
1) The midpoint is

P +
1

2
PQ =

(
x+ x′

2
,
y + y′

2
,
z + z′

2

)

2) Simple computation using 1).

3) Let a and b be the sides of the rectangle. Then one diagonal is a+ b and
the other a− b. We have that

(a+ b) · (a− b) = 0⇔ a · a− b · b = 0⇐⇒ ‖a‖2 = ‖b2‖

4) Let P = (−1 + t,−2 + t,−2 + t) be a generic point of the line and let Q
be the given point. Then since the vector of the line is (1, 1, 1), PQ is going
to be perpendicular to the line iff

PQ · (1, 1, 1) = 0⇐⇒ (−4 + t,−3 + t, 1 + t) · (1, 1, 1) = 0

This gives t = 2 and P = (1, 0, 1). The line is then (P + t · PQ = (1, 0, 1) +
t(−2,−1, 3).

5) v · w = ‖v‖‖w‖ cos θ = 1 · 1 · 1/2 = 1/2.

6) The plane is perpendicular to (1,−2, 3) and passes through (1, 2,−3), so
its equation is (1,−2, 3) · (x− 1, y − 2, z + 3) = 0.

7) The plain contains the vector v = (2, 3, 1) and points P = (0, 1,−2) and
Q = (2,−1, 0). Hence it contains vector w = Q− P = (2,−2, 2). Then this
problem is reduced to compute the plane that passes through a point (for
instance P ) and is orthogonal to v × w.

8) After finding the equation of the plane it just remains to plug the point
in the distance point-plane formula.

9) Respectively a sphere, a cone, and half plane.

10) Same as 3)

11) Level curves hare hyperbolas given by xy = c or y = c/x.
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12) In cylindrical coordinates this limit is the same as

lim
(r,z)→(0,0)

r3 cos2 θ sin θ cos z

r2
= lim

(r,z)→(0,0)
r cos2 θ sin θ cos z = 0

13) The Taylor expansion of cos(t) is cos(t) = 1− t2/2 + r3(t), where r3(t)/t
2

goes to 0 as t approaches 0. Hence

lim
(x,y)→(0,0)

cos(xy)− 1

x2y2
= lim

(x,y)→(0,0)

[1− (xy)2/2]− 1

x2y2
= −1

2

14) Since |x| <
√
x2 + y6 and we have that∣∣∣∣∣ xy4√

x2 + y6

∣∣∣∣∣ =<
y4
√
x2 + y6√
x2 + y6

= y4

The result follows.

15) Taking paths x = 0 and y = 0 give different limits at 0. Hence the limit
doesn’t exist.

16) Take

f(x, y) =

{
x2 + y2 if x and y are both rational

0 otherwise

Then this function is continuous only at (0, 0) [think about it!].

17) When the denominator is nonzero, the composition, product, addition
and division properties of the derivative allow us to ensure that the partial
derivatives exist. However at (0, 0) we have to use the limit definition and
we have

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0

Hence partial derivatives exist everywhere.
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18) An analogous reasoning to 17) shows that both partials exist at 0, 0.
However approaching by x = 0 and by x = y2 gives different limits at 0, 0,
so the function is not continuous at (0, 0).

19) We have since both terms are positive, that x2/9 ≤ 1 and then that
|x| ≤ 3. This means that we can write x = 3 cos t for some t ∈ [0, 2π). Then

y2

25
= 1− (3 cos t)2

9
= 1− cos2 t = sin2 t

This shows that y2 = 25 sin2 t and hence y = ±5 sin t. We can just left
the + sign since (cos t,− sin t) = (cos(−t), sin(−t)) and then we are already
covering both cases. Conversely a straightforward computation shows that
for each t ∈ [0, 2π) the point (3 cos t, 5 sin t) satisfies the given equation, so
all the points are in this parametrization.

20) The position of the point P as the cylinder spins at speed θ = ωt respect
the cylinder is (r cos θ, r sin θ) = (r cosωt, r sinωt), but the cylinder is itself
moving at speed rωt parallel to the x axis. Hence the position of the particle
respect to the wall is (rωt+ r cosωt, r sinωt)

θ

P
ω r

rωt

Taking the derivative (over t), we find that the speed of the particle is

v(t) = rω − rω sinωt, rω cosωt

. Thus, the first component of v is rω(1 − cosωt) which is always non-
negative, and shows that the particle never goes backwards in its path, and
hence this never self-intersect.
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