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Math 2220 Exam 1
Tuesday, February 21, 2012

Name:

Show all work and explain all answers except as noted.
a. Find the equation of the tangent plane to the surface defined by
In(z? +2* ~1)—2%(y—2)—2=0

at the point (1,3, —1).
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b. Find all values of (a,b) for which the tangent plane to z = 2%y — xy? —z +y + zy at
(z,y) = (a,b) parallel to the plane 2z — 2y + 2z = 5.

NA




2. Find all local maxima, local minima, and saddle points of f(z,y) = z* — 2y + %y‘l.

(You must indicate which are local maxima, which are local minima, and which are
saddle points.)
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3. Define f(z,y) = zy/(z* + y?) if (z,y) # (0,0) and £(0,0) = 0. Determine the set of
all (z,y) such that gm is defined and find the value when possible. Is %-5 continuous?
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Using pcia-r coordinates, +his Jimit Dbecomes
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4. Find the absolute maximum and minimum value of the function f(z,y) = 2% +1%+2y
on the set D = {(z,y) : 22 + y? < 2}.
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5. a. Define

r(t) = {5 cos(28) + 3, 7 sin(2t),sin(0))

Compute the velocity vector as a function of ¢.

r’(‘/: (“th 2" C(}S‘Z»f/ (.C‘)f)

b. Find the equation of the line tangent to the curve parametrized by r(t) at (1,0,0).
Observe that

Filo) = {i' ' L zl (¢l 0y = (1,0,0)»

:
2
Using part al, we have that

r‘tey= L 0, 1,1).
Hence, +the egq that we are lac/rmg for s

Q1] = reoid Le76) = (1,000 4 €000 = (1, ¢,4).

c. Show that r(t) is orthogonal to r’'(¢) for all t. (The following identities may be helpful:
sin(2t) = 2sin(t) cos(t) and cos(2t) = 2 cos?(t) — 1 = cos?(t) — sin?(t).)

By Par+ al,
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W}:E‘re we are Using +he i’dénf’f‘l'y

sin 24=25int cost.



6. a. Show that there is a local solution z = f(z,y) to zy?z® — 223yz + 42y = 3 at the
point (1,1,1). Compute %[(1,1,1).
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b. Let U be a subset of R™. Define what is meant by the phrase “U is open.”
By def, WV is open if for every pt xeU Hhere txis ts
r>0 svch that {he open ball D, (x] € V.

c. fD={(z,vy):(@®>+y?>>1)and (y>0)}, what is the boundary of D? Your answer
should both contain a sketch and a clear description of the set. You do not have to
justify your answer.
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