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The state of a collection of phase-locked oscillators is determined by a single phase variable or cyclic
coordinate. This paper presents a computational method, Phaser, for estimating the phase of phase-locked
oscillators from limited amounts of multivariate data in the presence of noise and measurement errors. Mea-
surements are assumed to be a collection of multidimensional time series. Each series consists of several cycles
of the same or similar systems. The oscillators within each system are not assumed to be identical. Using
measurements of the noise covariance for the multivariate input, data from the individual oscillators in the
system are combined to reduce the variance of phase estimates for the whole system. The efficacy of the
algorithm is demonstrated on experimental and model data from biomechanics of cockroach running and on

simulated oscillators with varying levels of noise.
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I. INTRODUCTION

Periodicity appears throughout the sciences and engineer-
ing. The simplest example of periodic dynamics is uniform
rotation of the unit circle: (x(7),y(z))=(cos(),sin(z)). Any
periodic orbit of a deterministic dynamical system can be
mapped to the circle so that the angular velocity of the image
is constant. We then call the angular variable on the circle a
phase coordinate ¢ for the periodic orbit. We also call a real
coordinate x a phase if ¢=x mod 27. Phase coordinates of a
periodic orbit are determined up to a constant that one can
regard as the point on the orbit with zero phase. Coupled
systems, each of which has a periodic orbit, frequently phase
lock to a dynamical state that itself has a periodic orbit. The
periodic orbit of the coupled system projects onto the phase
spaces of the component oscillators. When the systems are
weakly coupled, these projections approximate the periodic
orbits of the component oscillators. This paper presents a
method to estimate phase variables for a broad class of
phase-locked coupled oscillators from short spans of noisy
multivariate data.

After providing some background from dynamics and bi-
ology, we specify the class of phase estimation problems we
wish to solve and describe the particular difficulties other
methods encounter in such a regime. We then describe our
algorithm, and show the results of applying this algorithm to
both real data and simulated data at various noise levels.

A. Background: Dynamics

The theory of nonlinear oscillators has been a useful tool
of modern science and engineering for studying synchro-
nized, periodic dynamics of physical and biological systems,
with a large body of established work [1-4]. Within the con-
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text of linear systems, frequency domain analysis based upon
the fast Fourier transform (FFT) algorithm has become the
primary tool for investigation of oscillatory physical dynami-
cal systems. Complementary methods of “nonlinear time se-
ries analysis” rooted in dynamical systems theory have been
developed that exploit qualitative features of periodic, quasi-
periodic, and chaotic systems [5,6].

Noise reduction based upon fitting data to low-
dimensional deterministic models [7,8] has played an impor-
tant role in nonlinear time series analysis. The focus of non-
linear time series analysis has been on long time series, often
of a single observed quantity. We examine data sets that are
multivariate and shorter than those customarily considered in
this literature. In addition to treating measurement noise su-
perimposed on deterministic dynamical models, some recent
work addresses identification of stochastic differential equa-
tion (SDE) models from data [9,10]. Our algorithm was de-
veloped with dynamical noise in mind, but our treatment of
the topic does not utilize techniques of SDE.

Empirical methods have been developed for decomposing
time series into generalized Fourier series [11] by using the
Hilbert transform. These provide insight into using the Hil-
bert transform for phase recovery (see Sec. III B for a de-
scription of the transform). Some recent methods character-
ize phase and oscillator coupling in weakly coupled
oscillators [12,13] by fitting a trigonometric series to the
flow on the torus representing the state of the oscillators.
This fitting problem is well-posed only when phase locking
is sufficiently weak for the observations to cover the torus.
The method requires data that contains all possible relative
phases of the oscillators, in contrast to systems of phase-
locked oscillators like those considered here.

Trajectories of phase-locked oscillations only sample
states close to a closed curve that constitutes the periodic
orbit of the system. Nonetheless, an essential feature of our
method is that the measurement data are multivariate time
series incorporating observations of all the oscillators within
the system. With phase-locked oscillations, the different os-
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cillators operate coherently and have a single, global phase
variable. The system can be regarded as a single “master
oscillator” expressing itself through multiple nonlinear pro-
jections onto the phase spaces of the individual oscillators.
The goal of the methods presented here is to estimate the
phase of this master oscillator by combining the observations
of the individual oscillators to reduce their measurement
noise.

B. Background: Biology

Biological organisms rely upon complicated oscillatory
dynamics for many vital processes. The heartbeat, respira-
tion, the cell cycle, electrical activity of the nervous system,
reproduction, and locomotion are all examples. The phase
relations among coupled oscillators are critical to the func-
tion of these processes, as in the coordination of locomotion
and the rhythmic pumping of the heart. At every scale there
are important biological dynamics that exhibit periodic be-
havior and are modulated by noisy inputs. As in all physical
sciences, our ability to measure the state of these oscillating
systems is hampered by limited measurement precision.

Winfree’s classical book on biological time [4] utilized
the mathematical theory of periodic systems to investigate
biological problems. He argued for the value of studying
phase response and phase resetting as a tool for experimental
biology [14]. Cohen, Holmes, and Rand [15] presented a
mathematical model for phase reduction of a network of neu-
ral oscillators generating fictive locomotion in a lamprey
[16]. More recently, Golubitsky et al. [17] predicted con-
straints on the structure of central pattern generators in the
spinal cords of vertebrates due to symmetries in systems of
coupled oscillators. Together these point to the potentially
large payoff of having an effective means of characterizing
phase.

The Phaser algorithm presented here grew from our at-
tempts to model the locomotion of a running cockroach
(Blaberus discoidalis) as a system of coupled nonlinear os-
cillators. Cockroaches running on treadmills were filmed
from below, and motion capture techniques were used to
measure the moving positions of all zarsi (feet) relative to the
cockroach body. When running, cockroaches use their six
legs in two sets of three legs moving alternately. This alter-
nating tripod gait can be viewed as six nonidentical oscilla-
tors cycling in a phase locked mode. The oscillators are non-
identical as leg geometries and motions are different in front,
middle, and hind legs and some individual animals even
demonstrate differences between their right and left side on
the same body segment.

A rich literature on mathematically modeling the dynam-
ics of legged locomotion in general, and cockroach locomo-
tion in particular, is reviewed in [18]. Revzen, Koditschek,
and Full [19] proposed an assay of perturbation tests for
deciding among possible neuromechanical control architec-
tures employed in a given rhythmic behavior. This assay is
based on the ability to estimate the phase of the animal in its
locomotive cycle, and our Phaser algorithm developed out of
attempts to improve this estimation procedure.

Most previous work in biology, dating as far back as the
invention of stop motion photography [20], describes gaits
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used by running animals in terms of discrete events such as
touch-down and lift-off. Phase response curves of stick in-
sects, one of the best understood arthropod locomotor sys-
tems, were developed using anterior extreme position (AEP)
events as a measure of phase [21,22]. However, animal mo-
tions are mechanical and governed by dynamics that obey
piecewise continuous (or smoother) equations of motion,
suggesting a finer approach to phase estimation is possible.

Averaging data to produce a fypical cycle may introduce
systematic errors unless this averaging is done with respect
to phase [23]. A good typical cycle with confidence intervals
allows perturbations away from the typical cycle to be stud-
ied, and used for analysis of the control maintaining the cy-
clic behavior. The common practice of averaging trajectories
based on some start-of-cycle boundary event and linearly
scaling cycles to match durations implicitly assumes that
state changes at a uniform rate, otherwise the size of the bins
will be unequal in a systematic way in each cycle, leading to
potential statistical errors. Furthermore, if the rate of oscilla-
tion is variable then bins far from a cycle boundary will have
larger uncertainty in the independent parameter than a bin
close to the event, making valid statistical inference more
difficult.

Full and Koditschek [24] hypothesize that control of ani-
mal locomotion is based on the stabilization of an isolated
cycle as the attractor of animal dynamics. Their approach is
unusual in that very few investigators have treated the ner-
vous system and body mechanics as a single neuromechani-
cal oscillator, despite the mathematical elegance of this ap-
proach. Our work also models the behavior of the freely
running organism as a simple dynamical system—a network
of synchronized oscillators with an isolated limit cycle.

II. PHASE ESTIMATION PROBLEM

Our phase estimation problem is shaped by limits on
sample sizes, durations, and signal-to-noise ratios of empiri-
cal data. Other methods of phase estimation may be more
effective in different ranges of these parameters than those
considered here. We discuss the importance of the various
data constraints we face as we introduce them.

A. Dynamical system

The starting point for the analysis presented here is a dy-
namical system defined by a piecewise smooth vector field F
on a manifold X that depends on parameters u € B" CR™.
The equations of motion are

x=F(x,u); (x,u) e X XB" (1)

The parameters u are included to account for the differences
between individuals and changes between experiments with
the same individual.

The flow constructed from the solutions of this equation
will be denoted ®: X X R X R — X X R™, so that ®(x,; u)
is the solution to Eq. (1) for the initial condition (x; u). We
are interested in the case where throughout the parameter
domain u € B™, the system equation (1) has an isolated as-
ymptotically stable periodic orbit (cycle) p(z,u) of period
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T(w) for every choice of w. We assume further that these p
are stable in the sense that the return maps of the cycles have
eigenvalues bounded in magnitude by 1-¢& (for some & >0
valid for all u € B™). For clarity, we elide the u in the sequel
wherever convenient.

In specifying further constraints, we choose coordinates
that position and scale the cycles so that

T
f p(:0)=0, ()
=0
1 T
Hf o= ®)

Denote by € the locus of all these cycles in X X B™. Since
B™ is simply connected, ¢ is homeomorphic to S IXB™ ie.,
is shaped like a cylinder.

B. Definition of phase

There is a natural notion of asymptotic phase ¢.,:X— €
satisfying  lim,_,.||®(xg,; u) — P[bo(xo; ), 1; ]| — 0 de-
fined for initial values X, and parameters u close to €. ®
maps every initial value to a point in ¢ whose trajectory it
approaches with increasing time. The inverse images of
points on € under this mapping are called isochrons [25,4].

We want to define phase as a complex number of modulus
1 rather than an element of €. Our phase variable should
satisfy the property that equal phase angles are traversed in
equal proportions of the periods of the periodic orbits. Since
the phase variable of a single periodic orbit is only deter-
mined up to a constant, the definition of this phase requires
the choice of a cross section of € transverse to the flow. We
assume that the section consists of the points of € that are
chosen to have phase zero. Any function € —S' which sat-
isfies the traversal rate requirement and maps the zero phase
section to 1 may be extended to a phase coordinate
¢:XCXXR"—S! for the entire stability basin X of € by
requiring that it is constant on isochrons.

C. Measurement model

We assume that empirical data from which we estimate a
phase variable consists of N multivariate time series {y*¥(r)},
k=1,...,N, that are stochastic perturbations of trajectories
{x(1)} of the vector field F. The trajectories {x¥(¢)} are
each defined on an interval [t(Lk),t%‘)] and lie close to €. For
clarity we suppress the -* superscripts in the sequel. Each
time series is sampled at regular, small intervals Ar<<0.17.
The cockroach locomotion trajectories that we analyze ex-
tend over fewer than 100 cycles, and the signal-to-noise ratio
of the measurements is roughly 10:

y(#) =x(7, + jA1) + 7,
7~ N0,0), (4)

At<0.1T, (5)
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ty—t;, < 100T. (6)

Note that this statistical model of the data does not include
stochastic terms in the vector field F, though we are inter-
ested in extending our methods to that case and others de-
scribed below.

Noise reduction is often tied to the selection of a metric
for the space of data points. A metric can be used to define an
orthogonal projection onto a set of “noiseless” states, or it
can be used to define a centroid for a cluster of related noisy
measurements; it is used in both these capacities in [26].
Kantz and Schreiber [5] note that the choice of a metric for
multivariate datasets is by no means obvious.

We propose that the covariance matrix Q of the measure-
ment noise 7 can be used to compute a useful metric. If
measurement noise is Gaussian, the induced Mahalanobis
distance [27] is a metric related by a simple monotone
change of variables to the probability density. Likelihood
maximization with respect to the measurement noise distri-
bution is distance minimization with respect to the Mahal-
anobis metric. A linear change of variables converts the Ma-
halanobis metric to the Euclidean (I,) norm. The
transformation is given by multiplication by a square root of
Q7 !. The new variables are scores—they represent likelihood
levels similarly to the well-known z scores used with scalar
Gaussians. The covariance of measurement errors for the
scores is the identity matrix, so they are linearly uncorre-
lated. To the extent that this decorrelation carries through to
phase estimate errors, if we now obtain a phase estimate
from each score we may have reasonable faith that averaging
these estimates will decrease the overall phase estimation
error.

It should be noted that the Q matrix is typically diagonal
as measurement errors of separate instruments are not usu-
ally correlated, but treatment of the more general case shown
here is no more complicated than that of the diagonal cova-
riance matrix case.

The conditions of Egs. (4)—(6) are far from the typical
conditions in which Fourier transform methods are tradition-
ally recommended for estimating periodic structure. First, the
length limit on the samples implies the appearance of signifi-
cant windowing artifacts in Fourier methods. Second, there
is no guarantee that the parameters u® are “close” for dif-
ferent values of k—only that the ensemble is “close” to
¢C—providing no obvious way of averaging or otherwise
combining samples into a single dataset for phase coordinate
estimation. Third, the dependence of period 7 on the param-
eters u means that phase signals will lose coherence with a
Fourier basis of fixed period, diminishing the largest Fourier
series components.

D. Estimation problem specification

The problem we wish to address is to estimate a phase
function ¢ from the data. We have a dataset consisting of an
ensemble of sequences of multivariate measurements y(tj),
which we believe to have been derived from some (unob-
served) state space trajectories x(¢), and therefore have an
associated sequence of phase values ¢[x(z;)]. We would like

to compute values $(tj) that are “good” estimates of ¢[x(t;)]
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for an arbitrarily selected phase coordinate function ¢. The
arbitrary part of ¢ is a choice of gauge, and has no physical
significance for the dynamics. For any two phase coordinate
functions ¢ and ¢, the difference is a constant on any trajec-
tory, and thus the gauge is fully specified by values ¢ takes
on a transverse section of €.

The gold standard for statistical estimators is to find a
maximum-likelihood estimate (MLE). However finding an
exact MLE of the phase is a very difficult problem. Instead,
we seek what is merely a “good” estimate &, possessing the
following properties.

(i) ¢ has little or no bias as an estimate for ¢.

(i) The residual ¢— ¢ has small variance compared to the
noise.

(iii) The distribution of the residual ¢— ¢ is Gaussian.

The first two properties are required for all consistent es-
timators if the underlying probability distributions are not
pathological [28]. The third property is important for both
practical and theoretical reasons. The practical motivation is
that we estimate phases for the purpose of making a decision
regarding some hypothesis, and the tools for making deci-
sions with Gaussian uncertainty are well-understood, making
estimators with Gaussian errors more attractive. The theoret-
ical motivation is that an MLE of a random variable depend-
ing on a smooth probability distribution always has a Gauss-
ian error distribution at the low noise limit, and so any MLE
we find is sure to have this property.

III. PHASER ALGORITHM

Our phase estimation algorithm Phaser builds on the work
of Kralemann er al. [12] but applies to the estimation of
phase from multidimensional data produced by a phase
locked system of coupled oscillators, a different regime from
that investigated by Kraleman et al. The work of [12] fo-
cuses on the coupling of angle variables of an invariant torus,
given a univariate measurement for each of the participating
oscillators. Their approach is in line with much of the non-
linear analysis described in [5], which is focused on dynam-
ics whose dimension may be equal or higher than the dimen-
sion of measurements, and therefore some thought is
required in the application of delay coordinate selection.
However, we are concerned with a problem in which the
invariant set is known to be S' and nonlinear embeddings of
this object in the space of measurements are easy to come by.
Rather than finding an embedding and a statistic of the sys-
tem attractor (as in [5]), our problem is one of locally invert-
ing the embedding in a way that reduces the variance of the
phase residuals due to noise.

Our algorithm can be used both to fit a phase estimator to
training data and to obtain a phase estimate of novel data
after the estimation parameters for a system have been fit.
The algorithm has the following steps.

(1) Correlated measurements are transformed to indepen-
dent scores with equal variance.

(2) Protophases are computed from the component
univariant time series of the scores.

(3) A Fourier series based correction is applied to the
protophases producing phase estimates for the individual os-
cillators.
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(4) Principal component analysis of the phase estimates of
the individual oscillators yields a single protophase for the
coupled system.

(5) The Fourier series correction of the protophase is used
to compensate for remaining systematic errors.

The following sections describe these steps in detail when
used with training data. When applying the estimator to com-
pute phases for novel data, the process is similar, except that
steps (3)—(5) use the transformations determined from the
training data.

A. Metrization

We assume that the covariance matrix Q of the measure-
ment noise has been computed. This symmetric matrix is
used to define an affine transformation of the time series data
into its z scores via

22 Q" (y—(y) =UA"U(y —(y)), (7)

where UTAU=svd(Q) is a singular value decomposition of
the_symmetric_positive definite matrix Q. The norm |z|
=\z"-z=\y'Q 'y is the Mahalanobis distance defined by the
Gaussian with covariance Q. The transformation to z scores
yields coordinates that have uncorrelated measurement noise,
of similar variance.

B. Protophases

Given a d-dimensional real time series of z scores z(t)),
we define their protophases 6,(¢;) as the complex argument
of their Hilbert transform:

L) & Hlz(1)], (8)
Pk = <|§k >a (9)
0,(t;) £ arg[ §i(1))]. (10)

Recall that the Hilbert transform [11] is a linear operator
which creates a complex analytic time series from a real time
series so that the original series is the real part of the com-
plex series. It converts sines and cosines into complex expo-
nentials of the appropriate phase and frequency. The Hilbert
transform of a periodically oscillating signal of mean O is a
path in the complex plane that winds around 0. If the signal
has the same number of zero crossings and extrema (up to
*+1) and alternate extrema are nearly equidistant from zero,
then the Hilbert transform will always wind in the counter-
clockwise direction and our protophase will be an increasing
function of time. Huang et al. [11] define the notion of an
intrinsic mode function (IMF) with these guarantees, but
their definition of an IMF requires a specification of an en-
velope of local maxima and minima which is immaterial to
our purpose. We use the term IMF loosely to represent func-
tions whose Hilbert transform winds around the origin at a
rate bounded from below above zero.

The mean modulus p, of the Hilbert transform is of par-
ticular importance in cases where z series are not IMF. In
those cases, ; loops back: 6, decreases at some times and
there is an associated decrease in |{|. The decrease in p;
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induced by this effect penalizes non-IMF components of z
when the phase estimates are combined (see below), making
the algorithm more robust.

C. Series correction operator P[]

As this section describes a computation which applies to a
single component 6, we will use the abridged notation
0jé 0,(;). The next step of the Phaser algorithm is a nonlin-
ear transformation of the protophase coordinates to variables
that increase at a constant rate. There is no reason for a
protophase variable 6 to have increments proportional to the
time steps. If it did, phase estimation would only require the
trivial computation of a constant w:(i—f}. For a true phase
coordinate ¢ we have ¢=w, some constant.

For each protophase variable 6, we seek a function ¢:
S'—S! such that %qﬁ[é’(t)]:w, implying

dg. \q_ . dt

dﬁ[e(t)]_wdH(g)’ (11)

6) = fﬁ LY 12
#(0)=w a:odﬂ(a) a, (12)

following a procedure similar to that leading to Kraleman et

al. [[12], Equation (16)]. Eq. (12) may be used to find ¢, but

we do not compute this integral directly as in [12] because
. . . . di

the integration of a discrete approximation to ;,

dt| 0.+ 6. At At
_<_.;ﬂ> ~— = , (13)
do\ 2 AG G- b

has poor statistical properties, as follows.

The measurement noise of # may be of magnitude com-
parable to A6, implying that the values of Eq. (13) may be
distributed in a ratio distribution with heavy tails. Such dis-
tributions have slowly convergent or even divergent first mo-
ments, rendering averaging useless for improving the esti-
mate. To avoid this problem, we estimate and smooth ‘i,—f
instead of (%.

We want to express ‘2—? as a function of @ rather than .
Denoting this function by f and its truncated Fourier series
approximation of order N by Fu[f], we estimate the Fourier
coefficients of Fy[f] by first sorting all (s, f(s)) pairs in the
input by s and then integrating over consecutive pairs using
the trapezoidal rule

J E_iksf(s)ds ~ E e—ik(sj+sj+l)/2f(5!') +2f(s!'+1) (Sj+1 _ Sj) .
sesS J

(14)

We then invert the Fourier series, obtaining coefficients
{Cy € Cli—_n... v such that

f(G)éfNB—f(ﬁ)], (15)
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dr x 1

—(0)=2 C fkﬂ:f[—}. 16

The measurement noise was reduced in the averaging im-

plicit in computing the Fourier coefficients for f(6).
Substitution of Eq. (16) into Eq. (12) gives

N

~ w . .

B(0) = wCy- 2, " (Cre™*a— Ce™ )|, (17)
k=1

We have assumed that the protophase # does not lose or
gain cycles relative to the actual phase ¢, so we conclude
Co=w". Fy[-] was applied to a real time series, thus C_,
=CZ giving C_je**=(Cre*®)* yielding the following ex-
pression for the phase of oscillator:

N

i — _L z —ikar\ | 6
d(0)=6 Cogklm(cke N9, (18)

with the sum correcting for systematic errors in ¢(6) as a
function of 6 using coefficients that we can readily compute.
The equation is similar to Eq. (16) of [12], except that the
coefficients C, were obtained via a process better condi-
tioned for dealing with measurement noise. We denote the

entire process taking @ to ¢ by the operator P[-], writing ¢
=P[].

D. Combining multiple estimates of phase

The final step of our algorithm is to combine the phase
estimates of individual oscillators into a single, improved
estimate for a phase variable ¢ of the phase-locked coupled
oscillator system. We assume that the phase estimate <2)k ob-
tained from the z; component oscillator is noisy and seek to
average these phases so as to improve the signal-to-noise
ratio (SNR). We do this by first reconstructing a trajectory in

RV from the ¢;. The trajectory will be an ellipse in the ideal
case that the ¢, are functions of time with constant slope w.
We then introduce a procedure that is designed to be optimal
in the case that the residual of ¢;— ¢ is Gaussian:

&k(fj) = Gi(ty) — plt,) + d(t) +v= Hilty) + ot =)+ v,

v~ N(0,0). (19)

Since the noise v is related to the instrument measurement
noise 7 [of Eq. (4)] by a nonlinear transformation, its distri-
bution is unlikely to be Gaussian. Nonetheless, the distribu-
tion will be approximately Gaussian if the variance of v is
small.

We wish to reduce the noise v in ¢. We cannot simply
average the complex phases of the component oscillators be-

cause the values of ¢(z;) are not known, and these relative
phase shifts may cause phase to interfere destructively when
the averages are computed, decreasing the signal-to-noise ra-
tio. As an extreme example, with only two measurements
having ¢,(1,)=0 and ¢,(1;)="m, in their average the signal
will be completely lost and only noise will remain.
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A practical approach, suggested by the computation use in
an example in [12], is to average the unwrapped phases, i.e.,
the phases taken as continuous angles in R (not [—r,7]).
Such averaging implicitly assumes that the estimation error
variance of these phase estimates is equal, and may thus be
improved upon by judicious choice of weights (see below
regarding weights for maximum-likelihood estimates from
simultaneous measurements). In addition, averaging is sus-
ceptible to any correlations in the estimation errors. To filter
out the noise even further and remove some of the correlated
errors, we suggest the projection method below. Comparison
of these three approaches is found at the end of Sect. IV.

We represent each phase estimate time series ¢() by two
real time series §,(f), Goisq(f) at phase angles of 5, with a

magnitude =G5, (t)+d3;,,(t) previously obtained from
Eq. (9).

Gor 2 pysin(ey),

Gore1 2 pr cos(hy). (20)

The relative magnitudes of p, represent our confidence

that the associated (Aﬁk is a “good” protophase variable, i.e.,
winds around the origin with a strictly positive rate.

The choice of weights p, is based on the formula for the
maximum-likelihood estimate (MLE) for a quantity obtained
from independent measurements with Gaussian error distri-
butions of different variances. Let Z={z}}_,, z; € R¢ be n
independent noisy measurements of some unknown constant
x € RY. Assume these measurements each have isotropic
Gaussian measurement errors of variance o={0}};_,. The
joint distribution P(Z|x, o) =IT}_,M(z;|x, 0;) may be used to
obtain the MLE for the value of x. This Xy is a critical
point of the probability density, and thus also of the log-
likelihood:

In P(Z

o llzs— x|
O)=—2, — 5 21
YA o

n 2 n 2[ ]
o3 3)- (375 e

Jd
-—InP(Z
ax; k=1 k=1

7

"1 ! Z;
X —=2,. 23
e 5= 2 (23)
Our ¢, of Eq. (8) are distributed in an annulus around the
origin, scaled so that the width of the annulus is equal across
k. Let us imagine the path { traces to be that of an ideal
phase variable (a circular path) with additive, radially sym-
metric measurement noise. Under these assumptions the av-
erage radius p; of Eq. (9) is inversely proportional to the
magnitude of noise in the polar angle 6, which constitutes
the protophase. We conclude that under these idealized con-
ditions the choice of weights for the g, would give the
maximum-likelihood estimate of the quantity e’¢.
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When 6, is nonmonotone, as is typically the case for non-
IMF z;, the segments in which 6, decreases correspond to
loops with a reduced |;|. Thus whenever the signals z, are
not IMF, that signal’s p, is penalized because the average
(|&]) is smaller than one would obtain for a sinusoid of
similar peak-to-peak amplitude.

Returning to Eq. (19), one may conclude that the noise-
less version of Eq. (20) comprises sinusoids of the same
frequency w at various phase offsets and amplitudes. The
space of all such sinusoids is spanned by sin(wt) and
cos(wt), and therefore the points occupy a two-dimensional
linear subspace independent of the number of oscillators N.

For our actual, noisy ¢, we identify a candidate two-
dimensional subspace by projecting onto the subspace
spanned by the two largest principal components. We regard
the projection of q as a combined protophase for the full
system. This protophase is then series-corrected with the P[-]
operator to obtain our final resulting phase estimate

$(t)) = Plarg[(pe; +ipey) Tq(1) T}, (24)

with pe; and pe, the first two principal components of 4.

IV. EXAMPLES

We tested the performance of our Phaser algorithm on
three data sets from both experimental and synthetic sources.
These three data sets explore different aspects of the efficacy
of Phaser.

The first example is derived from motion capture of a
running cockroach. We compare the results of Phaser with
other methods used in biological and biomechanical studies.
We do not know whether the cockroach is an ensemble of
synchronized oscillators nor do we have a reference phase to
use for computing estimation errors of this data set. The
results show some of the qualitative features of analysis with
each method, motivating our development of Phaser.

A second example is obtained by adding noise to a deter-
ministic periodic trajectory of a Fourier series model of the
cockroach data from the first example. The results show that
for systems with little or no phase drift a slight improvement
to the commonly used AEP method can provide comparable
results to Phaser, but naive AEP estimation is subject to sys-
tematic errors.

The third example is a stochastic differential equation that
introduces noise to a well-studied dynamical system—the
Hopf oscillator. The resulting data is used to compare Phaser
to the use of a naive phase estimator and the phase estimator
of [12] which takes a univariate input, allowing us to dem-
onstrate how Phaser takes advantage of the extra information
available to it from a multivariate input. This synthetic class
of systems is also used to demonstrate the significance of the
choice of weights p, and the use of the projection in Eq. (24).

We present the results of our comparative analysis with
two types of plots: plots of the residual phase and error
density histograms. Residual phase is obtained by first com-
puting a linear regression fit to the measured or known phase
as in Revzen et al. [19]. This fitted constant frequency model
is then subtracted from the measured phase leaving a plot of
the fitting residual. The residual plot shows how the recov-
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FIG. 1. (Color online) Tracks of the horizontal projection of
cockroach (Blaberus discoidalis) foot motions in the body frame of
reference. The origin is placed at the animal’s center of mass. This
running trial was recorded at 500 frames per second. It is 2045
frames long and includes over 37 strides of the animal running in
characteristic tripod gait. Measurement precision of foot positions is
approximately 0.04 body lengths.

ered phase differs from an idealized constant frequency os-
cillator. For the cockroach data, the fitting residuals combine
phase estimation errors and drifts of the phase due to slow
changes in the frequency of the cockroach leg motions. For
the synthetic models where a reference phase governing the
determistic (nonstochastic) part of the system dynamics is
known, the linear regression is taken against this reference
phase rather than against the phase estimates.

Error density histograms plot the log of frequency of each
bin of phase estimation errors relative to the reference phase.
This is only possible in the synthetic examples where the
reference phase is known. Our requirements of an estimator
to have a low bias, small variance, and Gaussian residual are
expressed by error histogram curves with a maximum near 0,
a narrow peak, and a parabolic shape, respectively.

A. Cockroach empirical data

Revzen and colleagues developed an assay that helps
identify the neuromechanical control architecture of a loco-
motor behavior [19] from perturbation experiments, and ap-
plied these procedures to cockroach locomotion data [29,30].
These studies provided the initial impetus to develop the
Phaser algorithm. We present the results of applying Phaser
and several other methods of phase estimation to empirical
data. The raw empirical data consisted of two-dimensional
tarsus (foot) positions for all six legs of a running cockroach
(Blaberus discoidalis) relative to the animal’s body frame of
reference (see Fig. 1).

In the case of real animals we have no model limit cycle
and reference phase to compare to our data. Instead we com-
pare Phaser output to other methods from the literature. It
should be noted that although we treat each leg of the run-
ning animal as a single oscillator, evidence shows that the
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FIG. 2. (Color online) Residual phase of the running cockroach
from Fig. 1 showing the deviation of the various phase estimates
from a linear regression fit. The duration of the plot is slightly over
37 strides (cycles). The residual phases estimated with different
methods are offset from each other for clarity. No importance
should be attributed to the choice of phase at time 0. All phase
estimates show very similar large scale structures, but differ greatly
in their short time-scale details. Phases estimated from anterior ex-
treme position (AEP) events show their characteristic polygonal
line structure, with a six-legged mean AEP showing far superior
temporal resolution to the estimate derived from middle right leg
AEP. The estimate based on PCA and our Phaser show high fre-
quency structure, but the PCA high frequency effects seem far less
cross-correlated at short lags—suggesting noise rather than dy-
namic structure as the cause.

motor signals for each joint are neurally independent, at least
in some arthropods [31], and coupled only via mechanosen-
sory feedback. The motions within a leg are highly correlated
while cockroaches are running, so our simplification does not
sacrifice much fidelity of representation.

We compare Phaser with three other methods of obtaining
phase, described in detail below.

(1) Phase from the anterior extreme position events (see
below) of a single leg, a method used in many neuroetho-
logical studies.

(2) Phase from projection on principal components, an
approach in line with methods currently used by clinical bio-
mechanists [32].

(3) Average of the anterior extreme position phase esti-
mates from all legs.

Much of the work in biology has used the anterior ex-
treme position (AEP) events of a single leg (e.g., Fig. 2-AEP
Rgt Mid uses middle right leg AEP) as a source of phase
estimates. An AEP event is defined as the time when a leg
reaches the anteriormost position in a given cycle. Phase
between AEP events is interpolated linearly, providing a
piecewise linear estimate. However, a simple argument
shows that despite its visual convenience, the AEP event is a
poor choice for phase estimation. AEP is defined by a local
maximum in the anterior-posterior position r(z) of a foot
relative to the body. As such, the time derivative of the po-

sition %;(t)=0, thus j—;-‘fj—‘f=0. Since at all times i—f:w>0
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we have j—;:O, so that %‘f is locally unbounded. Because the
first order sensitivity of phase to measurement error is infi-
nite at the AEP, phase estimation errors are governed by the
second and higher derivatives of r(¢) and grow as VAr or
worse (see [33]).

A slight improvement can be gained by averaging the
AEP derived polygonal lines expressing the phase estimates
from all six legs (averaging phases from all component os-
cillators; see Fig. 2-mean AEP). With only six events per
cycle the number of phase estimate values per unit time still
gives a substantially coarser temporal estimate than that ob-
tained from our algorithm with sample rates larger than 50
samples per cycle.

Phase can also be estimated by a dimension reduction to
two dimensions (2D) using principal component analysis
(PCA) followed by a polar decomposition. The use of PCA
for analysis of kinematic data has recently gained popularity
in the clinical biomechanics community [32].

It has been known for a while that without the velocities
cockroach kinematic data has only one significant principal
component [34], thus we used (y,y) as the input vectors to
the PCA computation. The necessity of including velocities
is not surprising. Both positions and the velocities (or mo-
menta) are necessary to have a complete phase space state
for any mechanical system.

On the plane spanned by the largest two principal compo-
nents, the cockroach data exhibits an annular path and the
angle of the polar representation of points on this path can be
used as a phase estimate. As the next example shows, the
phase thus obtained is very noisy. While it seemed a good
candidate as a protophase source instead of the Hilbert trans-
form, it performed much more poorly in practice, leading to
our adoption of the Hilbert transform as the protophase
source for Phaser.

Figure 2 displays residual phase estimates for our cock-
roach locomotion data, using each of the four methods de-
scribed above. The residual is relative to a linear regression
fit to the data. It is apparent that the Phaser, PCA, and AEP
methods produce different estimates at time scales of a cycle
or less. The PCA estimates have much larger short-term fluc-
tuations than the others while the AEP estimates are linear
between events. The Phaser estimates are intermediate. We
believe that the Phaser algorithm provides better estimates of
phase within cycles than is the case for the other methods,
but there is no apparent way to test this with the empirical
data. Instead, we use synthetic data constructed with a
known reference phase.

B. Cockroach synthetic data

We next tested phase estimation methods for synthetic
data from a periodic orbit with small measurement noise.
The orbit was generated by a Fourier series model fit to
cockroach kinematic data similar to that of Fig. 1, with mea-
surement noise added at a SNR of approximately 20. The
foot traces of the signals generated by the Fourier series
model are displayed in Fig. 3.

The regularity of the Fourier model illustrates how the
sensitivity of the AEP based measures depends upon the ex-
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FIG. 3. (Color online) Tracks of simulated cockroach foot mo-
tions in the horizontal plane, in a body frame of reference. The
origin is placed at the animal’s center of mass. Tracks were gener-
ated from a seventh order Fourier series fitted to animal data and
consisted of 50 cycles at 50 samples per cycle. The measurement
noise added was generated from Gaussian random numbers at a
SNR of 20, filtered with a second order Butterworth low-pass filter
at a cutoff of 0.1 samples.

act details of how an “extreme position” is measured. With a
naive method—identifying the AEP as the sample at which a
local extremum is reached—performance is quite poor (see
AEP sample in Figs. 4 and 5). The use of an interpolator,
based on fitting a fifth order polynomial to an 11 sample

0.06
0.04 £

0.02 |

dual ¢ (radians)

-0.02 |

rest

~0.04
~0.06

—-PCA i i i i
«=- AEP Sample [i i i i
— AEP 5" Order|! i i
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FIG. 4. (Color online) Residual phase plots for four estimation
methods applied to data from Fig. 3 over a duration of several
cycles. The PCA method cannot fully remove nonlinearities and
therefore has an oscillatory residual. AEP sample—identifying AEP
by the sample at which the anterior extreme is reached—shows
systematic errors due to the period not being commensurate with
the sample rate. AEP fifth order—identifying AEP by interpolation
with a fifth order polynomial—gives results similar in error to those
obtained from our Phaser algorithm. All the methods provide excel-
lent estimates with root mean squared errors of less than 0.07 rad,
perhaps because the system is so remarkably regular.
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FIG. 5. (Color online) Marginal probability density of the phase
estimation residual form in the complete sequences from which Fig.
4 was taken. PCA (0=0.039) and AEP sample (0=0.039) have
large phase estimation errors with nearly uniform distribution over
the range of observed A¢. AEP fifth order (0=0.017) and Phaser
(0=0.015) provide a Gaussian-like residual with much smaller
variance.

window with five samples on each side, and locating the
local extremum by finding the roots of its derivative with a
root solver (see AEP fifth order in Figs. 4 and 5) gives results
similar in quality to Phaser. Such good results are in part an
artifact of the system having no phase drift, and thus estimat-
ing phase accurately at a point in time gives small residuals
for all other times.

C. Hopf oscillator model

We further tested the phase estimation algorithm with
simulation data from a dynamical system with an easy to
determine phase variable—the Hopf oscillator. Written as an
ordinary differential equation (ODE) for a complex variable
z € C, a Hopf oscillator with dynamical noise # is given by

%z=[y(r2— lz]°) +iwlz + 7 (25)
and exhibits a limit cycle at radius r, with frequency w and
convergence rate governed by 7. Rotational symmetry of the
equations ensures that phase always coincides with the com-
plex argument (angle of polar representation) of a point. We
used w=1, r=1, and y=0.1. The dynamical noise term 7
was modeled with a cubic spline having one random knot
point every cycle. The knot points were generated with a
Gaussian distribution N{(0,0.02), corresponding to a signal-
to-noise ratio (SNR) of 50. By introducing smooth dynami-
cal noise we could integrate the equations with a standard
ODE integrator instead of requiring a specialized SDE inte-
grator.

We then mapped the Hopf oscillator trajectory into C6 by
warping it using six randomly generated smooth mappings of
C into itself. The choice of six derived oscillators yields data
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FIG. 6. (Color online) A 100 cycle, 12-dimensional trajectory
generated by the Hopf oscillator model with a SNR of 15 and plot-
ted in each of the six copies of C that comprise our embedding. The
background grid shows warping of the Cartesian coordinates in
each case. The centers of the radial basis warping functions are
marked on each plot. Decay of the initial condition (0.5,0.5) to the
orbit shows how different the six observations are from each other.

of comparable dimension to that of the other two examples.
Each mapping was generated using radial basis functions
with centers for the basis functions placed around the circles
at radii 0.5, 1, and 1.15 and mapping parameters such as
radius of effect and attraction or repulsion chosen at random
(see Fig. 6).

Prior to warping we added synthetic measurement noise
to each of the six trajectories separately. We chose to have
the measurement noise warped to mimic the state dependent
nature of the noise distribution in experimental data. For a
given SNR value, the measurement noise was the sum of
“pink” noise generated by low-pass filtering white noise with
a second order Butterworth filter at a 0.2 sample cutoff, and
Gaussian white noise ten times weaker. This particular
choice of noise model—pink noise over a baseline of white
noise—mimics the power spectral density found in the cock-
roach experimental data described above.

We applied three phase estimation methods to the data.

(1) Angle: a naive method, which uses the complex argu-
ment of the first projection as the phase.

(2) 1-dim: phase estimation of [12] (using our P[-] instead
of their series, improving resilience to noise) applied to the
first coordinate of the first projection.

(3) Phaser: our proposed algorithm, which utilizes multi-
variate data for the estimation procedure.

The AEP based methods are omitted from this lineup of
methods, since their performance does not depend on the
noise model. Their quality only depends on the noise char-
acteristics of the AEP event itself. In a constructed model,
AEP statistical properties can be manipulated to make the
AEP method overperform or underperform other methods
almost arbitrarily [35]. Instead, our comparisons demonstrate
the improvements gained by using increasingly advanced
methods for extracting phase information from multiple
channels and combining it.
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FIG. 7. (Color online) The residual phase relative to the refer-
ence phase regression line. The reference phase is the complex ar-
gument of the Hopf system which is dynamically perturbed away
from constant frequency. Results are shown at measurement noise
SNR values of 5, 10, and 15. Plots are zoomed in on illustrative
20 cycle segments of each 100 cycle simulation. The phase excur-
sion event in the bottom (SNR=15) plot demonstrates the value of
having improved phase estimation, as the event is all but impossible
to resolve with the 1-Dim and Angle methods.

Because measurement noise is of equal magnitude in all
coordinates, the simple approach of averaging phases used as
an example in [12] leads to results comparable to Phaser. See
Fig. 9 and text for a more detailed examination of how av-
eraging compares with Phaser under more general condi-
tions.

To make the measured phases comparable we chose the
common transverse section x=0 and y >0 in the first projec-
tion as zero phase. We identified the sample indices of points
on this section and subtracted the mean phase of these
samples from all phase measures used.

The precision of phase estimation varies with the level of
measurement noise (see Figs. 7 and 8, Table I). Estimation of
phase based on the entire multivariate dataset was always
superior to using partial information, suggesting that our
method for fusing the phase information from multiple
sources is effective.

As Table I reveals, even at extremely high levels of
noise—a signal-to-measurement noise ratio of 5—our algo-
rithm recovers a fairly accurate phase estimate. The esti-
mated accuracy improves at lower levels of measurement
noise, and in this particular simulation is about twice as ac-
curate as application of the phase recovery algorithm to only
one projection of the six. This 1-Dim method is an improved
version of [12] with regards to noise rejection, so one may
conclude at least as great an improvement relative to the
method of Kraleman et al. Examination of Fig. 9 further
reveals that both our Phaser method and the 1-Dim method
seem to have a gaussian error distribution (the latter only at
larger SNR values)—as the curves peak in an inverted pa-
rabola. The naive Angle estimate not only suffers from large
errors, it is also non-gaussian and biased, suggesting that ad
hoc techniques may provide very poor statistical quality in-
deed.
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FIG. 8. (Color online) Phase error densities at measurement
noise SNR values of 5, 10, and 15, for similar oscillators. Errors are
the instantaneous difference of estimated phase and the reference
phase. Angle: naive phase estimation based on the complex argu-
ment (angle) of the first embedding; 1-Dim: phase estimation based
on recovery from a scalar time series, similar to the method of [12];
Phaser: phase estimation based on our proposed multivariate
method.

The benefits of our weighted combination of phasors
[weights p of Eq. (9)] and the projection method [PCA and
Eq. (24)] for their combination are illustrated in Fig. 9. The
figure shows the rms phase estimation errors obtained when
combining phasors in three ways: avg—circular averaging
[36] (similar to an example worked out in [12]); wgt—
weighted circular averaging using the weights obtained from
p; and phr—using the projection method suggested for
Phaser with weights p.

All three methods were applied to an ensemble of random
Hopf oscillator models similar to the model in Fig. 6. The
ensemble provides test cases with a variety of nonlinearities
while maintaining known noise characteristics. Measurement
covariance matrices Q were estimated dynamically under the
assumption that measurements have independent errors (Q
diagonal) by taking the variance of a high-pass filtered ver-
sion of each channel as its error variance. The filtering kernel
was [1,-2,1]. These dynamically estimated covariances pro-
duced much better results than the actual covariances used
by the simulation, possibly due to the warping that the noise
undergoes. The distribution of the rms phase estimation er-
rors clearly demonstrates the superiority of weighted versus
uniform averaging, and of projection versus weighted aver-
aging (note the scale is logarithmic).

The large disparity between these methods shown in Fig.
9 only appears when measurement coordinates have different

TABLE I. Variance of the errors in phase estimation, as a func-
tion of measurement SNR and estimation method.

SNR 5 10 15

Angle 0.15 0.13 0.12
1-Dim 0.16 0.06 0.06
Phaser 0.04 0.03 0.03
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FIG. 9. (Color online) Distribution of rms phase estimation er-
rors in 101 randomly generated Hopf systems with half of the mea-
surement coordinates at SNR 3 and half at SNR 10. The measure-
ment covariance was dynamically estimated for each replicate.
Replicates differ in the nonlinear coordinate changes but not in the
underlying deterministic dynamics. Phase was estimated by com-
bining P[-] corrected protophases in three ways: avg—by circular
averaging; wgt—>by circular averaging with contribution weighted
by p; and phr—using the projection method of Phaser.

measurement errors. In this case, half of the projections had
measurement error at a SNR of 10 and half at a SNR of 3. In
our tests with isotropic measurement errors the performance
of all three approaches was indistinguishable.

V. DISCUSSION

We have developed a method for estimating phase from
multivariate time series observations of coupled phase-
locked oscillators. Our method was motivated by tests of
neuromechanical models for cockroach locomotion. The
limitations of relatively short data sets with substantial noise,
variation among individuals, and changes in speed require
phase estimates that reduce both dynamical and measure-
ment noise in the presence of nonlinearities of the motion.
Our goal has been to simultaneously reduce the noise and
transform the signal to a phase—an angular coordinate that
advances with constant speed. We assert that the transforma-
tion of data to such phases prior to averaging improves the
statistical analysis of system state.

The results of our empirical tests of Phaser are promising.
However, we have not been able to provide a complete the-
oretical analysis of Phaser’s efficacy and correctness. In lieu
of such a complete analysis we have provided a description
of the mathematical intuitions that lead to various design
choices and produced supporting evidence from numerical
simulations. We would like to encourage further investiga-
tion into these theoretical questions.

The tests we performed compared our method with alter-
natives based upon principal components analysis, methods
that utilize anterior extreme positions and other methods that
utilize Hilbert transforms. In stochastic perturbations of a
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deterministic system with a stable limit cycle, variance of the
residual between estimated phase and the phase of the under-
lying deterministic cycle provides a quantitative measure of
the various methods. In all of the cases that we tested our
method performs as well or better than the others. With syn-
thetic data that only added a small Gaussian “measurement”
error to a deterministic system, careful use of anterior ex-
treme positions gave comparable results to our method.

From our results the experimental biologist may conclude
that the existing practice of using AEP events is highly ques-
tionable if the hypotheses being tested involve small differ-
ences in phase or quantitative estimation of phase response
curves. At the very least, a local polynomial fit similar to our
AEP fifth order should be used. If the investigator wishes to
be able to detect changes in timing that persist for less than a
complete cycle, the use of a phase estimation technique such
as Phaser is advisable.

Further empirical tests that delineate the effectiveness of
different phase estimation methods in coping with different
dynamical phenomena would be helpful. We think that it is
important to investigate how methods cope with slowly vary-
ing systems. Slow changes in a limit cycle representing the
motion of the coupled system are likely to be present in
many examples, resulting in phase drift relative to a cycle of
fixed frequency. Singular perturbation theory provides a for-
mal approach to the study of slowly changing systems. In the
setting of slow-fast systems of the form

x=fxy), (26)

y=ggx.y), (27)

€ is the ratio of time scales. In the singular limit £=0, the
system becomes a family of vector fields in x parametrized
by y. Stable limit cycles of the singular limit perturb to at-
tracting invariant manifolds for small € >0. Since the peri-
ods of the limit cycles in the singular limit typically depend
upon y, defining the phase of the slowly varying system is
problematic.

A second direction in which it is important to further test
phase estimation methods is with relaxation oscillators, in
which abrupt changes occur at particular places on a limit
cycle. Examples include recordings from spiking neurons,
electrical activity of muscles, and mechanical systems with
impacts. All of these time series share the property that phase
space velocity is highly nonuniform, typically with one or a
few short intervals of high speed as the system traverses the
cycle. In our tests Fig. 2-mean AEP linear interpolation pro-
vided a reasonable means of extracting phase information
from these sorts of variables. However, the topic bears fur-
ther investigation.

We have examined discrete systems of coupled oscilla-
tors. Continuously coupled systems like the bodies of fish or
snakes also appear as examples of animal locomotion. We
are currently investigating how to include these higher di-
mensional data types in the phase estimation computation.

Beyond phase, the behavior of a dynamical system near a
stable limit cycle can be characterized by Lyapunov expo-
nents and Floquet coordinates that characterize how nearby
trajectories approach the limit cycle. Excitation of a trajec-
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tory away from the limit cycle will undergo transients as the
trajectory returns to the limit cycle. We are comparing our
cockroach locomotion data with a model derived from Flo-
quet analysis. We assume that the empirical data comes from
a stochastic perturbation of a stable limit cycle and that in-
herent fluctuations allow the system to sample a neighbor-
hood of the limit cycle in its phase space. Since the quanti-
ties of interest come from differences of trajectory segments,
accurate phase estimates that align the trajectories relative to
the limit cycle are extremely important in this analysis. The
AEP methods do not appear to have the short time resolution
needed to obtain these estimates.

PHYSICAL REVIEW E 78, 051907 (2008)

Source code for Phaser is available for download from the
corresponding author [37,38].
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