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Abstract

The symmetries of an object can be described as those transformations
of the object that preserve its essential properties. This leads to the
mantra, “Symmetries are groups.” However, in some situations this
mantra is incomplete, as groups cannot always capture every quality
that we would clearly recognize as being some kind of symmetry. By
going from groups to groupoids, we obtain a more complete way of
describing symmetry, both global and local.

I will discuss some examples of symmetry in the plane, and use them to
motivate the definitions of groups and groupoids. I will also provide
examples of objects whose symmetry groups are small and
uninformative, but whose symmetry groupoids are much richer.

This talk should be accessible to anyone who is familiar with planar
geometry and basic function notation.
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This talk’s original title:

What’s purple and commutes,
and ends with “-oid”?
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An old math joke:

Question: What’s purple and commutes?

Answer: An abelian grape.
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Groups and symmetry Symmetries in the plane

What is symmetry?

A typical answer:

A symmetry of an object is a transformation of the object
that preserves its essential properties.

T. Goldberg (Cornell) Groups, groupoids, and symmetry April 22, 2009 6 / 33



Groups and symmetry Symmetries in the plane

What is symmetry?

A typical answer:

A symmetry of an object is a transformation of the object
that preserves its essential properties.

T. Goldberg (Cornell) Groups, groupoids, and symmetry April 22, 2009 6 / 33



Groups and symmetry Symmetries in the plane

Symmetries of the plane

In R2, a symmetry

= an isometry = a function

f : R2 → R2

that preserves distance, i.e. such that

|f (~x)− f (~y)| = |~x − ~y | for all ~x , ~y ∈ R2.

Every planar isometry is a

translation,

rotation,

reflection, or

glide reflection.
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Groups and symmetry Symmetries in the plane

The symmetry group of a planar object

Let P ⊂ R2 be a planar object.

Definition

The symmetry group of P is the set of planar isometries that preserve P:

Sym(P) = {f ∈ Isom(R2) | f (P) = P}.

points in P −→ points in P

points outside P −→ points outside P
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Groups and symmetry Symmetries in the plane

Some examples of symmetry

1 Let C = a circle centered at p ∈ R2. Then

Sym(C ) = {rotations about p, reflections in lines through p}.

2 Let L = a line. Then

Sym(L) = {translations parallel to L, reflections in lines ⊥ to L}.

3 Let T = an equilateral triangle. Sym T consists of

identity map,
120◦, 240◦ rotations about center of T ,
reflections in altitude lines of T .
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Groups and symmetry Symmetries in the plane

Same or different?

When are two points in P “the same”?

In terms of symmetry groups, x , y ∈ P are “the same” in P if there is
some f ∈ Sym(P) such that

f (x) = y

(i.e. if x and y are in the same orbit of Sym(P)).

1 All points in a circle are “the same”.

2 All points in a line are “the same”.

3 All vertices in an equilateral triangle are “the same”
but most edge points are “different”.
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Groups and symmetry Symmetries in the plane

Properties of symmetry groups

The composition of symmetries is a symmetry.

f , g ∈ Sym(P) =⇒ g ◦ f ∈ Sym(P).

Doing nothing is a symmetry.

id ∈ Sym(P).

Symmetries can be undone.

f ∈ Sym(P) =⇒ f −1 ∈ Sym(P).

The composition of symmetries is associative.

f , g , h ∈ Sym(P) =⇒ (h ◦ g) ◦ f = h ◦ (g ◦ f ).
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Groups and symmetry Abstract groups

Definition of a group

Definition

A group is a set G with a binary operation G × G → G , (x , y) 7→ x · y ,
such that:

Identity: there exists e ∈ G such that for all x ∈ G ,

e · x = x = x · e.

Inverses: for each x ∈ G there exists some x ′ ∈ G such that

x · x ′ = e = x ′ · x .

Associativity: for all x , y , z ∈ G ,

(x · y) · z = x · (y · z).
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Groups and symmetry Abstract groups

A group as loops

•99
�� pp

\\

Alternative definition of groups

A set of loops from the same vertex, and a way of multiplying loops
together, satisfying:

There must be an identity loop.

Each loop must have an inverse.

Multiplication of loops must be associative.

vertex = object
loops = transformations of the object
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Groupoids and symmetry Abstract groupoids

From groups to groupoids

A groupoid is like a group,
except not all elements can be multiplied together.

When multiplication does happen, it satisfies the group axioms:
identities, inverses, and associativity.
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Groupoids and symmetry Abstract groupoids

Definition of a groupoid

•
��

�� ((

// •


vv

wwoooooooooooooo

•99 PP 33• ZZ •

WW

QQ

Definition

A groupoid G consists of:

a set G0 of objects,

a set G1 of arrows between objects, and

a way of composing certain arrows

all satisfying the following properties.
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Groupoids and symmetry Abstract groupoids

Definition of a groupoid

Definition, continued

1 If x
f→ y and y

g→ z are arrows, then there is an arrow x
g◦f→ z .

x
f

//
g◦f

++y
g

// z

2 For each object x , there is an identity arrow x
1x→ x .

v
j=j◦1x // x 1xee

x1x

%% f =1x◦f // y
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Groupoids and symmetry Abstract groupoids

A definition of groupoids

Definition, continued

3 For each arrow x
f→ y , there is an inverse arrow y

f −1

→ x .

x
f

44f −1◦f =1x

%%
y

f −1

tt
1y=f ◦f −1

ee

4 Where applicable, the multiplication of arrows is associative.

x
f

//

g◦f

**

h◦(g◦f )=(h◦g)◦f

66y
g

//

h◦g

**z
h

// w
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Groupoids and symmetry Abstract groupoids

Structure maps

Structure maps of G

source and target maps: s, t : G1 → G0

s
(

x
f→ y

)
= x , t

(
x

f→ y
)

= y

multiplication map: m : G(2) → G1, where

G(2) = {(g , f ) ∈ G1 ×G1 | t(f ) = s(g)}

is the set of composable arrows.

m
(

y
g→ z , x

f→ y
)

= x
g◦f→ z
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Groupoids and symmetry Abstract groupoids

Structure maps

Structure maps of G, continued

identity map: e : G0 → G1

e(x) =
(

x
1x→ x

)

inverse map: i : G1 → G1

i
(

x
f→ y

)
=

(
y

f −1

→ x

)
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Groupoids and symmetry Groupoids and groups

A groupoid is a bunch of groups

Definition

For each object x ∈ G0, the stabilizer group Gx of x is the set of
arrows that both start and end at x , (i.e. loops at x).

Gx = s−1(x) ∩ t−1(x)

For each arrow x
f→ y , the induced map corresponding to f is

f̃ : Gx → Gy , defined by

f̃ (g) = f ◦ g ◦ f −1 for g ∈ Gx .

xg
%% f

(( y

f −1

hh f̃ (g)=f ◦g◦f −1ee
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Groupoids and symmetry Groupoids and groups

A groupoid is a bunch of groups

objects of G  stabilizer groups  grapes

arrows of G  induced maps  stems between grapes

the groupoid G  groups and maps between them
 a bunch of grapes

•
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Groupoids and symmetry Describing symmetry with groupoids

A tiled plane

Tile the plane with rectangles. Let X = the grout of the tiling.

Sym(X ) consists of:

Reflections across vertical and horizontal lines of the grout,
and those through rectangle midpoints.

Translations by the vectors between any two “+” points of the grout.

Any combination of the above.
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Groupoids and symmetry Describing symmetry with groupoids

A tiled floor

Consider a rectangular tiled room, R.

Sym(R) has only 4 elements!

Identity.

Reflection over horizontal line through R’s midpoint.

Reflection over vertical line through R’s midpoint.

180◦ rotation about R’s midpoint.
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Groupoids and symmetry Describing symmetry with groupoids

Another tiled floor

Things are even worse for this “L”-shaped room.

Its symmetry group is just the identity!

We’re missing some symmetry!
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Groupoids and symmetry Describing symmetry with groupoids

Symmetry groupoids

G(L), the symmetry groupoid of L

Objects = points in the room L.

Arrows = triples (x , f , y) ∈ L× Sym(X )× L such that f (x) = y .

x
(x ,f ,y)

** y
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Groupoids and symmetry Describing symmetry with groupoids

Big arrows and small arrows
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Symmetry groups consist of transformations = big arrows.
They move points all at the same time.

We form symmetry groupoids by breaking each big arrow
into small arrows.
They move points one at a time.

T. Goldberg (Cornell) Groups, groupoids, and symmetry April 22, 2009 26 / 33



Groupoids and symmetry Describing symmetry with groupoids

Big arrows and small arrows

•99
�� pp

\\ •
��

�� ((

// •


vv

wwoooooooooooooo

•99 PP 33• ZZ •

WW

QQ

Symmetry groups consist of transformations

= big arrows.
They move points all at the same time.

We form symmetry groupoids by breaking each big arrow
into small arrows.
They move points one at a time.

T. Goldberg (Cornell) Groups, groupoids, and symmetry April 22, 2009 26 / 33



Groupoids and symmetry Describing symmetry with groupoids

Big arrows and small arrows

•99
�� pp

\\ •
��

�� ((

// •


vv

wwoooooooooooooo

•99 PP 33• ZZ •

WW

QQ

Symmetry groups consist of transformations = big arrows.

They move points all at the same time.

We form symmetry groupoids by breaking each big arrow
into small arrows.
They move points one at a time.

T. Goldberg (Cornell) Groups, groupoids, and symmetry April 22, 2009 26 / 33



Groupoids and symmetry Describing symmetry with groupoids

Big arrows and small arrows

•99
�� pp

\\ •
��

�� ((

// •


vv

wwoooooooooooooo

•99 PP 33• ZZ •

WW

QQ

Symmetry groups consist of transformations = big arrows.
They move points all at the same time.

We form symmetry groupoids by breaking each big arrow
into small arrows.
They move points one at a time.

T. Goldberg (Cornell) Groups, groupoids, and symmetry April 22, 2009 26 / 33



Groupoids and symmetry Describing symmetry with groupoids

Big arrows and small arrows

•99
�� pp

\\ •
��

�� ((

// •


vv

wwoooooooooooooo

•99 PP 33• ZZ •

WW

QQ

Symmetry groups consist of transformations = big arrows.
They move points all at the same time.

We form symmetry groupoids by breaking each big arrow
into small arrows.

They move points one at a time.

T. Goldberg (Cornell) Groups, groupoids, and symmetry April 22, 2009 26 / 33



Groupoids and symmetry Describing symmetry with groupoids

Big arrows and small arrows

•99
�� pp

\\ •
��

�� ((

// •


vv

wwoooooooooooooo

•99 PP 33• ZZ •

WW

QQ

Symmetry groups consist of transformations = big arrows.
They move points all at the same time.

We form symmetry groupoids by breaking each big arrow
into small arrows.
They move points one at a time.

T. Goldberg (Cornell) Groups, groupoids, and symmetry April 22, 2009 26 / 33



Groupoids and symmetry Describing symmetry with groupoids

Same or different?

In terms of symmetry groupoids, x , y ∈ L are “the same” if there is
an arrow in G(L) from x to y .

In this example, two points are “the same” if they are similarly or
symmetrically placed within their tiles.

Locally, there are even more symmetries!
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Groupoids and symmetry Describing symmetry with groupoids

Local symmetries
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Groupoids and symmetry Describing symmetry with groupoids

Local symmetries

Local symmetry types of points in L

1 Interior tile points

2 Interior edge points

3 Interior “+” points

4 Boundary edge points

5 Boundary “T” points

6 Acute boundary corner points

7 Obtuse boundary corner points
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Groupoids and symmetry Describing symmetry with groupoids

Groupoids of local symmetries

G(L)loc, the local symmetry groupoid of L

Objects = points in L.
Arrows = triples (x , f , y) ∈ L× Sym(R2)× L such that f (x) = y ,
and locally f preserves

the outside of the room,

the interior of the room tiles,

the grout in the room.
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Winding down Summary

Summary

Symmetries are ways of transforming an object while preserving
its essential features.

Groups are the natural algebraic structures formed by collections
of global transformations.

Groupoids are algebraic structures that can be viewed
as a bunch of groups.

When we break global transformations into point transformations,
we go from symmetry groups to symmetry groupoids.

Groupoids allow us to capture a wider variety of symmetry
phenomenon than can be captured by groups alone.
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Winding down Summary

THE END

Thank you for listening.

And happy Earth Day!
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