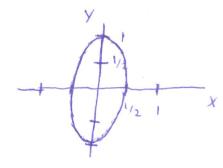
Math 2220	Name:
Prelim 1 February 22nd, 2011	TA's name:
	Discussion:

INSTRUCTIONS — READ THIS NOW	OFFICIAL	USE
• This test has 6 problems on 9 pages (counting this one and two blank	ONTENT	ODL
pages at the end) worth a total of 100 points.		
• Write your name, your TA's name, and your discussion section number right now.	1	/16
• Show your work/explanation. To receive full credit, your answers	2.	/16
must be neatly written and logically organized. If you need more space, write on the back side of the preceding sheet, but be sure to clearly label	3	/21
your work.	4	/21
• This is a <i>closed-book</i> test. Notes, books, "cheat sheets", cell phones,		/ 21
and personal audio players are NOT allowed. Calculators are neither needed nor permitted.	5	/16
• This is a 90 minute test.	6	/10
	Total:	/100

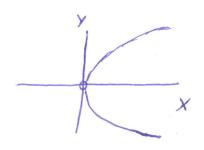
Question 1 (16pts): Let $f(x,y) = 2x^2 + y^2$ and $g(x,y) = y^2/x$.

- (a) Sketch the level curves f(x, y) = 1 and g(x, y) = 1.
- (b) Show that the point $(1/2, 1/\sqrt{2})$ is in the intersection of the two level curves from part (a).
- (c) Compute $\nabla f(1/2, 1/\sqrt{2}) \cdot \nabla g(1/2, 1/\sqrt{2})$. What does this mean geometrically about the level curves in part (a)?

a)
$$f(x,y)=1 => 2x^2+y^2=1$$



$$g(x_iy)=1 \Rightarrow y_x^2=1 \Rightarrow y^2=x (x\neq 0)$$



b)
$$f(\frac{1}{2}, \frac{1}{\sqrt{2}}) = 2(\frac{1}{2})^2 + (\frac{1}{\sqrt{2}})^2$$

= $2\rho_4 + \frac{1}{2} = 1$

$$9(\frac{1}{2},\frac{1}{\sqrt{2}}) = (\frac{1}{2},\frac{1}{2})^{2}$$

$$= \frac{2}{(\sqrt{2})^{2}} = 1$$

P=(1/2, 1/2) is in both level curves.

c)
$$\frac{\partial f}{\partial x}(x,y) = 4x, \frac{\partial f}{\partial y} = 2y,$$

$$\frac{\partial f}{\partial x}(x,y) = 4x, \quad \frac{\partial f}{\partial y} = 2y, \quad \frac{\partial g}{\partial x}(x,y) = -\frac{y^2}{x^2}, \quad \frac{\partial g}{\partial y}(x,y) = 2y_x$$

Hence

$$\nabla f(1/2) / \sqrt{2} = (4/2)^{2} / \sqrt{2}$$

$$= (2)^{2} / \sqrt{2}$$

$$\nabla g(V_2, V_2) = \left(-\frac{(V_2)^2}{(V_2)^2}, \frac{2(V_2)}{V_2}\right)$$

$$= \left(-2, \frac{4}{5}\right)$$

Therefore,

Vf(1/2/1/2). Vq(1/2/1/2) = (2/2/52). (-2,4/52) CONTINUE TO NEXT PAGE = -4 + 8 = 0. Last part does not apply Question 2 (16pts): Consider the following function $f(x,y) = \frac{xy^2}{x^3 + 2y^3}$.

- (a) Find the limit $(x,y) \to (0,0)$ of the function f(x,y) along a line y=x.
- (b) Does the following limit exists? Justify your answer:

$$\lim_{(x,y)\to(0,0)} f(x,y).$$

4) When
$$y = x_1$$
 we have that
$$f(x_1 y_1) = f(x_1 x_1) = \underbrace{x_1 x_2}_{x_1^3 + 2x_3} = \frac{1}{3}.$$

Hence, the limit
$$(x,y) \rightarrow (0,0)$$
 of the function f along the line $y=x$ is

b) No. Along the line
$$y = -x$$
, the limit is

 $\lim_{x \to 0} f(x, -x) = \lim_{x \to 0} \frac{x(-x)^2}{x^3 + 2(-x)^3} = \lim_{x \to 0} -1 = -1$.

Since this limit is different than the limit along the line y=x, we conclude that

$$\lim_{(X,Y)\to(0,0)} f(X,Y) = DNE.$$

Question 3 (21pts): Consider the function $w = F(x, y, z) = x^2 - y^2 - z$ of three variables.

- (a) Find the direction of fastest increase at (1,1,1) in \mathbb{R}^3 and the rate of change of F in that direction (directional derivative).
- (b) Find the equation of the tangent plane $H_{(a,b,c)}$ to the level surface at (a,b,c).
- (c) Consider the tangent plane $H_{(1,1,1)}$ to the level surface at (1,1,1). Find a point (a,b,1) such that the tangent plane $H_{(a,b,1)}$ to the level surface at (a,b,1) is perpendicular to $H_{(1,1,1)}$.

Question 4 (21pts): Let $z = f(x, y) = x^2 + (y - 1)^2$.

- (a) Classify all the critical points in the open disk given by $x^2 + y^2 < 4$ to local min/max and saddle points.
- (b) Find the absolute max/min of f(x,y) over the circle given by $x^2 + y^2 = 4$.
- (c) Find the absolute max/min of f(x,y) over the closed disk given by $x^2 + y^2 \le 4$.

Question 5 (16pts): Consider the surface given by $F(x, y, z) = \sin z + xy - 2 = 0$ and a point p := (2, 1, 0) on it.

- (a) We would like to say that in a neighborhood of p, the surface is a graph of a function z = g(x, y) by using the implicit function theorem. Which is the most relevant reasoning for that?
 - i. Because the gradient $\nabla F|_{(2,1,0)}$ is not a zero vector.
 - ii. Because $F_z(2,1,0)$ is not zero.
 - iii. Because F_z is differentiable at (2, 1, 0).
- (b) Find the linear approximation of z = g(x, y) at p without solving the equation $\sin z + xy 1 = 0$ for z.

Question 6 (10pts): Suppose that we need to make a box with the maximum volume. The only constraint is that the sum of the length, width and height of the box must be 18 inches.

- (a) What should the dimension of the box be to maximize the volume? Find the candidate by using Lagrange Multiplier method.
- (b) Give an explanation why the dimensions you found in question (a) would give actually the maximum volume.