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where we use the substitution u = y2 and du = 2ydy.
(2) (a) Sketch is omitted, but the region is given by

D = {0 ≤ x ≤ ln 3, 0 ≤ z ≤ 1,3
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z ≤ y ≤ 1} = {0 ≤ x ≤ ln 3, 0 ≤ y ≤ 1, 0 ≤ z ≤ y3}.
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where we used the substitution u = πy2 and 1
2 du = πydy.

(3) We want to compute the area inside the circle x2 + y2 = 8 and outside x2 + (y − 2)2 = 4. We look
at each quadrant separately: in each 2nd and 3rd quadrants, we have 2π so in total 4π (half of the
disk x2 + y2 ≤ 8). The areas in 1st and 4th quadrants are the same so we compute what we have in
the 1st quadrant. Let’s denote the part D:
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Thus the area we must find is 4 + 4π.
(4) x2 + y2 = 2x is r = 2 cos θ in polar coordinate. So the region in cylindrical coordinate is

D = {−π/2 ≤ θ ≤ π/2, 0 ≤ r ≤ 2 cos θ, 0 ≤ z ≤ r2}

We can divide D into half disks and compute it over one of them since the region is symmetric
along x-axis.
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where we applied the double angle formula 2 cos2 x = 1 + cos 2x twice.
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(6) (a)
D = {0 ≤ y ≤ π/3, 0 ≤ x ≤ y} = {0 ≤ x ≤ π/3, x ≤ y ≤ π/3}.∫ π/3
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(b) The area of D is π2/18. So the average of f over D is 1/4
π2/18 = 9/2π2. The mean value theorem

says there is (x0, y0) in D such that f (x0, y0) is the average. So there is (x0, y0) in D such that
cos(x0, y0) = 9/2π2.


