Representations of Parabolic Groups

Raul Gomez

August 19, 2010

Abstract

Some results on representations of parabolic groups. This is only a reference file.

1 Irreducible representations of Parabolic Groups

Theorem 1 Let \(P \) be a parabolic subgroup, and let \(P = MN \) be its Langlands decomposition. If \((\pi, H)\) is an irreducible unitary representation of \(P \), then

\[
H \cong \text{Ind}^P_{MN} \tau \chi
\]

with \(\tau \in \hat{M}, \chi \in \hat{N} \).

Proof. As an \(N \)-module, we have that

\[
H \cong \int_{\hat{N}} E_\chi d\nu(\chi),
\]

where \(E_\chi \cong L_\chi \otimes V_\chi, V_\chi \in \hat{N}, \) and \(L_\chi \) is a multiplicity space. This means that there exists a vector bundle

\[
\begin{array}{c}
E \\
\downarrow \\
\hat{N}
\end{array}
\]

and a measure \(\nu \) on \(\hat{N} \), such that

\[
H \cong L^2(\hat{N}, E, \nu) := \{ s : \hat{N} \to E | s(\chi) \in E_\chi, \int_{\hat{N}} ||s(\chi)||^2 d\nu(\chi) < \infty \}
\]

under the action

\[
(\pi(n) \cdot s)(\chi) = \chi(n) s(\chi).
\]

Under this isomorphism we can extend this action of \(N \) on \(L^2(\hat{N}, E, \nu) \) to an action of \(P \) on the same space.

Let \(m \in M \), and define

\[
\begin{array}{c}
E^m_\chi \\
\downarrow \\
\hat{N}
\end{array}
\]

to be the vector bundle such that \(E^m_\chi = E_{m, \chi} \). Define a measure \(\nu_m \) on \(\hat{N} \) by

\[
\nu_m(X) = \nu(m \cdot X) \quad \text{for } X \subset \hat{N} \text{ a measurable set}
\]
and define

\[\tau(m) : L^2(\hat{N}, E, \nu) \rightarrow L^2(\hat{N}, E^m, \nu_m) \]

by

\[(\tau(m)s)(\chi) = (\phi(m)s)(m \cdot \chi). \]

We claim that \(\tau(m) \) is an isometry. Effectively

\[\|\tau(m)s\|_m^2 = \int_{\hat{N}} \|\tau(m)(\chi)\|^2 d\nu_m(\chi) \]

\[= \int_{\hat{N}} \|\pi(m)s(m \cdot \chi)\|^2 d\nu(m \cdot \chi) \]

\[= \int_{\hat{N}} \|\pi(m)(\chi)\|^2 d\nu(\chi) \]

\[= \|\pi(m)s\|^2 = \|s\|^2. \]

where the last equality comes from the fact that the action of \(P \) is unitary. Now if we define an action of \(N \) on \(L^2(\hat{N}, E^m, \nu_m) \) by

\[(\pi(m) \cdot s)(\chi) = \chi(n)s(\chi), \]

then \(\tau(m) \) becomes an \(N \)-intertwiner. Effectively,

\[\tau(m)(\pi(n)s)(\chi) = \pi(m)\pi(n)s(m \cdot \chi) \]

\[= \pi(mnm^{-1})\pi(m)s(m \cdot \chi) \]

\[= \chi(mnm^{-1})\pi(m)s(m \cdot \chi) \]

\[= \chi(n)\tau(m)s(\chi) = (\pi_m(n)\tau(m)s)(\chi). \]

But now since \(N \) is a CCR group the \(N \)-intertwiner

\[\tau(m) : L^2(\hat{N}, E, \nu) \rightarrow L^2(\hat{N}, E^m, \nu_m) \]

should come from a morphism of vector bundles

\[\tilde{\tau}(m) : E \rightarrow E^m, \]

that is, \((\tau(m)s)(\chi) = \tilde{\tau}(m)s(\chi), \) and hence

\[(\tau(m)s)(\chi) = \tilde{\tau}(m)s(\chi) \]

\[(\pi(m)s)(m \cdot \chi) = \tilde{\tau}(m)s(\chi) \]

which says that

\[(\pi(m)s)(\chi) = \tilde{\tau}(m)s(m^{-1} \cdot \chi). \]

Now since \(L^2(\hat{N}, E, \nu) \) is irreducible as a representation of \(P \), the support of \(\nu \) should be contained in a unique \(M \)-orbit on \(\hat{N} \), and hence

\[L^2(\hat{N}, E, \nu) \cong L^2(M/M\chi, E) \cong \text{Ind}_{M\chi}^P E. \]

Using again that \(L^2(\hat{N}, E, \nu) \) is irreducible we conclude that \(E_{\chi} \cong \tau\chi \) with \(\tau \in M\chi, \chi \in \hat{N} \). Putting all of this together we get that

\[H \cong \text{Ind}_{M\chi}^P \tau\chi \]

as we wanted to show. \(\blacksquare \)
2 Decomposition of $L^2(P, d_r p)$ under the action of $P \times P$

We will now decompose $L^2(P, d_r p)$ under the action of $P \times P$ given by

$$(p_1, p_2) \cdot f = \delta(p_1)^{-1} L_{p_1} R_{p_2} f.$$

As a left N-module

$$L^2(P) \cong \text{Ind}_N^P \text{Ind}_1^N 1 \cong \text{Ind}_N^P (L^2(N))$$

$$\cong \int_N HS(V_\chi) \, d\mu(\chi)$$

$$\cong \int_N \text{Ind}_N^P HS(V_\chi) \, d\mu(\chi) \cong L^2(\hat{N}, E, \mu),$$

with $E_\chi = HS(V_\chi)$. The isomorphism is given in the following way: Given $f \in L^2(P)$, define $s_f \in L^2(\hat{N}, E, \nu)$ by

$$s_f(\chi)(p) = \int_N \chi(n)^{-1} f(np) \, dn.$$

Then

$$s_{R_{p_1} f}(\chi)(p) = \int_N \chi(n)^{-1} R_{p_1} f(np) \, dn = \int_N \chi(n)^{-1} f(np_{p_1}) \, dn$$

$$= s_f(\chi)(pp_1) = (R_{p_1} s_f(\chi))(p),$$

and

$$s_{L_{p_1} f}(\chi)(p) = \int_N \chi(n)^{-1} \delta(p_1)^{-1} L_{p_1} f(np) \, dn$$

$$= \int_N \chi(n)^{-1} \delta(p_1)^{-1} f(p_1^{-1} np_{p_1}^{-1} p) \, dn$$

$$= \int_N \chi(p_1 np_{p_1}^{-1})^{-1} f(np_{p_1}^{-1} p) \, dn$$

$$= \int_N (p_{p_1}^{-1} \chi)(n)^{-1} f(np_{p_1}^{-1} p) \, dn$$

$$= \int_N \left(p_{p_1}^{-1} \chi(p_1^{-1} p) \right) = [L_{p_1}, s_f(p_1^{-1} \chi)](p).$$

Therefore

$$L^2(\hat{N}, E, \mu) \cong L^2(\hat{N}/M, E, \tilde{\mu})$$

$$\cong \int_{\hat{N}/M} \text{Ind}_{\hat{N}/M, N \times P}^P \text{Ind}_N^P HS(V_\chi) \, d\tilde{\mu}(\chi)$$

$$\cong \int_{\hat{N}/M} \text{Ind}_{\hat{N}/M, N}^P (\int_{\hat{N}/M} \tau^* \chi^* \otimes \text{Ind}_{\hat{N}/M}^P \tau \chi) \, d\nu(\tau) \, d\tilde{\mu}(\chi)$$

$$\cong \int_{\hat{N}/M} \int_{\hat{N}/M} \text{Ind}_{\hat{N}/M, N}^P \tau^* \chi^* \otimes \text{Ind}_{\hat{N}/M}^P \tau \chi \, d\nu(\tau) \, d\tilde{\mu}(\chi).$$
3 Decomposition of $L^2(G)$ under the action of $P \times G$

We will now consider $L^2(G)$ as a $P \times G$ module. Reasoning as in the $L^2(P)$ case we have an isomorphism

$$L^2(G) = L^2(\hat{N}, E, \mu)$$

with $E_\chi = \text{Ind}_N^P \text{HS}(V_\chi)$ given in the following way: given $f \in L^2(G)$, define $s_f \in L^2(\hat{N}, E, \mu)$ by

$$s_f(\chi)(g) = \int_\text{N} \chi(n)^{-1} f(ng) \, dn.$$

Then

$$s_{R_g f}(\chi)(g) = \int_\text{N} \chi(n)^{-1} R_g f(ng) \, dn = \int_\text{N} \chi(n)^{-1} f(n g g_1) \, dn = s_f(\chi)(g g_1) = (R_g s_f)(\chi)(g).$$

and

$$s_{L_p f}(\chi)(g) = \int_\text{N} \chi(n)^{-1} L_p f(ng) \, dn = \int_\text{N} \chi(n)^{-1} f(p^{-1} n p^{-1} g) \, dn$$

$$= \int_\text{N} \chi(p n p^{-1})^{-1} \delta(p) f(n p^{-1} g) \, dn$$

$$= \int_\text{N} (p^{-1}) \chi(n)^{-1} \delta(p) f(n p^{-1} g) \, dn$$

$$= \delta(p) s_f(p^{-1} \chi)(p^{-1} g) = [\delta(p) L_p s_f(p^{-1} \chi)](g).$$

Therefore

$$L^2(\hat{N}, E, \mu) \cong L^2(\hat{N}/M, E, \tilde{\mu})$$

$$\cong \int_{\hat{N}/M} \text{Ind}_{\hat{M}_x, N \times G}^P \text{Ind}_N^P \text{HS}(V_\chi) \, d\tilde{\mu}(\chi)$$

$$\cong \int_{\hat{N}/M} \text{Ind}_{\hat{M}_x, N \times G}^P \int_{\hat{M}_x} \tau^* \chi^* \otimes \text{Ind}_{\hat{M}_x, N}^G \tau \chi \, d\nu(\tau) \, d\tilde{\mu}(\chi)$$

$$\cong \int_{\hat{N}/M} \int_{\hat{M}_x} \text{Ind}_{\hat{M}_x, N}^P \tau^* \chi^* \otimes L^2(\hat{M}_x N \backslash G; \tau \chi) \, d\nu(\tau) \, d\tilde{\mu}(\chi)$$

$$\cong \int_{\hat{N}/M} \int_{\hat{M}_x} \int_G \text{Ind}_{\hat{M}_x, N}^P \tau^* \chi^* \otimes W_{\chi, \tau}(\pi) \otimes \pi \, d\nu(\tau) \, d\tilde{\mu}(\chi) \, d\tilde{\eta}(\pi).$$

On the other hand

$$L^2(G) \cong \int_G \pi^* |_P \otimes \pi \, d\tilde{\eta}(\pi).$$

Hence $\tilde{\eta}$ is in the measure class of the Plancherel measure, and

$$\pi^* |_P \cong \int_{\hat{N}/M} \int_{\hat{M}_x} \text{Ind}_{\hat{M}_x, N}^P \tau^* \chi^* \otimes W_{\chi, \tau}(\pi) \, d\nu(\tau) \, d\tilde{\mu}(\chi).$$