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Abstract

Relaxation oscillations are periodic orbits of multiple time scale dynamical systems

that contain both slow and fast segments. The slow-fast decomposition of these orbits is

defined in the singular limit. Geometric methods in singular perturbation theory clas-

sify degeneracies of these decompositions that occur in generic one parameter families

of relaxation oscillations. This paper investigates the bifurcations that are associated

with one type of degeneracy that occurs in systems with two slow variables, namely

orbits that become homoclinic to a folded saddle.

1 Introduction

This paper investigates three dimensional dynamical systems of the form

εẋ = f(x, y, z)

ẏ = g(x, y, z)

ż = h(x, y, z)

(1)

These systems are known as singularly perturbed or slow-fast vector fields. The systems have
two time scales with ε the ratio of time scales. We call x the fast variable and y, z the slow
variables. Rescaling time by setting τ = εt in equation (1) gives the layer equations

x′ = f(x, y, z)

y′ = εg(x, y, z)

z′ = εh(x, y, z)

(2)
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We call the equation x′ = f(x, y, z) the fast subsystem. In the singular limit ε → 0, (1) is
the differential algebraic equation

0 = f(x, y, z)

ẏ = g(x, y, z)

ż = h(x, y, z)

(3)

The algebraic equation f(x, y, z) = 0 defines a surface called the critical manifold C. On
the critical manifold, the differential-algebraic equation reduces to an ordinary differential
equation that defines the slow flow after a rescaling introduced below.

Neither (3) nor (2) captures the limits of solutions of (1) for ε > 0. The trajectories in-
stead converge to objects that are called candidates[3, p. 68]. Candidates are concatenations
of trajectory segments of (3) on the critical manifold and trajectories of the layer equations.
The partition of a candidate into these trajectory segments is its slow-fast decomposition.
Relaxation oscillations are ε-dependent families of periodic orbits of (1) that, as ε → 0,
converge to candidates with both slow and fast segments. We characterize below what we
mean by non-degenerate slow-fast decompositions of candidates in terms of transversality
conditions that relate the slow flow to the geometry of the critical manifolds.

Regular points of the critical manifold C are defined as those that satisfy the inequality
fx 6= 0. The stability of the regular points with respect to the fast subsystems is determined
by the sign of fx, with stability if fx < 0 and instability if fx > 0. The fold curve S of the
critical manifold C is the set of points (x, y, z) that satisfy fx(x, y, z) = 0. The fold curve
can also be described as the set of singularities of the projection of C onto the plane of slow
variables. The direction field of the slow flow can be extended to include the fold points by
rescaling the slow flow. We differentiate f(x, y, z) = 0 with respect to time, solve for ẋ and
substitute values for ẏ and ż to obtain.

ẋ = −
fzh + fyg

fx
.

Rescaling time by the function −f(x) yields the slow flow equations

ẋ = fzh + fyg

ẏ = −fxg

ż = −fxh,

(4)

which is readily seen to be tangent to the critical manifold. Note that the rescaling reverses
the orientation of trajectories on the unstable sheets of the critical manifold since fx > 0
there. However, candidates are defined to retain their original orientation for (3) before the
time rescaling by −fx.

Equilibrium points of the slow flow on the fold curve of the critical manifold occur when
fzh + fyg = 0. These points are referred to as folded singularities. They can be classified
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as equilibrium points of the two dimensional flow (4) restricted to the critical manifold C.
For example, the linearization of a folded saddle has one positive real eigenvalue and one
negative real eigenvalue. The slow flow is said to satisfy the normal switching conditions
at points where fzh + fyg 6= 0 . Geometrically, the normal switching conditions imply that
trajectories of the slow flow are orthogonal to the fold curve [13, 11].

We impose three conditions on the system (1) throughout the remainder of this paper:

• The critical manifold is a manifold; i.e., 0 is a regular value of f .

• The fold curve, defined by f = fx = 0 is a smooth curve, and fxx = 0 only at isolated
points along this curve.

• The folded singularities are hyperbolic.

These conditions are generic within the class of smooth slow-fast systems with two slow
variables and one slow variable [1], and we assume that they are satisfied throughout the
remainder of the paper.

Let p be a point of the fold curve where fxx 6= 0 and the normal switching conditions
are satisfied. Then p is a semi-stable equilibrium point of its fast subsystems; i.e., p is the
α-limit set of one trajectory and the ω-limit set of another trajectory for the one dimensional
fast subsystem. If a trajectory of the slow flow arrives at p, then another trajectory of (3)
arrives at p from the opposite side of the fold curve on the critical manifold C. Therefore,
there is only one candidate that continues from p, namely the fast trajectory whose α-limit
set is p. If this trajectory is bounded, then its ω-limit set is another point q of C. We define
J(p) = q on the set where fxx 6= 0 and the normal switching conditions are satisfied, and
call J the jump map of the fold curve. The jump map is defined on an open set of the fold
curve, and it is smooth at p if J(p) is a regular point of C. Within this framework, we say
that the slow-fast decomposition of a relaxation oscillation is nondegenerate if it satisfies the
following two conditions:

• Transitions from slow to fast segments occur at points p where fxx 6= 0 and the normal
switching conditions are satisfied. Thus, the jump map J(p) is defined.

• J(p) is a regular point of C and the image of J is transverse to the slow flow at p.

We remark that the set of slow-fast systems with relaxation oscillations satisfying these
conditions is open, but it is not dense in the space of slow-fast systems. In particular, there
are open sets of systems that have relaxation oscillations containing folded-nodes[3, 8, 14].
We do not consider such relaxation oscillations in this paper.

Our primary interest is in understanding bifurcations of one parameter families of relax-
ation oscillations. We assume that the system (1) depends upon an extrinsic parameter λ
as well as its intrinsic parameter ε. If γλ,ε is a family of relaxation oscillations, we study
bifurcations of γ with varying λ while ε is small. In the singular limit, degeneracies of the
slow-fast decomposition can give rise to bifurcations. There are several types of degeneracies
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that occur within generic one parameter families []. A separate analysis of the bifurcations
associated to each type of degeneracy is needed. We consider here bifurcations associated to
the degeneracy in which a candidate contains a folded saddle. Examples are the homoclinic
bifurcations in the reduced system of the forced van der Pol equation [10, 4]. These are
discussed in Section §4 below.

2 Folded saddles

Folded saddles in three dimensional slow-fast systems have been analyzed by Benoit [2] with
techniques from nonstandard analysis and by Szmolyan and Wechselberger from a geometric
perspectiv[qe [13]. See also Arnold et al. [1] and Guckenheimer [7]. The local analysis of
folded saddles describes the geometry of the flow of the “full” three dimensional system near
the folded saddle.

The flow around the folded saddle can be approximated by a simpler system. Through
a combination of linear and near-identity coordinate transformations, system (1) can be
transformed into

εẋ = y − x2 + O(εx, εy, εz, xy2, x3, xyz)

ẏ = az + bx + O(y, ε, z2, xz, x2)

ż = 1 + O(x, y, z, ε),

(5)

in the neighborhood of a folded saddle [1]. By using the rescaling x → ε1/2x, y → εy,
z → ε1/2z, and t → ε1/2t, and dropping the higher order terms, we obtain the system of first
approximation:

ẋ = y − x2

ẏ = az + bx

ż = 1.

(6)

System (6) provides a local model for the folded saddle that we use in a manner analogous
to the use of the linearization of an equilibrium point as a local model for the flow near a
hyperbolic equilibrium. Thus, the dynamics of (6) are a central component of the analysis
of bifurcation at folded saddles. We shall also use the system

εẋ = y − x2

ẏ = az + bx

ż = 1.

(7)

that is an ε dependent scaling of (6).
The coefficients a and b in (6) are functions of f, g, h that can be computed from its

linearization at the folded saddle. If we rewrite (5) in terms of the variables x and z and
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rescale time, as was done previously for (1) and linearize, we get

ẋ = bx + az,

ż = 2x
(8)

The eigenvalues of the linear system (8) depend on the parameters a and b. This system
has a saddle at the origin if a > 0. The sign of b plays an important role in determining the
bifurcations in the full system.

The critical manifold of systems (5) and (7) are close to the paraboloid y = x2, and their
fold curves are close to the z-axis. The theory of normal hyperbolicity implies that (7) has
a unique invariant surface Sa that remains at a bounded distance from y = x2, x > 0 as
trajectories are followed backward in time and a unique invariant surface Sr that remains at
a bounded distance from y = x2, x < 0 as trajectories are followed forward in time. These
surfaces are the stable and unstable sheets of the “true” slow manifold of (7), respectively.

The system (6) has two exact solutions

x(t) = αt

y(t) = α + α2t2

z(t) = t,

where α is one of the roots of the equation

2α2 − bα − a = 0. (9)

The two exact solutions are the maximal canard and the faux maximal canard corresponding
to the roots αn and αp, the positive and negative roots of (9), respectively. Canards are
solutions that contain segments of positive length near Sr. Clearly, the maximal canard
lies in the intersection of Sa ∩ Sr. Using a variational argument, Benoit [3] proved that the
intersection of Sa ∩ Sr is transverse.

For our purposes, we need additional information about the flow of system (1) near
a folded saddle. In particular, we want to study the map that describes the passage of
trajectories through a neighborhood of the folded saddle. Since we do not have analytic
expressions for the flow of even (6), we resort to numerical computations of this system. We
use the system (7) as a model, relying upon the theory of parameter dependent blowups [13],
to compare the flows of (1) and (7).

The flow of (6) is transverse to sections with z constant, so we introduce cross-sections at
z = z0 < 0 and z = z1 > 0 and integrate the system between these sections. We know that
all the solutions starting in a neighborhood of the critical manifold for a value of z0 < 0 with
large magnitude are attracted to an exponentially small neighborhood of the slow manifold,
so the image of the map along trajectories will have an image that is almost one dimensional.
Figure 1 depicts this flow with z0 = −5, z1 = 3, a = 3 and b = −1, showing portions of
trajectories that begin on the critical manifold at z0 = −5 between the planes z = −5 and
z = 3. Figure 2 shows projections of the flow of (6) onto the (x, z) plane.
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Figure 1: This figure illustrates solutions to (6). The red and blue curves are the maximal
canard and faux maximal canard, respectively. The mesh represents the critical manifold of
(1). The remaining curves show trajectories starting in z = z0=-5 and ending in z = z1 = 3.
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Figure 2: Flow of system (6) projected onto the (x, z) plane. The green dashed lines are the
eigenspaces of the slow flow, and the solid blue lines are numerical solutions to system (6)
(a) a = 3, b = 1, (b) a = 3, b = −1.
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For system (7), we denote the map along trajectories between z = z0 < 0 and z = z1 > 0
by Ψε and the corresponding map for (8) we call Ψ0. We analyze Ψ0 as an approximation
to Ψε as ε → 0. The results depend crucially upon the sign of b. The eigenvalues of (8) are
µ± = 1

2
(b±

√

(b2 + a) and the corresponding eigenvectors are (µ±/2, 1). The right half plane
x > 0 corresponds to the stable sheet Sa of the slow manifold. The stable manifold of the
saddle point of Ψ0 has a separatrix in the fourth quadrant. Trajectories below this separatrix
flow to the fold curve along the z-axis, while trajectories above the separatrix remain in the
half plane x > 0. Thus, the map Ψ0 is defined above the separatrix and has a singularity
of the form (x − xs)

α. Here xs = µmz0/2 is the value of x at the intersection of the stable
manifold of the saddle with the cross-section z = z0 and α = −µm/µp is the magnitude of
the ratio of the stable eigenvalue to the unstable eigenvalue. When b > 0, α < 1 and the
slope of Ψ0 approaches ∞ as x → x+

s . When b < 0, α > 1 and the slope of Ψ0 approaches 0
as x → x+

s .
To represent canards in the slow flow (8), we follow the stable manifold of the saddle

through the origin into the second quadrant. When the trajectory reaches its jump point,
it jumps from the unstable sheet of the slow manifold to the stable sheet parallel to the x-
axis; i.e., the point (x, z) jumps to (−x, z). From (−x, z) the trajectory resumes its motion
under the slow flow. See Figure 3. We can regard the canards as appending a vertical
segment to the graph of Ψ0. In the case that b > 0, the slope of the stable manifold has
smaller magnitude than the slope of unstable manifold, so the image of the jumps gives a
curve that lies below the unstable manifold in the first quadrant. Consequently, the vertical
segment we append to the graph of Ψ0 extends down from x1 = µ+z1/2, the value of x at
the intersection of the unstable manifold with the section z = z1. In the case that b < 0,
the slope of the stable manifold has larger magnitude than the slope of unstable manifold,
so the image of the jumps gives a curve that lies above the unstable manifold in the first
quadrant. Consequently, the vertical segment we append to the graph of Ψ0 extends up from
x1 = µ+z1/2, the value of x at the intersection of the unstable manifold with the section
z = z1. The extended graph has a local minimum at the stable manifold as depicted in the
dashed curve of Figure 4.

The map Ψ plays a central role in our analysis of bifurcations of relaxation oscillations
at folded saddles. In the case b < 0, we need to determine how the singular map Ψε changes
as ε → 0. Lacking analytical solutions of system (7), we resort to numerical simulations.
Figure 4 plots data about the map along trajectories for parameter values a = 3 and b = −1
and three different values of ε. With initial conditions starting on the critical manifold in
the cross-section z = −5, we compute the value of x in the cross-section z = 5. The stable
manifold of the folded saddle in the slow flow 8 intersects the initial cross-section at x = 7.5.
It is apparent in these simulations that the map Ψ restricted to a curve of initial conditions
lying on the critical manifold has non-zero second derivative in a neighborhood of its local
minimum.
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Figure 3: The representation of trajectories with canards in the slow flow (8). The stable
manifold of the saddle point p is drawn red, the unstable manifold of p is drawn blue. The
black trajectory reaches the fold curve and makes a jump (dotted). The light blue trajectory
lies on the turn side of the stable manifold. The magenta trajectory proceeds through p
along the stbale manifold, jumps back to the stable sheet of the critical manifold (dotted)
and then continues on the stable sheet. The green ray is the locus of end points for jumps
back from canards on the unstable sheet of the critical manifold to the stable sheet.
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Figure 4: Plots of the singular input-output map for the cases b > 0 and b < 0.

3 Bifurcations of Relaxation Oscillations near Folded

Saddles

This section states the main results in this paper. We combine local models for flow near
a folded saddle with “global returns” to develop a picture of how relaxation oscillations
bifurcate when they approach a folded saddle. This type of analysis was pioneered by
Silnikov in his analysis of (single time scale) systems with homoclinic orbits to focal saddles
[12]. We begin by introducing terminology that distinguishes different types of families of
relaxation oscillations that approach a folded-saddle.

Consider the singular limit (3) of system (1). Assume that there is a folded saddle p
with stable manifold W s(p) and unstable manifold W u(p) for the slow flow. Let Σ be a cross
section at q to W s(p) on the stable sheet of the critical manifold. See Figure 3. Points that
start on Σ to one side of q flow directly to the fold curve and then jump, while points on
the opposite side of q follow W u(p) away from p. We call these the jump and turn sides of
W s(p), respectively. Relaxation oscillations of (1) that come close to p will have fixed points
for the return map θ of Σ. The map θ has a discontinuity at q due to the different directions
taken by trajectories on the jump and turn sides of W s(p). We have θ′(x) → ∞ as x → q
on the jump side of q [10], while the limit of θ′(x) as x → q on the turn side of q depends on
the trace of the Jacobian of the (rescaled) slow flow at p. In the case of positive trace, the
limit is ∞, while in the case of negative trace, the limit is 0.

Consider the system (1) with an active parameter λ that we vary in addition to ε. We
denote these systems by Xλ,ε and assume that there is a family of relaxation oscillations γλ,ε

that contains the folded saddle p in its closure. We want to determine what types bifurcations
to expect in generic families. Typically, such families will have a portion that consists of
nondegenerate relaxation oscillations and a portion consisting of relaxation oscillations that
contain canards. In the singular limit, the orbits containing canards have the same parameter
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λc. The candidates with canards contain varying portions of the unstable manifold of p on
the unstable sheet of the critical manifold. It might happen that there are bifurcations
that occur within the interior of the family of orbits with canard segments, but that is not
our concern here. Here we focus upon bifurcations of periodic orbits in the family that
have limits at the transition between the nondegenerate relaxation oscillations and those
containing canards.

Families on the jump side of W s(p) will not have bifurcations at the transition between
nondegenerate relaxation oscillations and relaxation oscillations containing canards. The
return map θ on the jump side of W s(p) has vertical extensions that prolong a steep portion
of the graph of θ without creating turning points. As λ varies, extended graphs with fixed
points on the vertical segments correspond to relaxation oscillations with canards. Similarly,
if the Jacobian at p has positive trace, families on the turn side of W s(p) will not have
bifurcations at the transition between nondegenerate relaxation oscillations and relaxation
oscillations containing canards. In the last section, we have shown that the vertical extensions
of θ on the turn side also prolong a steep portion of the graph of θ without creating turning
points.

In the remaining case of families of relaxation oscillations on the turn side of W s(p) and
negative trace for the Jacobian at p, θ has a local extremum and there will be bifurcations.

Conjecture 1 Let γλ,ε be a generic family of relaxation oscillations for the slow-fast vector
field Xλ,ε with two slow and one fast variable. Assume that

• The slow-fast decompositions of γλ,0 are nondegenerate for λ < λ0.

• As λ → λ0, the candidates γλ,0 approach a candidate γ0 that is a closed curve containing
segments of the stable manifold W s(p) and unstable manifold W u(p) of a folded saddle
p on the stable sheet of the critical manifold.

• The trace of the Jacobian at the folded saddle p is negative.

• The intersections of W s(p) and candidates that begin on W u(p) with the cross-section
Σ on the critical manifold cross transversally at λ = λ0 as λ varies.

Then γλ,ε undergoes either saddle-node bifurcation of periodic orbits or period doubling bi-
furcation as λ varies near λ0, ε > 0 is small. The bifurcating periodic orbits tend to γ0 as
ε → 0. Which case occurs depends upon the sign of the return map θ for the nondegenerate
relaxation oscillations. If the orbits on the turn side of W s(p) return with positive slope,
then the families have a period doubling bifurcation. If the orbits on the turn side of W s(p)
return with negative slope, then the families have a saddle-node of periodic orbits bifurcation.

This conjecture is based upon the numerical simulations described in the previous section.
We interpret those results as demonstrating that the return maps for the family can be
rescaled in the vicinity of the stable manifold of the folded saddle so that they converge
to “blown up” one dimensional return maps for the singular limit that have nondegenerate
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critical points. With our assumptions and conjectures, the blown up return maps in the
singular limit are generic families of one dimensional maps. While this argument can be
amplified beyond these remarks, a proof of these conjectures depends upon verification of
the numerical results we have obtained for flow past the folded saddle.

4 Horseshoes

The period doubling bifurcations described in the previous section are at the beginning of
cascades that produce horseshoes. We describe how this happens in this section. Of the cases
considered in the previous section, the only one that exhibits horseshoes in the transition
region between regular orbits and canards is the one with negative trace Jacobian and a
return map for which the slope at the turn side trajectories is positive.

We regard the return maps θ for the full system as perturbations of one dimensional
maps. The fast contraction along the stable sheets of the slow manifold will be stronger
than any expansion that occurs during the slow flow along these sheets, during jumps or in
the transition region where canards begin to form. The Jacobian of the return maps for the
transition regions will be exponentially small. More specifically, there is a constant c̄ > 0
such that det(Dθ) < exp(−c̄/ε). We assume that outside of regions where θ has a fold that
there is a strong contracting foliation, and that projection along this foliation produces a
one dimensional map θ̄ whose dynamical properties determine those of θ. Now, θ and θ̄ are
compositions of transition maps past the folded saddle with a smooth diffeomorphism. The
expansion and folding of θ̄ will be dominated by the flow past the folded saddle, and we
model this with the maps Ψε.

Our goal is to identify parameters for which the maps θ have chaotic invariant sets close
to the stable manifold of the folded saddle. For this purpose, we apply the extensive theory
of one dimensional maps [5] to θ̄. We seek maps θ̄ that have expanding invariant sets that
are conjugate to subshifts of finite type. The simplest siutation is that there would be two
disjoint subintervals A, B with A∪B ⊂ θ̄(A) and A∪B ⊂ θ̄(B), but this will not hold in the
transition region that we study because θ̄ has only one fixed point in this region. Instead,
we look for disjoint subintervals A, B with B ⊂ θ̄(A) and A ∪ B ⊂ θ̄(B). This weaker
requirement guarantees that there will be a subshift with transition map

(

11
10

)

(10)

If zc denotes the critical point of θ̄, the existence of such intervals, depends upon the first
three iterates of zc. These should be ordered so that θ̄(zc) < zc < θ̄3(zc) < θ̄2(zc). Then the
intervals A = [θ̄(zc), zc] and B = [zc, < θ̄2(zc)] have the desired images.

Let z be coordinate along a curve I on the slow manifold of (1) that cuts the stable
manifold of the folded saddle p transversally. There are three segments for I and its image
that we consider:
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Figure 5: The graph of the return map θ for a parameter value at which there will be a
chaotic invariant set.

• the regular trajectories on the turn side of W s(p) where the slope of θ is zα with −α
the ratio of the eigenvalues at the folded saddle.

• a neighborhood of radius O(ε1/2) where numerical simulations of the system (7) indicate
that θ̄ has a critical point zc with nonzero second derivative.

• a canard region where the slope of the return map is exponentially large; i.e of magni-
tude O(ε(c/ε))

See Figure 5. If ∂λθ̄ + ∂λz θ̄/∂zzθ̄ is nonzero, then the distance zc − θ̄(zc) depends in a non-
singular way upon λ. We can achieve values of θ̄2(zc)−zc that are O(1) for values of zc− θ̄(zc)
that are O(ε)1/2. In this case, θ̄−1(zc)− zc is O(ε)1/4, so we will have zc < θ̄3(zc) < θ̄2(zc) as
desired.

We would also like to verify that the chaotic invariant sets we identify are hyperbolic.
To do so, we examine θ̄′ on intervals contained in [θ̄(zc), zc] and (θ̄2)′ on intervals contained
in [zc, θ̄

2(zc)]. There is z3 ∈ [θ̄(zc), zc] with θ̄(z3) ∈ [θ̄(zc), zc], θ̄2(z3) ∈ [zc, θ̄
2(zc)] and

θ̄3(z3) = z3. We can take A = [θ̄(z3), z3] and B = [θ̄−1(z3), θ̄
2(z3)]. As zc − θ̄(zc) increases,

the slope on A becomes exponentially large, while the slope on B is at least O(ε1/2). These
estimates suggest that θ̄ will be expanding on the invariant set contained in A∪B. Therefore,
we conjecture that the period doubling bifurcations described in the preceding section will
be followed by cascades producing chaotic invariant sets when ε is sufficiently small.

5 The Forced van der Pol System

In this section, we apply the theory described in §3 to the forced van der Pol equation,
written as as the following vector field on R

2 × S1:

εẋ = y + x −
x3

3
ẏ = −x + a sin(2πθ)

θ̇ = ω.

(11)

We regard S1 = R/Z and use coordinates [0, 1] for S1, understanding that the endpoints
are identified. We have studied the dynamics of the forced van der Pol equation previously
[10, 4], including computations of bifurcations in it reduced system that produce homoclinic
orbits to a folded saddle.

The rescaled slow flow of equation (11) is the vector field

θ′ = ω(x2 − 1)
x′ = −x + a sin(2πθ).

(12)
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on S1 × R. The vector field (12) is obtained from the forced van der Pol equation (11)
by differentiating the algebraic equation y = x3/3 − x of the critical manifold to obtain
ẏ = (x2 − 1)ẋ, substituting the result into the van der Pol equation (11) and rescaling time
by (x2 − 1). Note that with this change of coordinates, time has been reversed for |x| < 1.
The equilibrium points of the slow flow lie at the points (θ, x) = (± sin−1(1/a)/2π,±1).
Here sin−1 is regarded to be a double valued “function” on (−1, 1). If a > 1, there are four
equilibrium points, two of which are saddles. In this system, the Jacobian of the saddles of
the slow flow always have negative trace.

The slow flow of the forced van der Pol equation (12) contains a symmetry, namely
T (θ, x) = (θ + 1

2
,−x), that can be exploited when defining the global return map. We define

a half return map H = (TJ+P+), where T is the symmetry operator, P+ : S−2 → S1 is a
map that follows the flow along the critical manifold from the circle x = −2 to the circle
x = 1, and J+ : S1 → S−2 approximates the fast subsystem, by imposing a jump from the
fold on the critical manifold from x = 1 to x = −2. It can be shown [9] that the square of
this half return map H defines a global return map for the system (12). This map and its
bifurcations were carefully studied in [9].

Homoclinic bifurcations for the slow flow of the forced van der Pol equation can be
described analytically by defining equations for its half return map. In our earlier work we
denoted homoclinic bifurcations on the jump side of the folded saddle as ‘left’ homoclinic
bifurcations and homoclinic bifurcations on the turn side of the folded saddle as ‘right’
homoclinic bifurcations. The turn side homoclinic bifurcations were further delineated by
the number of times the stable manifold of the saddle intersects x = 2 along the homoclinic
orbit. Since we trace of the saddle Jacobian is negative, the slope of the turn side segments
of the half return map approach 0 at their endpoints. Figure 6 shows graphs of the half
return maps for jump side and turn side homoclinic bifurcations in parameter regimes where
H has a single discontinuity. The slope at turn side homoclinic bifurcation is positive. The
slope at turn side homoclinic bifurcations is negative where the homoclinic orbit corresponds
to the second intersection of the stable manifold of the saddle with the line x = 2. This
happens for larger values of a in (12). The canard extensions of the half return map H extend
vertically upward, so the turn side homoclinic bifurcations with positive slope give rise to
period doubling bifurcations while the turn side homoclinic bifurcations with negative slope
give rise to saddle-node bifurcations of periodic orbits in the full system. Note that period
2 orbits of H correspond to either a single symmetric periodic orbit of the continuous time
flow with doubled period, or to a pitchfork bifurcation that produces a pair of asymmetric
periodic orbits whose period has not doubled. In the example that we study, period doubling
of H is period doubling: it produces a single symmetric periodic orbit of the continuous time
flow of period 6.

Figures 7 and 7 show numerical calculations of bifurcation diagrams for the period dou-
bling and saddle-node cases of period 3 orbits of the forced van der Pol system (11), computed
with the program AUTO [6]. In both sets of calculations, ε = 0.002, a is fixed and ω is the
active bifurcation parameter. The period doubling calculations use a = 1.8 while the saddle-

13



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Half period map (mod 1)

ω =  1.2714980947
a =  3.0000000000

θ

H
(θ

)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Half period map (mod 1)

ω =  1.3220255966
a =  2.0000000000

θ

H
(θ

)

(a) (b)

Figure 6: Figure (a) is a graph of the half return map for the forced van der Pol equation
with a jump side homoclinic bifurcation and an infinite slope. Figure (b) is a graph of the
half return map with parameters for which a turn side homoclinic bifurcation occurs with
zero slope. Note the canard extensions are not shown in this figure.

node calculations use a = 3.5. The right hand panels show expanded views of neighborhoods
of the bifurcations in the transition zones. The branch of period doubled, period 6 orbits
bifurcates from the branch of period 3 orbits at the transition between period orbits with
and without canards. The canards that form here are “jump back” canards that lie on the
turn side of the stable manifold of the folded saddle. As predicted, when a = 3.5, there is a
saddle-node bifurcation of periodic orbits that occurs at the transition between orbits with
no canards and orbits with jump back canards. For both families of periodic orbits, there
is a saddle-node bifurcation of periodic orbits that occurs in a region without canards. The
branches of unstable orbits that form at these saddle-node bifurcations continue smoothly
to periodic orbits with jump away canards. Note that there are additional bifurcations that
occur along the family of period doubled orbits “deep” in the region where there are canards
and our theory makes no predictions. These computations provide evidence for the validity
of our conjectures.
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Figure 7: Bifurcations of period 3 orbits in the forced van der Pol system with a = 1.8,
ε = 0.002 and varying ω. There is a period doubling bifurcation that occurs in the transition
between orbits without canards and orbits with jump back canards. Panel (b) shows detail
of this region.
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Figure 8: Bifurcations of period 3 orbits in the forced van der Pol system with a = 3.5,
ε = 0.002 and varying ω. There is a saddle-node of periodic orbits bifurcation that occurs at
the left hand turning point. The transition between orbits without canards and orbits with
jump back canards occurs here. Panel (b) shows detail of this region.
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