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What is symplectic geometry?

Symplectic geometry is the study
of the geometry of symplectic
manifolds!
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The game plan

0. Prologue: Schur–Horn theorem (original version)

1. Symplectic vector spaces

2. Symplectic manifolds

3. Hamiltonian group actions

4. Atiyah/Guillemin–Sternberg theorem

5. Epilogue: Schur–Horn theorem (symplectic version)
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0. Prologue
Let H(n) = {Hermitian (n× n)–matrices}. (ĀT = A)

Hermitian =⇒ real diagonal entries and eigenvalues.

Put

~λ = (λ1 ≥ λ2 ≥ . . . ≥ λn),

O~λ = {A ∈ H(n) with eigenvalues ~λ} (isospectral set),

f : O~λ → Rn, f(A) = diagonal of A.

Thereom: [Schur-Horn, mid-1950’s]

f(O~λ) is a convex polytope in Rn, the convex hull of
vectors whose entries are λ1, . . . , λn (in some order).

Definition: C is convex if a, b ∈ C =⇒ ab ⊂ C.

The convex hull of P is the smallest convex set containing
P.

A convex polytope is the convex hull of a finite set of
points.
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Example: n = 3, ~λ = (3, 2, 1).

f(O~λ) lives in R3, but is contained in the plane x+y+z = 6.
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1. Symplectic vector spaces
V = finite dimensional real vector space

Definition: An inner product on V is a map g : V×V → R
with the following properties.

• g is bilinear

• g is symmetric

• g is positive definite

Note: positive definite =⇒ nondegenerate.

Example: V = Rn, g = standard dot product
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Definition: A symplectic product on V is a map
ω : V × V → R with the following properties.

• ω is bilinear

• ω is skew-symmetric

• ω is nondegenerate

(Note that for all v ∈ V , ω(v, v) = 0.)

A symplectic vector space is a vector space equipped
with a symplectic product.

Every (finite dimensional) vector space has an inner
product, but not every vector space has a symplectic
product!
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Claim: If V has a symplectic product ω, then dimV is
even.

Proof: Let A be the matrix of ω relative to some basis for
V . Then

detA = detAT = det(−A) = (−1)n detA,

where n = dimV . Since detA 6= 0, 1 = (−1)n, so
n = dimV is even.

QED

Example: V = R2n, ω = ω0 =

(
0 In

−In 0

)
. (standard

symplectic product)

If n = 2:

ω(~x,~y) = (x1 x2)

(
0 1

−1 0

) (
y1
y2

)
= x1y2 − x2y1 = det

(
x1 y1
x2 y2

)
= det (~x ~y)

= oriented area of the parallelogram spanned by ~x,~y.

Thus, every even-dimensional vector space has a
symplectic product, and in fact, up to a change of
coordinates, every symplectic product looks like this one!
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The gradient of f : Rn → R is the vector field

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Coordinate-free definition: ∇f is the unique vector field
such that ∀p ∈ Rn, ~v ∈ Rn,

(D~vf)(x) = ∇f(x) · ~v.

(D~vf = directional derivative of f in the direction ~v.)

The symplectic gradient of f is the unique vector field∇ωf
such that ∀p ∈ Rn, ~v ∈ Rn,

(D~vf)(x) = ω (∇ωf(x),~v).

(The uniqueness follows from nondegeneracy.)
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Example: V = R2, ω = ω0 = standard symplectic form.

∇ωf =

(
−
∂f

∂y
,
∂f

∂x

)

Let f(x, y) = x2 + y2. Then

∇f = (2x, 2y) and ∇ωf = (−2y, 2x).

∇f is perpendicular to level curves of f, and points to
increasing values of f.

∇ωf is tangent to level curves of f, and points to
constant values of f.

(
D∇ωf(p)f

)
(p) = ω (∇ωf(p),∇ωf(p)) = 0.

f  energy function
∇f  points to increasing energy
∇ωf  points to stable energy

Symplectic geometry is the natural setting for studying
classical mechanics!
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A game we can play: Find the Hamiltonian!

Usual version
Given a vector field X on Rn, find a function f : Rn → R
such that

∇f = X.

Symplectic version
Given a vector field X on V , find a function f : V → R such
that

∇ωf = X.

Classical mechanics interpretation
The vector field represents a system of moving particles
(Hamiltonian system). We want to find an energy function
(Hamiltonian) for this system.

We are basically trying to solve Hamilton’s equations.

12



13



2. Symplectic manifolds
Definition: A smooth manifold M consists of “patches”
(open subsets of some Rn) smoothly knit together.

(Think of smooth surfaces in R3, like a sphere or torus.)

Each point p ∈M has a tangent space TpM attached.

A Riemannian metric on M is a smoothly varying
collection

g = {gp : TpM× TpM → R | p ∈M}

of inner products.

A symplectic form on M is a smoothly varying collection

ω = {ωp : TpM× TpM → R | p ∈M}

of symplectic products, such that dω = 0.
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Every manifold has a Riemannian metric (partition of unity),
but not every manifold admits a symplectic form!

Being even-dimensional and orientable is necessary but
not sufficient!

Example: M = orientable surface in R3, ω(~u,~v) =
oriented area of parallelogram spanned ~u and ~v.

Fact: Locally, every symplectic manifold looks like (R2n, ω0).
(Darboux’s theorem)

(No local invariants in symplectic geometry, like curvature.)

Can define gradients just like before.

∀p ∈M, ~v ∈ TpM, dfp(~v) = ωp (∇ωf(p),~v)

differentiable function  tangent vector field
f : M → R  ∇f, ∇ωf
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Example: M = S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},
g = dot product, ω = oriented area

f : S2 → R, (x, y, z) 7→ z, (height function)

∇f points longitudinally, ∇ωf points latitudinally

As before:

∇f points to increasing values of f,
∇ωf points to constant values of f.

We can still play “Find the Hamiltonian!”. Given a tangent
vector field X on M, can we find a function f : M → R such
that

• ∇f = X?

• ∇ωf = X?
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3. Hamiltonian group actions
Definition: A Lie group is a group G with a compatible
structure of a smooth manifold.

A smooth action ofG on a smooth manifoldM is a “smooth”
group homomorphism A : G → Diff(M).

Diff(M) = diffeomorphisms M → M.

The Lie algebra g of G is the tangent space at the identity
element 1 of G.

g := T1G

g is a vector space, and more. (Lie bracket)
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Example: Some Lie groups.

(i) (V,+).
Lie algebra ∼= V .

(ii) S1 := {z ∈ C | |z| = 1} under multiplication.
Lie algebra = iR.

(iii) T = S1 × . . .× S1, a torus.
Lie algebra = iR⊕ . . .⊕ iR.

(iv) Matrix Lie groups under matrix multiplication, such as
GL(n; R), SL(n; R), O(n; R), SO(n; R), U(n), etc.
Their Lie algebras are certain matrix vector spaces.

Example: A smooth group action. (Rotating the plane.)

Let G = S1, g = iR, M = R2, and A : S1 → Diff(R2) be
defined by

A(eiθ)

(
x
y

)
:=

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
.
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1 ∈ G acts as the identity map M → M.

infinitesimal change in G at 1 infinitesimal change at
each p ∈M.

An infinitesimal change at 1 ∈ G is some ξ ∈ g.
An infinitesimal change at each p ∈M is a vector field.

g → Vec(M), ξ 7→ ξM

ξM is the fundamental vector field on M induced by ξ.

ξM(p) :=
d

dt
A (exp(tξ))p

∣∣∣∣
t=0

In the example of rotating the plane, if ξ = it ∈ iR = g,
then

ξM

(
x
y

)
=

(
−ty
tx

)
.
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We can play “Find the Hamiltonian!” with the fundamental
vector fields.

If we can win this game for every ξM, then we can form
φ : g → C∞(M) such that for every ξ ∈ g

∇ω [φ(ξ)] = ξM.

(C∞(M) = {smooth functions M → R}.)

Take “dual”, and define Φ : M → g∗ by

Φ(p)ξ = φ(ξ)(p)

for all p ∈M, ξ ∈ g.

If Φ is also G–equivariant then Φ is a moment map for
A : G → Diff(M).

A is a Hamiltonian action of G on M if there is a moment
map Φ for the action.

G y M
Φ // g∗ .
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Examples:

(i) Rotating the plane. G = S1, g = iR, M = R2.
Φ : M → g∗ is

Φ

(
x
y

)
(it) =

(
1

2
(x2 + y2)

)
t

Note that∇ω of this function on R2 is
(

−ty
tx

)
= (it)M

(
x
y

)
.

(ii) M = R6 with coordinates ~x,~y ∈ R3. (~x is position, ~y
is momentum).

G = R3 acting onM by translating the position vector.
Then g = R3 ∼= g∗, and Φ : M → g∗ is

Φ(~x,~y)~a = ~y · ~a.
Φ = linear momentum.

(iii) M = cotangent bundle of R3 with coordinates ~x,~y ∈
R3. (~x is still position, ~y is still momentum).

G = SO(3) acting on M by “rotation”. Then g∗ ∼= R3,
and Φ : M → g∗ is

Φ(~x,~y)~a = (~x× ~y) · ~a.
Φ = angular momentum.
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4. Atiyah/Guillemin–Sternberg
Theorem

Proved independently by Sir Michael Atiyah, and Victor Guillemin
and Shlomo Sternberg, in 1982.

G–S proof: “simple and elegant”

A proof: “even a bit more simple and elegant”

Thereom:
(M,ω) = compact and connected symplectic manifold,
T = a torus,
A = Hamiltonian action of T on M
with moment map Φ : M → t∗.

ThenΦ(M) is a convex polytope in t∗, the convex hull of
Φ(MT), where

MT := {p ∈M | A(t)p = p for all t ∈ T }.
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5. Epilogue
Symplectic interpretation of Schur-Horn theorem:

Noticed by Bertram Kostant in the early 1970’s, then gen-
eralized by A/G–S.

• U(n) = {A | ĀT = A−1} is a Lie group. Acts on H(n)
by conjugation. (H(n) ∼= u(n)∗)

• T = diagonal matrices in U(n) is an n–torus. Can
identify t∗ with Rn.

• O~λ = isospectral set for ~λ is a symplectic manifold.
(coadjoint orbit, Kirillov–Kostant–Souriau form)

• Conjugation preserves eigenvalues, so T y O~λ.

• f : O~λ → Rn, f(A) = diagonal of A, is a moment map.

• (O~λ)
T = diagonal matrices in O~λ = diagonal matrices

with entries λ1, . . . , λn in some order.

A/G–S theorem =⇒ f(O~λ) is a convex polytope, the convex
hull of f

(
(O~λ)

T
)
.

This is exactly the S–H theorem!
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Symplectic stuff is cool! But you don’t have to take my word
for it!

Coming Spring 2008:

Tara Holm’s NEW epic
MATH 758: Symplectic Geometry

26



THE END

Thank you for listening.
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