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DIMENSION ESTIMATES FOR ATTRACTORS

John Guckenheimer

Numerical and theoretical studies of three dimensional flows and one and two
dimensional iterations have yielded a coherent picture of "chaotic” dynamics in its
simplest forms. This body of knowledge is relevant for the experimental and
analytical study of fluid dynamics in regimes which represent the transition to
"turbulence". Here turbulence is used loosely as referring to aperiodic flow with a
continuous power spectrum. This paper is a discussion and review of aspects of
dynamical systems theory which appear to be useful in the interpretation of experi-
mental observations together with some new remarks sbout the statistical problems
of estimating the Hausdorff dimensions of attractors. The methods I describe are of
more general applicability than just to fluid experiments, but I have restricted
myself to procedures which appear feasible with the amount of data which is readily
available from work with fluids. |

The issues which I address involve determining whether the state of a fluid
can be represented by a "reduced” model with few degrees of freedom. If one
assumes that the system is behaving in a deterministic fashion » then one would like a
dimension estimate for the attractors which occur in the state space of the fluid.

Once transients in the fluid system have decayed . the observed svstem follows 2
trajectory in state space whose closure is called an attractor of the system. For
chaotic systems, attractors typically have a frightful topological structure which
makes even the definition of dimension problematic. Given the lack of clear under-
standing of the finest details of the chaotic motion in simple models such as the forced
Duffing equation or the Henon mapping [ 1s unreasonable that any statistical

s

method can be proved to give accurate estimates of dimension for all attractors. The
best that one can hope for is a procedure which is reliable for classes of well under-
stood examples and that the scope of these classes of examples might be enlarged in
the future. Here I concentrate on a simple, computationally inexpensive statistical

method and discuss a few examples, each of whose analysis contains only some of
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the difficulties of the general problem. Hopefully, these heuristic considerations
will be helpful in understanding the practical efforts to compute the dimension of

attractors from experimental data.

1. ' DIMENSIONS AND ESTIMATES. Farmer, Ott and Yorke [3] have reviewed a
number of related concepts of fractional dimensions and their application to attrac-
tors. The reader should consult this paper for additional discussion and background
about dimensions.
Definitions of dimensioﬁ which depend upon a specific measure rather than

just a geometric set of points in state space are relevant for the study of attractors.
The most reasonable view of this matter (based on experience with numerical simula-
‘tions) appears to be the following. Initial conditions for a flow are interpreted as
avoiding sets of zero Lebesgue measure with special properties. Properties which
hold in sets of posiﬁve Lebesgue measure are observed in watching long trajectories.
Different trajectories in a chaotic attractor may have Adifferent asymptotic properties,
but I assume that there is a unique, ergodic probability measure upon the attractor

A which represents the asymptotic properties of almost all trajectories in its basin
of attraction. This means that

T
lim o j‘O £(@(x,0))dt = { £ dy

for almost all x in the basin of attraction of A and y-integrable functions f
The existence and uniqueness of U are proved for hyperbolic attractors by Sinai,
Bowen, and Ruelle [2] and for a large class of one dimensional mappings by
Jakobson [9] . Sets of lU-measure zero should be excluded from dimension calcula-
tions, even if they have larger Hausdorff dimension than a set of full U-measure.
This is evident in the generalized baker's transformation discussed below .

The choice of calculation strategy is an important one. Procedures based upon
"box counting” techniques [5] require large amounts of computational time, and the
computational time grows rapidly with the dimension of the set being described. The

procedure which I analyze here is called the pointwise dimension by Farmer et. al.

For an attractor A , x € I} 'sfd a probability measure ¥ supportedon A |

one defines

log u(B (r,x))
logr

dP (x) = lim
=0

where B(r,x) is the ball of radius r centered at x in the state space of the flow.
If d,(x) exists and is independent of x for U-almost all x e/l , then this is
defined to be the pointwise dimension of A . For simplicity, I describe the pro-
cedures in terms of discrete time. One may think in terms of a discrete sampling of a
continuous system or in terms of a Poincare section of a continuous system for the
purposes of these measurements.

Estimation of dp(x) from a trajectory of length n can be performed effi-
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ciently . The technigue is to first compute the distances 6 (1) = | x- d:t(y)} from =
to each point ¢t(y) in the trajectory based at v . The assumption of the existence
of an agymptotic measure implies that if N(r) is the number of ¢ (1) with

6(t) < r , then ( N(r) is a good approximationtoc U (B(x,r)) when n islarge. The
numbers N(r) sre easily calculated by sorting the n numbers 6(t) . One can
then plot log N(r) versus logr to estimate the limit value of log u(B(x,r))/logr
as r + 0. The number of operations needed to calculate the & (t) grows like

n-k , k being the dimension of phase space. The number of operations needed to
sort the &(t) is of order nlogn . Thus the computational time has a total order of
megnitude which is n(k +logn) . This is significantly smaller than the computa-
tional time required by other methods [ 4] and is the only dimension estimate which
appears feasible on a minicomputer at this time. The practical questions in the
implementation of the method involve (1) the size of the statistical fluctuations which
one should expect as one varies n and (2) the optimal way to extrapolate to the limit
r » 0. The first of these issues is considered here in terms of examples, following

a review of some of the properties of order statistics.

2. ORDER STATISTICS {w] . 1If Xi ,i=1,-+-,n are independent random variables
with the same continuous cumulative distribution function F(x) , then almost surely
X, # X}. for i#j . If the X, 's are ordered to yield X(l) (2) e <X (m with
X(i) € {XI’ e ,Xn} , then the X(i) are called the order statistics of the }& The

order statistics of {F(Xi)} are independent of the distribution function F since

each F(Xi} is a uniform random varisble on the interval [ 0,11 . Therefore, it is
possible to study the order statistiecs F(X (i)) in & setting which is completely non-
parametric (not dependent upon a distribution) .

The thecry of order statistics plays an importent role in our estinmeles of
dimension because the distances 4(t) are sorted (i.e., arranged in numerical
order) as part of the computational process. One may view the §(t) as random
variables whose distribution is givenby V(r) = v(B(r,x)) . In other words, the
probability that 8(t) issmaller than r is-the u-volume of the ball of radius r
centered at x . The order staﬁsticg 8 are used to estimate the distribution

D
V(r) by assuming that V(8§ (i)) ~ % (with n the number of computed distances).

Built into this procedure is the implicit assumption that the & (t) are independent of
one another. If the sampling interval is sufficiently long, then sensitivity to initial
conditions suggests that this is a reasonable condition for cheotic attraciors*. The
theory of order statistics then describes the distribution of the quantities

Yy T V(s (i)) for varying realizations of the random variables ¢ t(y) .

I do not go into much detail concerning order statistics here, but note that the

%
Some continuous-time attractors appear to have a long time "phase coherence"
that must be accounted for here. For quasiperiodic attractors, the ¢ (y ) will not
be independent, but they will typically be uniformly distributed.
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distribution of the im observed volume v o) is given by the Beta distribution
s n! i-1,, .n-i : 1 PN,
Be(i,n-i+l) = GOTEDT v T(d-v) which has mean — and variance
i(n-i+l) . . . . . e
. If i=k~3j,then Be(i,n-i+l) also gives the distribution of
(n+) ™ (n+2) '

Vag TV - Wilks [10] also includes information concerning the joint distribution

of different order statistics. As an illustration of these ideas, I discuss the estima-
tion of the dimension of a torus and a cube of dimension d using these methods.
Consider a torus Td = SI X srr X S} with distance function 6(6 ,¢) =

max 6(6.-%.) . Here &(8.,y.) is the length of the shortest arc on S1 joining
1<j<d 33 1773

6, and 908 (6559 = min (| 65, [, 2 '(ej“"’g?’i ) if 0 S8y < 27 . The
simplicity of this example for dimension estimates lies in the fact that the open ball of
radius 7 centered at 0 € Td covers almost all of Td and the volume of the ball
ofradius r, 0 < r < 7 is (f?)d (with the volume of Td normalized tobe 1 ).
Thus the function logV vs. logr to be estimated is a straight line of slope d . From
a random sample of n points xpi on 'I’d , an estimate for 4 can be obtained from

the order statistics & @ of &= 8 (s, q)i) . One need only pick two fixed values

of L » 2 and estimate log (k) - log (%) as the value of d . The variance in
n’n log 6(k)~log 5(2)
the estimates of V will be order — . This implies that, for fixed % and .% and
n
n large, the variance in the estimate of d will be of order 4 . A more complete

Jn

statistical analysis of the variance in the estimate for d is possible. Note, however,
that the relative precision of this estimate is independent of d . Figure 1 illustrates
the results of a numerical computation of logV vs. logr for n =5000 and 4 =2, 3,
5, 10, 25, 50, and 99.

logV

Figure 1
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As a second illustration of these dimension estimates, 1 consider an example in
which the estimates depend upon the choice of reference point x . Denote the unit
cube Id = ([0, 1])d in d-dimensioneal Euclidean space with the sup norm

§(x,y) = max ({x}-y | ) . For the reference point x chosen as the center or one
1<j<d
vertex of the cube, the analysis of this example is essentially the same as the toral

example discussed above. However, if x is chosen randomly in Id , then there are
_new complications in the dimension estimates due to the fact that x will be closer to

faces of the cube normal to some coordinate axes than to others. In particular if

e a’ ceeLe @ are the order statistics of ei = min (Xi ,1~xi) , then one can explicitly
cdmpute that V(r) = 61 fee ed where
2r i: r < eQ)
€ = + . i . - .
3 TTeg MoegmErilTeg
i if 1-e,.. <71
@3-

Consequently, logV will be a piecewise smooth function of logr which is linear
with slope d only for r <e ™ (assufning X is in the interior of the cube). In this

situation, estimating dimension from the order statistics leads to an under-

e,

estimate of d due to the presence of boundaries of I~ . The geometric structure of

the support of the measure whose dimension one is trying to estimate can bias these
procedures. To obtain accurate estimates of dimension, one needs information about

the shortest length scales for which these geometric effects play a role in the dimen-

sion estimates. Similar effects can be seen in dimension estimates for a rectangular
solid with different edge lengths but reference point in the center. If the edge
lengths of a rectangular solid are 2»9i < 2e2 < eee < Zed , then logV is a linear
function of logr of slope d-j in the range e.<r <e

-1
3. CANTOR SETS, FRACTALS, AND ATTRACTORS. The final ingredient which
affects the estimation of Hausdorff dimensions for attractors is their complicated

"fractal” structure. This results in a &tuatmn for which the volume function V (r}

is likely to lose smoothness, even thoughtit can be expected tfo vanish like rd as

r 7 0 . I shall present a simple illustration of this phenomenon and then discuss two
examples.

o

Consider the standard Cantor set C < [0,1] definedby C= {I a3 4

i=1 1

8 = Oor 2forall i} . C supports an invariant probability measure 1 for which

eachof thesets C, ,--+,b. ={ 83 " |a =b. for 1<i <k} has volume 1
b1 k i=] 1 i 1 -7 = 9

The volume function V’X(r) corresponding to u is easily computed for arbitrary x; .

I take x =0 for the sake of elegance. Explicitly, VO (r) is given by the Cantor
. a. .
function defined firston C by V(2 a3 )= 2= 27 and then by extending V, to

be constant on each component of the complement of C . See Figure 2. The function
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v logV
r logr
Figure 2
e . logV(r) . " :
V_(r) has zero derivative almost everywhere, but lim still exists and is
0 r>0 log(r)

easily calculated to be log 2/10g 3 , the Hausdorff dimension of C .
A simple estimate of the type of fluctuations in the dimension estimates which
can be expected due to the lack of smoothness in VO (r) can be obtained from the

values VO(3—n) = V0(2~3_n) =9, Choosing these two values of r , we obtain the

values log 2 and log 2 - log 2 a1+ 1 log 2) . Thus, fluctuations in the
log 3 1 log 3 n log 3

log 3 - —log 2
dimension cstimates which ;Te associeted with the lack of smoothness of V(r)
decrease logarithmically with the values of r for which there are good volume esti-
mates. Consequently, an exponentially growing number of points in a random
sample are necessary for incr%sed accuracy in dimension estimates constructed from
the values of V(r) for two diffe ent values of r . I have not explored the possi-
bility that other techniques for estimating %}% l%%%)— will yield fluctuations which
decrease more rapidly than logarithmic with sample size, but call attention to this
issue which may represent a fundamental limitation on the accuracy of numerical
estimates of dimension.

Let me turn finally to a discussion of the types of fractal structures which one
expects to find in attractors. Since there is no detailed understanding of the fine
structure of a "typical" attractor, it is only possible to describe the structure of
individual examples and restricted classes of attractors. The issues involved in this
discussion are an active area of research, particularly with regard to the conjec-

tures of Yorke et.al. EB] about the relationship between Liapunov exponents and
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dimensions. Here, I confine attention to two examples, a higher dimensional version
of the generalized baker's transformation discussed by Farmer, Ott and Yorke [3]
and a quadratic function mapping an interval to itself.

Let 1° be the unit cube in R° and pick numbers &.b.,b.,b..b

3 3 1'72°73°74
Define a mapping F: I° > I” by requiring that

€ (0,1) .

(¢D) F is continuous except on the plane x =a .

1

(2) DF is the diagonal matrix with eigenvalues (a }’,bl,bz) for
-1

X, < a and ((-a ,b3,b4) for Xy

(3) F has fixed points at the vertices (0,0,0) and (1,1,1) of I
See Figure 3.

> a.
3

The image of F’ has 2" components which are rectangular solids, and the

- - - -k

mapping DF"” isa diagonal matrix with entries (a k(1—za)n k ,blkbsn k,bzkb 4n )
for trajectories which have k iterates satisfying X, < a . The attractor A of F is

the product of an interval (in the S direction) with a Cantor set (in the x
directions).

9°%*3

The asymptotic measure for A (which describes the asymptotic behavior of
almost all trajectories in 8 with respect to Lebesgue measure) concentrates on a
small fraction of the components of F (13) when n is large and a# % . Almost all
trajectories spend a proportion approxin{ately a of their iterates in the region

0 < x1 < a because Lebesgue measure in the % direction is preserved by F .
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Thus the asymptotic measure u is sensitive primarily to components of F" which
have % ~ a , k being the number of iterates in the region 0 < X< a . The

measure 1 is therefore concentrated in rectangular solids whose side lengths are

‘approximately (blnabgn (-2) ,bznab 4n (1~a)) in the (Xz ,x3) directions. The
number of such rectangular solids grows like (a”a(ka)_(lwa))n . Following Farmer
et.al. [3] , one can give a complete analysis of the distribution of éizes for the
components of Fn(I?’) .

Clearly, the dimension of ¥ will be one plus the dimension of the Cantor set
C obtained by intersecting 2 with a plane parallel to the (xz »X 3) coordinate
plane. To study C we have the following construction which yields both C and the
measure v whose product with dx; gives 1 . Take the square s={0,11x[0,1]
and construct two rectangles R = [o ’bI] X[O,bz] and R, = [1~b3,1] x [ 1—’04]
The Vv measure of R1 is a and the v-measure of R2 is (1-a) . Recursively

define the Cantor set C and measure v such that C is contained in 2" rectangles
n n ’

RO,"' R n-1 and
2
i_
@ Ri = Ri .
2 It AI; is the affine transformation mapping S onto R? ,
preserving the coordinate directions with their orientations,
n+tl _ ,n n+tl _ .n
then Ri = Ai (RG) and R' n- Ai (Rl) .
i+2
@ v@&™Hzav@) and v @Y= gav@D .
i i s49T i
See Figure 4.
Z
R
i Ry
1
rl Rl
Z
Ro
1
R2 RO
0

Figure 4
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One can do explicit calculations of the volume functions Vy {(r) from this
description of the Cantor set C . For instance, note that the lower left vertex of R?
n d. @(G-1-4.) a 4. (G-1-d)

. . , i i i .
is located at the point (iil Cib:} bl (1 b3) , igl Cibz} bz ¢l b4)> where
._ B i-1 i-1 n dn (n-—dn)
i= L e2 and d.= I c¢.. The side lengths of R, are b, b and
i=1 1 1 gy 1 j 3 71
dn (n—dn) dn (n—dn)
b 4 b2 and its v-measureis (I-a) ~a . Rather than carrying these

calculations farther, I make two remarks: First, the values of VX(r) will depend
strongly on the choice of x € C . Farmer et.al. [3] conjecture thatas r~> 0,
VX (r) will have a log-normal distribution in x . This dependence of VX (r) on x
must be dealt with sensibly in computing dimension estimates for Vv . The second
remark is that if a%@-a) Q-a) , b Bab 2(1—3) > b 4ab2(1—a) then the measure

will concentrate on rectangles R? whose horizontal and vertical coordinates do not

overlap. It follows that the dimension of Vv in this case will be independent of b2
b b s i
and b 4 d = alog -—-e-? + (1-a) log 'Z*i‘:}"a“)“ since (a a(l-a) a a))n disjoint balls of

n’ This

. . . - 1-
calculation and the corresponding calculation for the case b.%b (-a), aa(l-a)( D,

3 71
b 4ab2(1 2) are consistent with the conjectures of Yorke et.al. concerning the rela-

radius (b3a bl(l—a))n will each have measure approximately (aa(l—a) (l-a))

tionship between the dimension of Vv and the Liapunov exponents of the attractor .
A

The second example of an attractor introduced here is a quadratic function
f(x) =a - X2 which maps the interval [-a,a] into itself provided that 0<a < 2.
It is known that there is a set A < (0,2] of positive Lebesgue measure such that
il a € A, then f has an ghsolutely continuous invariant measure 1 whose
dimension is 1 [9]. More is known about ¢ . In particular, u has a singular
d'ensity which blows up like (% (x-¢)) £ to one side of each point ¢ of the form
f 1(0) » 1> 0. These singularities will cause large fluctuations in the function
Vx(r) as x varies, but the structure of thiese fluctuations is apparently different
from the fluctuations of V() in the generalized baker's transformation discussed
above. The invariant measures of the quadratic transformation are the best avail-
able model for the structure that one might expect along expanding directions inside
a nonhyperbolic attractor. Since nonhyperbolic attractors are hardly known to
exist, only vague speculations about them are possible. Further progress on these
matters would be greatly facilitated by additional numerical investigation of

examples like the Henon mapping [8].

4, DISCUSSION: FLUID ATTRACTORS. The time has come to consider the

analysis of experimental data and the implications of the dimension estimates for a
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physical understanding of the dynamics seen in an experiment. A motivating factor
is the ability to clearly distinguish physical systems whose dynamics can be
described by a low dimensional strange attractor from systems for which such a
description is not possible. There are two issues which are intertwined in this
problem, namely dimension and determinism. Strange attractors are deterministic:
increased precision in one's knowledge of initial state allows one to make predictions
about the evaluation of a trajectory for increased time.

It is generally difficult to prepare a physical system so that a specified initial
state on a strange attractor can be obtained allowing a direct test for determinism
[6]. Instead, one prepares an initial state in the basin of attraction for an attractor
but must then wait for transients to die and for the system itself to then follow the
attractor until one comes close to the specified state. The sensitivity to initial condi-
tions within the attractor implies that the time at which this will happen is unpredict-
able and that repetitions of the same experiment will not give reproducible results in
this regard. One strategy for obtaining similar initial states is to conduct a 10ng1
experiment in which a trajectory on an attractor returns close to a state which haé
already occurred during the experiment. This strategy is reasonable only if the

recurrence time is experimentally realistic. If it is too long, then it will be impos-

sible to test whether the systems evolves in a predictable fashion from specified
initial conditions for a specified period of time.

The issue of dimension intrudes itself directly into the problem of estimating
recurrence times. If one has a reference point x for which one wants to estimate
recurrences within a distance r , then the expected recurrence time will be propor-
tional to (Vx(r)‘f1 . In a d-dimensional attractor Vx(r) is of order rd , 50 that
the recurrence time grows exponentially with dimension. For attractors of moderate
dimension (say 10) . returns within distances of order of 1% should simply not be
realizable. Thus an estimate of dimension can be useful in preventing one from
attempting the impossible.

Laboratory fluid experiments have been a fertile ground for testing ideas about
nonlinear dynamics because one p;afsses from regular to irregular dynamical behavior
in regimes where it is difficult to construct a reduced model with a strange attractor
from the underlying fluid equations. The experimental results have produced a rich
phenomenology , only some of which appears to have a direct analogy with the bifur-
cations found in low dimensional dynamical systems. Efficient techniques for obtain-
ing crude estimates of dimensions should be a useful probe for studying these
issues.

I have tried to separate in this paper those features of the fluctuations in
pointwise dimension estimates which are dependent solely upon sampling errors from
those which depend upon the complicated geometric structure of attractors. This

analysis leads me to assert tha;t the dimension estimates are a practical way of distin-
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guishing (1) situations in which a physical system is quasiperiodic or aperiodic due
to weak interactions of several modes that have been excited with comparable ampli-
tude from (2) situations in which there is a low dimensional strange attractor which
can be described in terms of few modes. Such a distinction is relevant to experi-
ments such as Rayleigh-Benard convection where the experimental results depend
strongly upon the aspect ratio of the container. Experiments with large aspect ratio
present a situation in which the fluid instability occurs initially with a large number
of modes of the linearized fluid equations being near marginal stability. In this
regime, low dimensional attractors have not yet provided good models for the fluid
dynamics. Dimension estimates have the potential for demonstrating conclusively

that low dimensional models are inappropriate for these fluid regimes.
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