The pigeonhole principle

Marymount Manhattan College
April 14, 2010

Outline

(1) Introduction

- (Not So) Magic Squares
- Pigeonholes
(2) Examples
- Someone's been using my initials.
- Hairs in NYC
- Triangular dartboard
- A party problem
- Birthdays

1. Introduction

(Not So) Magic Squares

The challenge

Fill in boxes with 1's and -1 's so that columns, rows, and diagonals all have DIFFERENT sums.

SURPRISE!

It can't be done!

(Not So) Magic Squares

1	1	-1	-1	1	1	-1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	-1	1	1	-1	-1	1
1	-1	-1	1	-1	1	1	-1
-1	1	1	-1	1	1	1	1
1	1	1	1	-1	1	1	-1
1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	1

(Not So) Magic Squares

Why can't it be done?

- different sums needed $=2$ columns +2 rows +2 diagonals $=6$
- biggest possible sum: $1+1=2$ smallest possible sum: $(-1)+(-1)=-2$.
- Every possible sum is between (or equal to) -2 and 2 .
- BUT, only five numbers from -2 to 2 .

$$
\#(\text { sums needed })>\#(\text { sums possible })
$$

Therefore at least two of the sums must be the same!
This is the Pigeonhole Principle.

The pigeonhole principle

The principle

- If 6 pigeons have to fit into 5 pigeonholes, then some pigeonhole gets more than one pigeon.
- More generally, if \#(pigeons) > \#(pigeonholes), then some pigeonhole gets more than one pigeon.

Counting Argument \rightsquigarrow Combinatorics

The pigeonhole principle

Strategy for using pigeonhole principle

- Identify the pigeons and pigeonholes.
(Want to assign a pigeonhole for each pigeon.)
- Is \#(pigeons) > \#(pigeonholes)?
- If YES, then some pigeonhole has to get more than one pigeon!

EXAMPLE: (Not So) Magic Squares

$$
\begin{aligned}
\text { pigeons } & =\text { different sums needed }(6) \\
\text { pigeonholes } & =\text { possible sums }(<5)
\end{aligned}
$$

Therefore 2 (or more) sums must be the same.

What about 6×6 ?

			-1		
	1	-1			
1					1
		-1		-1	
					1

- different sums needed $=6$ columns +6 rows +2 diagonals $=14$
- biggest possible sum: $1+1+1+1+1+1=6$ smallest possible sum:

$$
(-1)+(-1)+(-1)+(-1)+(-1)+(-1)=-6 .
$$

pigeons $=$ different sums needed (14) pigeonholes $=$ possible sums (<13)

Nope! (Actually doesn't work for any $n \times n$.)

2. Examples

Someone's been using my initials.

How many first/last name initials are there?

- 26 possible letters.
- $26 \times 26=676$ possible pairs of initials.

CLAIM: At least 2 students at Marymount Manhattan College have the same first/last initials.

$$
\begin{aligned}
\text { pigeons } & =\text { MMC students } \\
\text { pigeonholes } & =\text { possible first/last initials } \\
\#(\text { pigeons }) & \approx 2,100 \\
\#(\text { pigeonholes }) & =676
\end{aligned}
$$

Warning: Doesn't mean every student has an "initial twin"!

Someone's been using my initials.

How many first/middle/last name initials are there?

- 26 possible letters.
- Some people have no middle names, so include "blank" for middle initial.
- $26 \times 27 \times 26=18,252$ possible triples of initials.

CLAIM: At least 2 students at Cornell University have the same first/middle/last initials.

$$
\begin{aligned}
\text { pigeons } & =\text { CU students } \\
\text { pigeonholes } & =\text { possible first/middle/last initials } \\
\#(\text { pigeons }) & \approx 20,600 \\
\#(\text { pigeonholes }) & =18,252
\end{aligned}
$$

Hairs in New York City

CLAIM: At any time in New York City, there are 2 people with the same number of hairs.

pigeons	$=$ people in New York City
pigeonholes	$=$ possible \# of hairs
$\#$ (pigeons $)$	$\approx 8,363,000$
$\#($ pigeonholes $)$	$<7,000,000$

A triangular dartboard

Dartboard $=$ equilateral triangle with side length of 2 feet
CLAIM: If you throw 5 darts (no misses), at least 2 will be within a foot of each other.

A triangular dartboard

- Divide triangle into 4 sub-triangles.
- Darts in same sub-triangle are within 1 foot of each other.

$$
\begin{aligned}
\text { pigeons } & =\text { darts }(5) \\
\text { pigeonholes } & =\text { sub-triangles }(4)
\end{aligned}
$$

A party problem

Set-Up:

- Party with 10 people.
- Each guest counts how many guests she/he has met before.

Cool Fact:

At least 2 people will have met the same number of guests before!

A party problem

Cool Fact:

At least 2 people will have met the same number of guests before!
Why?

$$
\begin{aligned}
\text { pigeons } & =\text { party guests } \\
\text { pigeonholes } & =\text { possible number of guests met before }
\end{aligned}
$$

- How many guests has each person met before? ($0-9$)
- $0=$ met no one before.
$9=$ met everyone before.
- 0 and 9 can't happen at the same party!
- number of guests met before: only nine possiblities!

$$
(0-8 \text { or } 1-9)
$$

A party problem

Cool Fact:

At least 2 people will have met the same number of guests before!

$$
\begin{aligned}
\text { pigeons } & =\text { party guests }(10) \\
\text { pigeonholes } & =\text { possible number of guests met before }(9)
\end{aligned}
$$

Birthday twins!

Question: How many people do you need to guarantee 2 of them share a birthday?

What are the odds?

So:

$$
366+1=367 \text { people } \rightsquigarrow 100 \% \text { chance of shared birthday }
$$

It's amazing!

$$
\begin{aligned}
23 \text { people } & 50 \% \\
57 \text { people } & 99 \% \\
100 \text { people } & 99.9999 \% \\
200 \text { people } & 99.999999999999999999999999999 \%
\end{aligned}
$$

This is called The Birthday Problem.
Not really Pigeonhole Principle, but still about counting things.

THE END

Thank you for listening.
For many more Pigeonhole puzzles and examples, please see the Internet.

