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Abstract

Folded singularities occur generically in singularly perturbed systems of differential
equations with two slow variables and one fast variable. The folded singularities can
be saddles, nodes or foci. Canards are trajectories that flow from the stable sheet of
the slow manifold of these systems to the unstable sheet of their slow manifold. Benôıt
has given a comprehensive description of the flow near a folded saddle, but the phase
portraits near folded nodes have been only partially described. This paper examines
these phase portraits, presenting a picture of the flows in the case of a model system
with a folded node. We prove that the number of canard solutions in these systems is
unbounded.

1 Introduction

Folded nodes were apparently discovered by Takens [10] in his study of constrained systems.
Benôıt [2, 3, 4] pioneered the analysis of folded singularities in three dimensional singularly
perturbed systems with two slow variables and one fast variable, going beyond Taken’s anal-
ysis of the singular limit. Following Argemi, he called these pseudo-singular points. Smolyan
and Wechselberger [9] give a presentation of some of Benôıt’s results using geometric methods
that avoid nonstandard analysis. Mishchenko et al. [8] discuss these problems using classical
asymptotic methods and the terminology that folded singularities are jumps that violate the
“normal switching conditions.” In the case of folded saddles, Benôıt’s analysis gives a com-
plete description of the local geometry in the neighborhood of the singularity. In the case
of a folded node, the local geometry is more intricate and the results are less complete. He
establishes in [4] the existence of a pair of maximal canard solutions that are distinguished
by lying in a specific Gevrey class. In [3], Benôıt exhibits examples of canards that do not
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lie in this class. These more complex canards are associated with oscillations in which a
trajectory passing through the region of the folded node makes several turns around one of
the distinguished maximal canards, each turn including a jump from the unstable sheet of
the slow manifold to the stable sheet of the slow manifold.

This paper develops further insight into the local geometry of flows past folded nodes.
Il’yashenko [1] determined a system of first approximation for folded singularities whose
low order terms depend upon a single parameter a. The derivation of the system of first
approximation involves a rescaling of the singular perturbation parameter ε, so the limit
system obtained at ε = 0 does not correspond to a uniform approximation of the original
problem in a neighborhood of the folded singularity. It represents the behavior of the original
problem in an ε-dependent neighborhood of the folded node. We observe that when the
parameter a in the system of first approximation is set to zero along with ε, the system
has two integrals of motion. When a is negative with small magnitude, we use perturbation
methods to give approximations to the more complex canards described above. This is
augmented by numerical computations of the systems of first approximation with ε = 0 that
identify how the stable and unstable slow manifolds of the system meet at a cross-section
passing through the folded node. Using the insight from these computations, we prove that
the number of maximal canard trajectories is unbounded as the parameter in the system of
first approximation approaches zero. We present numerical calculations that visualize the
phase portrait of trajectories passing through the folded node and show the location of the
maximal canards.

2 Background

Arnold, Il’yashenko, Rozov, Nejshtadt and Zvonkin [1] reviewed the theory of relaxation
oscillations. We describe the setting of this paper using their perspective. A slow-fast vector
field has the form

εẋ = f(x, y, ε)

ẏ = g(x, y, ε)
(1)

with x ∈ Rm and y ∈ Rn. We restrict attention to the case that the fast variable x ∈ R, the
slow variables y ∈ R2. We also assume that the system is generic within the class of smooth
slow-fast systems with one fast and two slow variables. The limit ε → 0 is a differential
algebraic equation. The solutions of f = 0 form a surface, called the critical manifold C of
the system. In generic slow-fast systems, C is indeed a manifold and at regular points of its
projection onto the plane of slow variables (fx 6= 0) the differential algebraic equation can
be reduced to an ordinary differential equation, called the slow flow, by the implicit function
theorem. The regular points of the critical manifold form stable and unstable sheets on
which fx is negative and positive, respectively. The singularities of the projection of C onto
the plane of slow variables is the fold curve S of the system. In generic systems, except for
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isolated cusps, the points of S are fold singularities [6] of the projection restricted to C. S is
a smooth curve at its fold points.

The direction field of the slow flow can be extended to the fold points. As a vector field,
this requires a time-rescaling of the slow flow that vanishes on the fold curve and reverses the
orientation of trajectories on unstable sheets of the critical manifold. We continue to call this
rescaled equation the slow flow of the system. Due to the singularity of the time rescaling,
the slow flow of generic systems may have equilibrium points on their fold curves. These
equilibrium points are called folded singularities, pseudo-singular points [3] or fold points
that violate the normal switching conditions [8]. In terms of the system (1), their defining
equations are f = fx = fy · g = 0. Depending on whether the equilibria of the slow flow
are saddles, nodes or foci, the folded singularities are called folded saddles, folded nodes, or
folded foci. The folded nodes are the principal topic in this paper.

A local model for folded singularities is given by the system

εẋ = y − x2 + ξ

ẏ = az + bx+ η

ż = 1 + ζ

(2)

with a 6= 0, b 6= 0 and ξ, η, ζ of higher order. Scaling of the coordinates (x, z, t) by
√
ε

and y by ε eliminates ε from the left side of the equation for ẋ and leaves ξ, η, ζ with order
O(
√
ε). Folded nodes whose slow flows have stable equilibrium points are characterized by

a < 0, b < 0 and 0 < 1 + 8a/b2. Further scaling of the coordinates (x, y) makes |b| = 1.
Il’yashenko [1] called the result of these scale changes the system of first approximation at a
folded singularity. He proved that the generic folded singularity can be transformed to the
form

ẋ = y − x2 + ξ

ẏ = az + bx+ η

ż = 1 + ζ

(3)

with |b| = 1 by smooth ε-dependent coordinate transformations that preserve the foliation
by subspaces of fast variables. The limit as ε → 0 of the system of first approximation can
be written as

ẋ = y − x2

ẏ = az ± x
ż = 1

(4)

A stable folded node occurs when the sign of x in the second equation is negative, a < 0 and
1 + 8a > 0. We henceforth restrict ourselves to this case without explicitly restating these
properties of (4).
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3 The System of First Approximation: Geometry

We study phase portraits of the systems (4) and (2) in the remainder of this paper. Properties
of (4) that are structurally stable will be valid for the system (3) when ε > 0 is sufficiently
small. Well established theory for slow-fast systems proves that trajectories of (2) that are
not close to the fold curve along the z-axis will either tend to an ε-neighborhood of the critical
manifold or to infinity on the fast time scale. Truncating the equations (2) by dropping the
terms ξ, η, ζ, setting ε = 0, rescaling time and using (x, z) as coordinates on the critical
manifold, motion along the critical manifold is approximated by trajectories of the slow flow
equations

ẋ = az + bx

ż = 2x
(5)

This is a linear system whose solution is elementary. With b = −1, there are two negative
eigenvalues −1/2±

√
1 + 8a/2 and their eigendirections both have negative slope. The weak

stable direction is along the eigenvector that is closer to the z-axis. Note that trajectories
in the (x, z) plane with initial conditions between the fast eigenvector and the negative z-
axis approach the origin tangent to the weak eigenvector, while trajectories between the fast
eigenvector and the positive x-axis cross the x-axis before reaching the z-axis. Trajectories
with initial conditions on x = 0, z < 0 advance into the half plane x > 0 and approach the
origin along the weak eigendirection.

Maximal canards of (2) are defined to be trajectories that remain on the slow manifold
for all time. Since the coordinate z increases at unit rate in the three dimensional flow of
(2) and the solutions of (5) are defined for all time, the maximal canards will cross every
plane z = c, c constant, close to the critical manifold. We develop a strategy to compute
the maximal canards by locating the intersections of the stable and unstable sheets of the
slow manifold with z = 0. Initial conditions in the plane z = −c will approach the slow
manifold on the fast time scale and follow it, staying close to a trajectory of the slow flow
until they reach the vicinity of the fold curve. This is embodied in the existence of a strong
stable foliation of the slow manifold [5]. Each trajectory with initial conditions in the critical
manifold and z = −c lies in a leaf of the strong stable foliation of the slow manifold. Since
the slow flow crosses the negative z-axis pointing away from the fold, the only places that
the trajectories starting at z = −c can approach the fold curve are near the origin or with
z > 0. Roughly speaking, the trajectories that lie between the fast eigendirection and the
negative z-axis approach the origin, while the trajectories between the fast eigenvector and
the positive x-axis will reach the positive z-axis. The trajectories that reach x = 0 with z > 0
flow to infinity in finite time along curves that are almost parallel to the negative x-axis.

To find the maximal canards, we use numerical integration to follow trajectories of the
system (4) with initial conditions on the curve that is the intersection of the critical manifold
y = x2 with a plane z = −c. We compute the intersections of these trajectories with
the plane z = 0. If c is sufficiently large, the trajectories approach the slow manifold and
follow it to its intersection with z = 0. Since the trajectories follow the stable sheet of the
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slow manifold, their endpoints give an approximation to Zs, the intersection of the stable
slow manifold with z = 0. Note that the system (4) has the time reversing symmetry
σ(x, y, z, t) = (−x, y,−z,−t). The plane z = 0 is invariant under the symmetry σ, so
Zu = σ(Zs) will be the intersection of the unstable slow manifold with z = 0. The points of
intersection of Zs and Zu lie on maximal canards since they arrive on trajectories lying in the
slow manifold and their forward trajectories lie on the unstable sheet of the slow manifold.
Figure 1 gives this approximation to Zs and Zu = σ(Zs), computed with c = −200 and
a = −0.002. Figure 2 shows a blow-up of the spirals near their cores. There appear to be
approximately 50 transverse intersections of Zs and Zu, all on the y-axis. The spirals in the
figure suggest a readily discernible pattern to the structure of Zs and Zu. We use perturbation
methods in the next section to explore these patterns in the limit that a approaches 0.

4 Perturbation analysis

The sign of a in system (4) determines whether there is a folded node or saddle. At the
transition a = 0, the system separates, with the motion in the (x, y) directions independent
of z. Moreover, the (x, y) motion of the system is reversible (has a time-reversing reflectional
symmetry) and has the first integral

H(x, y) = exp(−2y)(y − x2 +
1

2
)

The level curve H = 0 is the parabola y−x2 + 1/2 = 0. Level curves above H = 0 are closed
curves in the (x, y) plane. The level curves with H < 0 are unbounded and the corresponding
trajectories tend to infinity in finite time, asymptotically parallel to the x-axis. The origin
is a center for the (x, y) subsystem.

For a < 0 of small magnitude, we can use the variation of H along trajectories to help
compute their motion. As long as the trajectories remain in the region where H > 0, we
expect their projections into the (x, y) plane to make loops around the origin. When they
pass into the region where H < 0, they can be expected to tend to infinity in finite time.
Consider the simpler problem

ẋ = y − x2

ẏ = β − x
(6)

with β fixed at a representative value of az in the region of interest. The system (6) rescaled
by the “integrating factor” exp(−2y) to

ẋ = exp(−2y)(y − x2)

ẏ = exp(−2y)(β − x)
(7)

has divergence
−2β exp(−2y)
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Clearly, this divergence vanishes when β = 0, so the Bendixson criterion [7] can be applied to
(7). This criterion determines how the closed trajectories of (7) vary with β when β 6= 0 has
small magnitude. In particular, the distance of a Poincaré map from the identity of (7) is
approximated by the integral of the divergence of (7) over the interior of closed trajectories
of the system with β = 0. Since the divergence has opposite sign to β, all trajectories of (7)
spiral toward or away from the origin. When β > 0, trajectories spiral toward the equilibrium;
when β < 0, trajectories spiral away from the equilibrium. Note also that the divergence is
an exponentially decreasing function of y. Since the level curves of H with H > 0 large are
approximated by segments of the parabola y− x2 + 1/2 = 0 with a horizontal segment along
y = yc, the magnitude of the divergence integral grows slowly with yc when yc is large.

This analysis suggests that in the regime that a < 0 has small magnitude and az > 0
is small, trajectories of (4) spiral toward the z-axis. When z changes sign, the trajectories
begin to spiral away from the z-axis. This picture is only suggestive, however, because z
increases along solutions of (4). Benôıt observed that there are precisely two trajectories of
(4) that are algebraic. These are given by

(x, y, z) = (αt, α+ α2t2, t)

where 2α2 + α− a = 0. Note that when the magnitude of a < 0 is small, the values of α are
approximately −1/2 and a. Introducing coordinates along an algebraic trajectory

ξ = x− αt
η = y − α− α2t2

ζ = z − t
(8)

the system (4) is transformed to

ξ̇ = −2αtξ + η − ξ2

η̇ = −ξ
ζ̇ = 0

(9)

When t is small the linear part of this system has complex eigenvalues, which suggests
switching to polar coordinates in the (ξ, η) plane. With (ξ, η) = (r cos(θ), r sin(θ)), the
system (9) becomes

ṙ = −2αtr cos2(θ) + r2 cos3 θ

θ̇ = −1 + αt sin(2θ) + r cos2(θ) sin(θ)

ṫ = 1

(10)

The cylinder {r = 0, θ, t} is invariant for the system (10), being a blown up image of the
canard trajectory we started from. We are interested in how trajectories of (10) move on
this surface, as this shows us how trajectories of (4) wind around the algebraic trajectories.
Setting r = 0 in (10) gives

θ̇ = −1− αt sin(2θ) (11)
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When t is positive but less than t∗ = −1/α, θ is strictly increasing. At time t = t∗ we have
θ̇ > 0 everywhere except at the points θ1 = −π/4 and θ2 = 3π/4. As we increase t beyond
t∗, each θj splits into two points θj1 and θj2, giving us four zeros of θ̇ at each time t. As
t → ∞ the points θ11 → −3π/4, θ12 → 0, θ21 → π/2 and θ22 → π. The set of zeros of θ̇ on
the infinite cylinder {r = 0, θ, t > 0} will consist of four curves connecting the points θj(t

∗)
and θjk(∞). Since θjk(t) 6= 0 for t∗, t, these curves do not rotate, and the solutions of (11) do
not make a complete rotation when t > t∗. Thus, the only rotations occur when t < t∗. To
estimate how many rotations a solution makes, we observe that equation (11) with 0 < t < t∗

implies
−1 + αt < θ̇ < −1− αt

Integrating this we get

α(t∗)− α(0) ∈ (
3

2α
,

1

2α
)

Therefore, the number of complete rotations is of order O(|1/α|). The same analysis applies
for negative t, so we can conclude that when |t| is small enough, the flow rotates around the
algebraic trajectory with α ≈ a. This rotation takes place for a finite period of time, and the
total number of rotations of nearby trajectories is of order O(|1/α|).

We next argue that initial conditions for the system (4) that start on the y-axis with
y > 0 large do not complete a full rotation around the z-axis. This is more readily seen by
transforming to coordinates with y being replaced by u = y−x2 + 1/2. In these coordinates,
(4) becomes

u̇ = az − 2ux

ẋ = u− 1/2

ż = 1

(12)

and the algebraic trajectories move uniformly along lines: (u, x, z) = (α + 1/2, αt, t). When
az < 0 and ux ≥ 0, u̇ < 0 and ẋ < 0. Thus, the region with u < 0, x < 0 and z > 0 is
invariant. We follow a trajectory with initial condition (u0, 0, 0) on the u-axis with u0 > 0
large. While u remains large, the trajectory stays close to the parabolic surface u+ x2 = u0.
As long as u > 1/2, x continues to increase and u decreases. Thus we reach a point on the
surface u = 1/2 at (1/2, x1, z1) with the magnitude of x1 comparable to

√
u0. As u0 → ∞,

x1 →∞. In the region 0 < u < 1/2, x > 0, z > 0, 1/2 > ẋ > 0 and u̇ < az = at. Therefore,
1/2 − u(t) > a(t21 − t2)/2 > at2/2. Thus, by time t =

√

−1/a, the trajectory must reach

either u = 0 or x = 0. If 2x1 >
√

−1/a, the trajectory reaches u = 0 with x still positive.
Since u̇ < 0 when u = 0 and z > 0, the trajectory never returns to u = 0. In particular, the
trajectory never completes a loop around the z-axis.

The unstable sheet of the slow manifold of system (4) separates trajectories that tend to
∞ with x decreasing from trajectories that cross the plane x = 0 with x increasing. Between
any two points on the y-axis whose trajectories make a different number of turns around the
z-axis for t > 0, there must be a point whose trajectory remains close to the slow manifold
as t → ∞. We have demonstrated that the number of turns varies from 0 to a number
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that is O(−1/a). Therefore, the set of points on the y-axis whose trajectories flow along the
unstable sheet of the slow manifold for all time has cardinality O(−1/a). Using the symmetry
of system (4), the same points have backward trajectories that flow on the stable sheet of
the slow manifold for all time. Summarizing this discussion, we have proved the following.

Theorem: As a ↗ 0−, the truncated system of first approximation for a folded node,
system (4), has an unbounded number of trajectories that remain at a bounded distance
from its critical manifold for all time. There are O(−1/a) such trajectories that intersect the
y-axis.

5 More Geometry and Conjectures

We would like to extend our perturbation analysis to give a more complete picture of the
trajectories of system (4) flowing through the region of a folded node. The plane z = 0 is a
cross-section to the flow that is mapped into itself by the time reversing symmetry σ. We
expect that points starting in this plane either track the unstable sheet of the slow manifold
or tend to infinity in finite time along trajectories that are asymptotically parallel to the
x-axis. Figures 3 and 4 visualize the fate of trajectories with initial conditions in the plane
z = 0 for system (4) with a = -0.002. A grid of 500×500 points was selected in the rectangle
[−1.25, 1.25] × [−0.5, 2] and followed to the intersection of these trajectories with the plane
x = −50. This value of x has large enough magnitude that x will continue to decrease
monotonically on all these trajectories after they pass through x = −50. Figure 3 displays
a pseudocolor plot of the y coordinates of the final points of the trajectory segments as a
function of the (x, y) coordinates of their initial points. There is an apparent discontinuity
in the value of the y coordinate along a spiral that looks like the intersection of the unstable
unstable sheet of the slow manifold with z = 0 displayed in Figure 1. These are indeed
points that flow along the unstable sheet of the slow manifold for a long time. Points on
the convex side of the discontinuity leave the unstable sheet with x decreasing monotonically
toward ∞. Points on the concave side of the discontinuity make an additional turn around
the algebraic canard after they leave the unstable sheet for the last time, then head toward
∞ with a small value of y. Figure 4 displays a pseudocolor plot of the z coordinate of the
final points of the trajectory segments as a function of the (x, y) coordinates of their initial
points. Darker points have terminal points with larger values of z, and hence take longer to
reach the plane x = −50. Here the extra time associated with flowing along the unstable
sheet of the slow manifold is not resolved near the discontinuities of the spiral. Instead, one
sees the contribution to the time length of the trajectory from making an additional turn
around the algebraic canard. The “tongues” that are visible in the picture illustrate that the
points closer to the unstable slow manifold take longer to reach ∞ than the points that are
farther away. Figures 3 and 4 together give a relatively complete picture of how trajectories
with initial conditions evolve in forward time. The corresponding picture for the evolution
of trajectories in backward time is obtained by reflecting these pictures in the y-axis. Based
upon these pictures, we make the following conjecture.
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Conjecture: Assume that a < 0 has small magnitude. All solutions of system (4) that
are defined for all time lie on the intersection of the stable and unstable sheets of the slow
manifold and are symmetric with respect to the symmetry σ. With possibly the exception
of the algebraic solution that intersects the y-axis near y = a, all of the intersections of the
stable and unstable sheets of the slow manifold in the plane z = 0 are transverse.

This note analyzes system (4). However, since the distinguished canards persist when
higher order terms are restored to the system of first approximation [4], we believe that the
dynamics we have described apply to all systems with folded nodes.
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Figure 1: Zs and Zu, the intersections of the stable and unstable sheets of the slow manifold
of the system (4) with the plane z = 0. The parameter a = −0.002. To obtain Zs, trajectories
with initial conditions along the curve (x, x2,−50), 0 < x < 25 were computed until t = 50.
The unstable sheet was obtained by applying the symmetry σ to Zs.
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Figure 2: A small portion of the spirals in Figure 1 near their cores.
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Figure 3: Trajectories starting on the plane z = 0 are computed until they intersect the plane
x = −50. The color intensity of each point in the figure is determined by the y coordinate
of the endpoint of the trajectory segment. Darker colors correspond to larger values of y.
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Figure 4: Trajectories starting on the plane z = 0 are computed until they intersect the plane
x = −50. The color intensity of each point in the figure is determined by the z coordinate of
the endpoint of the trajectory segment. Darker colors correspond to larger values of z.
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