)|x. Since P is a J-invariant subspace of TxM and J is orthogonal, we
can restrict J to a map J : P⊥ → P⊥, where the superscript ⊥ denotes the perpen-
dicular space with respect to the natural metric on TxM. Since P is also isotropic,
we can take quotients by P to obtain a map J̃ : P⊥/P → P⊥/P. Note that both J and
J̃ square to negative the identity.

Let V = >>>xM. Observe that P = (gM ⊕ dµ)|x = (P ∩ V) ⊕ (P ∩ V∗) and P⊥ =

(P ∩ V∗)◦ ⊕ (P ∩ V)◦, so

P⊥

P
=

(P ∩ V∗)◦ ⊕ (P ∩ V)◦

(P ∩ V)⊕ (P ∩ V∗)
∼=

(P ∩ V∗)◦

P ∩ V
⊕ (P ∩ V)◦

P ∩ V∗
.

One can show that the spaces (P∩V)◦

P∩V∗ and
(

(P∩V∗)◦
P∩V

)∗
are naturally isomorphic.

Therefore

P⊥

P
∼=

(P ∩ V∗)◦

P ∩ V
⊕
(

(P ∩ V∗)◦

P ∩ V

)∗
=

(dµ|x)
◦

gM|x
⊕
(

(dµ|x)
◦

gM|x

)∗
∼=>>>p(x)(Z/G)⊕>>>∗p(x)(Z/G)

= Tp(x)(Z/G).

Therefore the complex structure J̃ on P⊥/P induces a complex structure J0|p(x) on
Tp(x)(Z/G) = Tp(x)M0. It remains to check that this varies smoothly with x ∈ Z
and that its (+i)-eigenbundle is closed under the Courant bracket. These details
can be found in [4]. �

Remark 4.2.

(1) As noted in [4], in the context of the hypotheses of Theorem 4.1 if the GC
structure and moment map come from a symplectic structure and moment
map, then the GC structure on the quotient is exactly the one induced by
the symplectic structure on the quotient.

(2) From Theorem 4.1, one can prove that if a ∈ g is a value of µ such that G
acts freely on µ−1 (CoadG(a)), then the quotient Ma = µ−1 (CoadG(a)) /G

inherits a natural GC structure Ja. This is accomplished by using the GC
version of the “shifting trick”, as described in [4].
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