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Singular Hopf Bifurcation in Systems with Two Slow Variables*

John Guckenheimer'

Abstract. Hopf bifurcations have been studied intensively in two dimensional vector fields with one slow
and one fast variable [E Benoit et al., Collect. Math., 31 (1981), pp. 37-119; F. Dumortier and
R. Roussarie, Mem. Amer. Math. Soc., 121 (577) (1996); W. Eckhaus, in Asymptotic Analysis 11,
Lecture Notes in Math. 985, Springer-Verlag, Berlin, 1983, pp. 449-494; M. Krupa and P. Szmolyan,
SIAM J. Math. Anal., 33 (2001), pp. 286-314; J. Guckenheimer, in Normal Forms, Bifurcations
and Finiteness Problems in Differential Equations, NATO Sci. Ser. II Math. Phys. Chem. 137,
Kluwer, Dordrecht, The Netherlands, 2004, pp. 295-316]. Canard explosions are associated with
these singular Hopf bifurcations [S. M. Baer and T. Erneux, SIAM J. Appl. Math., 46 (1986), pp.
721-739; S. M. Baer and T. Erneux, SIAM J. Appl. Math., 52 (1992), pp. 1651-1664; B. Braaksma,
J. Nonlinear Sci., 8 (1998), pp. 457-490; Y. Lijun and Z. Xianwu, J. Differential Equations, 206
(2004), pp. 30-54], manifested by a very rapid growth in the amplitude of periodic orbits. There has
been less analysis of Hopf bifurcations in slow-fast systems with two slow variables where singular
Hopf bifurcation occurs simultaneously with type II folded saddle-nodes [A. Milik and P. Szmolyan,
in Multiple- Time-Scale Dynamical Systems, IMA Vol. Math. Appl. 122, Springer-Verlag, New York,
2001, pp. 117-140; M. Wechselberger, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 101-139]. This work
contributes to our understanding of these Hopf bifurcations in five ways: (1) it computes the first
Lyapunov coefficient of the bifurcation in terms of a normal form, (2) it describes global features
of the flow that constrain the types of trajectories found in the system near the bifurcation, (3) it
identifies codimension two bifurcations that occur as coefficients in the normal form vary, (4) it
exhibits complex solutions that occur in the vicinity of the bifurcation for some values of the normal
form coefficients, and (5) it identifies singular Hopf bifurcation as a mechanism for the creation of
mixed-mode oscillations. A subtle aspect of the normal form is that terms of higher order contribute
to the first Lyapunov coefficient of the bifurcation in an essential way.
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1. Introduction. Slow-fast vector fields have the form

et = f(z,y,¢),
v =g(z,y,e),

(1.1)

with x € R™ as the fast variable, y € R" as the slow variable, and ¢ as a small parameter
that represents the ratio of time scales. The set of points satisfying f = 0 is the critical
manifold of the system: slow motion of trajectories can occur only near the critical manifold.
Fenichel theory [14] establishes that there are invariant slow manifolds of the system near
portions of the critical manifold, where D, f is hyperbolic. Moreover, the trajectories on the
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slow manifold approach trajectories of the slow flow y = g(h(y),y,0) on the critical manifold
where h is defined implicitly by f(h(y),y,0) = 0. Points of the critical manifold where D, f is
singular are called fold points. In much of the literature on slow-fast models of neural systems,
the fold points are called “knees” [29].

Hopf bifurcation occurs in the following slow-fast system with one slow and one fast
variable:

e =y —a%/2 — 23/3,

(1.2) .
y=p—z

This system has an equilibrium point at (u, u?/2 4 p3/3) that undergoes a supercritical Hopf
bifurcation as p decreases through zero. The Hopf equilibrium is at the fold of the system.
We also note that the slow flow along the critical manifold has a stable equilibrium on a stable
branch of the critical manifold for g > 0 but an unstable equilibrium on the unstable branch
of the critical manifold for —1 < pu < 0. The periodic orbits that emerge from the Hopf
bifurcation grow explosively from an amplitude that is O(c'/?) to an amplitude that is O(1)
over a range of values of p that has length O(exp(—c/e)) for a constant ¢ > 0 independent
of e. This canard explosion was discovered by Benoit et al. [7] and subsequently analyzed by
Eckhaus [13], Dumortier and Roussarie [12], and others [23, 15].
Consider now another system with one slow and one fast variable:

ek =y —

1.3
(13) y=p—x+ay.

This system also has a Hopf bifurcation, but it occurs when = = ca/2, y = ¢2a%/4, and
p = ca/2—e?%a3 /4. Tts point of Hopf bifurcation is on the critical manifold but displaced from
the fold by a distance that is O(¢). When a # 0, the periodic orbits in the canard explosion
of this system grow monotonically with variations of p like those of system (1.2), but they
become unbounded as p varies over a finite interval. Whether the bifurcation is subcritical
or supercritical is determined by the sign of a. When a = 0, the singular Hopf bifurcation at
= 0 is totally degenerate: system (1.3) has a family of periodic orbits that are level curves
of the function H(x,y) = exp(—2y/e)(y —x?+¢/2). In this case, the parabola H = 0 contains
the stable and unstable slow manifolds of the system, and it bounds the family of periodic
orbits.
The system (1.3) can be rescaled by = = '/2X | y = €Y, and t = /2T to give

X' =Y - X2

1.4

This system can be transformed to the Hopf normal form

) el/2q

(1.5) TV e
0 = /(1 —ea?) + o(r)

rd 4 0(r3),

at the equilibrium.
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System (1.3) is representative of generic singular Hopf bifurcations [2, 3, 8, 25] with one
slow and one fast variable. There are three aspects of the bifurcation that are directly influ-
enced by multiple time scales:

e The bifurcation occurs at a distance that is O(e) from a fold point.

e The periodic orbits emanating from the Hopf bifurcation undergo a canard explosion.

e The slow stable and unstable manifolds of the system cross each other as a varies.
Tangential intersections of the slow stable and unstable manifolds are not bifurcations in
traditional terms, but rather a degeneracy in the slow-fast decomposition of the system [15]
comparable to a homoclinic/heteroclinic bifurcation. Generically, such tangencies occur at
different parameter values from those where the equilibrium point is on a fold curve or at
the Hopf bifurcation parameter value. The crossing marks the transition from parameters at
which the slow stable manifold converges to the equilibrium or periodic orbit and parameters
for which it jumps along the fast direction after approaching the vicinity of the equilibrium.
This transition is one of the most significant changes in dynamical behavior associated with
the singular Hopf bifurcation.

Singular Hopf bifurcations with two slow variables and one fast variable are analogous
to system (1.3) with a single slow variable. There are counterparts to each of the three
properties listed above. Equilibrium points of a system with two slow variables lie on its
two dimensional critical manifold. The folds of the critical manifold form a curve. A stable
equilibrium point of the system (1.1) may approach and cross the fold curve in a generic
manner when a single parameter is varied. If it does so, Hopf bifurcation occurs at a distance
O(e) from the fold curve. Canard explosions also occur, but the dimension of the state space is
now large enough to allow period-doubling and torus bifurcations as the periodic orbits grow.
Section 3 gives examples of each of these bifurcations. In systems with two slow variables
and one fast variable, the slow stable and unstable manifolds are each two dimensional and
therefore can intersect transversally along a trajectory in the three dimensional state space.
These intersections occur for open sets of parameters and are a common feature of systems near
singular Hopf bifurcations. The location of the slow stable and unstable manifold intersections
helps determine whether there are bounded attractors near the singular Hopf bifurcation.

This paper explores the dynamics of singular Hopf bifurcation via analysis of normal forms.
Coordinate changes and scaling suggest a normal form analogous to (1.3), but the normal form
has four coefficients that cannot be scaled to fixed values. If these coefficients are regarded
as parameters (or moduli), then degenerate Hopf bifurcations occur in the system for some
values of these coefficients. Regarding one of the coefficients as a second parameter, the theory
of codimension two bifurcations [18] can be used to investigate the dynamics. In some cases,
higher order terms in € must be retained in a rescaled normal form to obtain nondegeneracy
of the codimension two bifurcations.

Singular Hopf bifurcation with two slow variables has been studied previously in other
papers [3, 8, 25, 27]. The normal form used by Braaksma [8] differs from the one used here:
one difference is that Braaksma’s normal form has “global returns” of trajectories that leave
the vicinity of the equilibrium point in the flow. System (1.2) also has global returns but just
one slow variable. This paper emphasizes the role of singular Hopf bifurcation in the creation
of certain types of mixed-mode oscillations (MMOs). MMOs are oscillations in which there
are small and large amplitude cycles in each period of the oscillation. Singular Hopf bifurca-
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tions produce small oscillations near the equilibrium point that can be combined with global
returns to create MMOs. MMOs appear to have been studied first in chemically reacting sys-
tems [4, 5, 22, 27] and then in lasers [21]. More recently, MMOs have been studied in neural
oscillations [9], where they are sometimes associated with folded nodes [31, 33, 17] as well as
singular Hopf bifurcations. Some of the subsidiary bifurcations analyzed here have been ob-
served in the models of chemical oscillators, but their relationship to singular Hopf bifurcation
does not seem to have been noticed previously. Section 4 discusses the “autocatalator” model
analyzed by Petrov, Scott, and Showalter [28] and Milik and Szmolyan [27].

2. Coordinate changes and normal forms. The goal of this section is to derive a normal
form for a generic system with two slow variables and one fast variable with an equilibrium
point that crosses a simple fold transversally. We denote = as the fast variable and (y, z) as
the slow variables. The fast equation for such a system near a simple fold can be reduced
to e = y — 22 [1], perhaps using a rescaling of time. This is our starting point for deriving
a normal form for singular Hopf bifurcation. We approximate the system by truncating
nonlinear terms in the Taylor series expressions for ¢ and z. The truncated system is further
reduced by noting that if §y = o + Bx + yy + dz, then replacing z by w = a + vy + 6z
makes § = [z 4+ w while w is still an affine function of (z,y,z). We relabel w as z. Hopf
bifurcation occurs when § < 0. Rescaling (z,v, z,t) by (|8]*2, 18], |8>/%,|6]7'/?) makes a
further reduction to the case that 5 = —1. These coordinate transformations yield a truncated
system of the form

55::y—:r:2,
(2.1) y=z-—ux,
Z=—pu—axr—by —cz.

Note that a detailed study of higher degree normal forms for singular Hopf bifurcation with
two slow variables does not appear in the literature. The term singular point is used in
Arnold et al. [1] to refer to folded singularities [15] (pseudosingularities in Benoit [6]) that
are regular points of the vector field (1.1) when € > 0. A final rescaling (z,y,z2,t) =
(eY2X,eY,e'/?Z,e'/2T) and (A, B,C) = (¢'/%a,eb,e'/?¢) eliminates ¢ from the system:

X' =Y - X2,
(2.2) V' =7 - X,
7'=—pu—-AX -BY - CZ.

Our numerical studies and bifurcation analysis will be conducted largely with system (2.2).

Note that A, B, and C tend to zero as ¢ — 0 and that B tends to zero faster than A and

C. The extent to which nonlinear terms in the equations for ¢ and # that have order e!/2

following rescaling influence the dynamics described in this paper has not been investigated.
The “desingularized” slow flow of system (2.1) is

i = —2x(u+ ax + br® + cz),

Tr=z—x.

(2.3)
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This equation is obtained from (2.1) by setting ¢ = 0, differentiating the resulting equation
y—a2 = 0 to obtain ¢ = 24, then eliminating ¢ from the second equation and finally rescaling
the equation by 2zx.

3. Normal form dynamics and flow maps. This section investigates the dynamics of the
systems (2.1) and (2.2). As p varies near zero in system (2.1), the equilibrium point crosses
the fold curve of the critical manifold at the origin. This crossing has been called a folded
saddle-node type 11 by Milik and Szmolyan [27] because the slow flow (2.3) has a degenerate
equilibrium point at this parameter value. The bifurcation in the slow flow is a transcritical
bifurcation. The origin is always a folded singularity (or pseudosingularity) that is a saddle
when p < 0, a node when 0 < p < 1/8, and a focus when 1/8 < p. While the folded
saddle-node appears as the main change in the dynamics of the slow flow, Hopf bifurcations
of the systems (2.1) and (2.2) typically occur at nonzero values of p. The equilibrium point
of system (2.1) undergoes Hopf bifurcation at a value of p that is O(g). Much of the analysis
in this section is devoted to exploring this Hopf bifurcation and the family of periodic orbits
emerging from it.

3.1. Hopf bifurcation. Equilibria of system (2.2) occur at points (X, X2, X.) with u =
—AX, — BXe2 — CX,. The Jacobian at this equilibrium is the matrix

—2X, 1 0
-1 0 1|,
-A -B -C

whose characteristic polynomial is
P(s) = 83+ (C +2X.)s* + (B +2X.C + 1)s + (A + 2X.B + O).
Thus Hopf bifurcation of the system occurs where (B +2X.C + 1) > 0 and
(C+2X.)(B+2X.C+1)=(A+2X.B+C).

Note that (B+2X.C'+1) > 0 is satisfied when B and C are small. Thus, the Hopf bifurcation
locus of system (2.2) is parametrized by the equations

A= BC +2X.,C* +4X%C +2X.,

(3.1) 9
w=—-AX. - BX; -CX,

in terms of the equilibrium position X, and the parameters B,C. If B = 0, then A =
2X.C? +4X2C 42X, and p = —(2X.C? + 4X2C + 2X, + C)X,. Since B is O(¢) while A
and C are O(c'/?), zero eigenvalues of the equilibrium occur near the origin only if a + ¢ is
small in system (2.1).

The program Maple [26] has been used to compute the Hopf normal form of system (2.2).
Consider first the case B = 0. System (2.2) can then be transformed to its Hopf normal form
by rational coordinate changes if A, C, and p are parametrized by X, and w, the magnitude of
its imaginary eigenvalue. Whether the bifurcation is subcritical or supercritical is determined
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by the sign of the first Lyapunov coefficient.! Maple yields the following expression for the
first Lyapunov coefficient:

A X (1202 X2 —4 X2 — 2w + wh +1)
(1-2w? 4w +12w2X.% — 8 X2+ 16 X.*) (16 X — 8 X2 + 24w?X.> — 2w +wh + 1)

Substituting w = /1 +2X.C and X, = 1/8 _202—2+2\/Cé+2c2+1+4cA gives the first Lya-
punov coefficient in terms of A and C. The first Lyapunov coefficient is divisible by A and the
leading order term of its Taylor series is A/4. The leading order term in the expansion of
at the Hopf bifurcation is —A(A + C)/2. Following the rescaling of (2.1), the first Lyapunov
coefficient is O(¢'/2?) and the value of x is O(e).

Interestingly, there is a second term in the first Lyapunov coefficient of system (2.2) that
is O(e'/?) in the case that B # 0 even though B is O(¢). The coordinate transformations to
Hopf normal form are rational if the system is parametrized by w, X., and r, the magnitude of
the real eigenvalue. Maple computes the first Lyapunov coefficient as a rational function P/Q
of r, X, and w. The leading terms in the Taylor series expansion of P and @) as functions
of A, B, and C are 16C°(2B + A? + AC + 2B?) and 64C%(A + O), respectively. If A and
C are O('/?) and B is O(e), the first Lyapunov coefficient is f + ﬁ + o(¢'/2). Thus,
even though B has higher order than A and C' in terms of ¢, it plays a significant role in the
dynamics associated with the Hopf bifurcations of system (2.2).

Two different ways in which the nondegeneracy conditions for the Hopf bifurcation can
fail are that the real eigenvalue r vanishes and that the first Lyapunov coefficient vanishes.
Both of these degeneracies occur for small values of the parameters (A, B,C). When r = 0, a
codimension two saddle-node Hopf bifurcation occurs if appropriate nondegeneracy conditions
are met. The first Lyapunov coefficient vanishes along a surface in the parameter space that
is asymptotic to B = —A(A + C)/2 as € — 0. This produces a generalized Hopf bifurcation,
first analyzed by Bautin. The saddle-node Hopf and generalized Hopf bifurcations of system
(2.2) are discussed in the next two subsections.

3.2. Saddle-node Hopf bifurcations. Saddle-node Hopf bifurcations (also called fold-
Hopf bifurcations) occur at equilibria with both a zero eigenvalue and a pair of pure imaginary
eigenvalues. The parameter values for which system (2.2) has such an equilibrium are given
by A = C(B —1) and u = BC?/4. Alternatively, these can be expressed by the equations
B=(A+C)/C and p = C(A+ C)/4. Since B is of higher order than A and C' in ¢, these
bifurcations are located where A ~ —C.

The truncated normal form of the saddle-node Hopf bifurcation [18] can be written in
polar coordinates as

r=arz,
z= b17“2 + b222,
0 =w.

!The magnitude of the first Lyapunov coefficient depends upon the coordinates used in the eigenspace of
the pure imaginary eigenvalues. Guckenheimer and Holmes [18] and Kuznetsov [24] use different coordinate
systems that yield expressions which differ by a factor of 2. The expression here follows the conventions of
Guckenheimer and Holmes [18].
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The three coefficients a1, b1, bo determine the main features of the dynamics of its unfolding,
for example, whether invariant tori occur close to the bifurcation. Maple calculations yield
the expressions w = 14+ B — C? and

Cc? -1
a1 = 7,
—B
bl - ﬁa
—2B
by = —5

If B > 0, then all of these coefficients are negative, while if B < 0, then aq is negative
and by, by are both positive. Since |b;| < |a1|, these correspond to the cases IVb and III of
Guckenheimer and Holmes [18, section 7.4]. Small invariant tori and chaotic solutions occur
in generic unfoldings of case III.

3.3. Degenerate Hopf bifurcations. Hopf bifurcations are degenerate when their first
Lyapunov coefficient vanishes [24]. Takens [32] described the unfolding of codimension two
degenerate Hopf bifurcations, assuming that the second Lyapunov coefficient does not vanish.
In the unfolding, the Hopf bifurcation makes a transition between subcritical and supercritical
and there is a region with two periodic orbits that annihilate each other in a saddle-node of
limit cycles bifurcation [18].

To find parameters where degenerate Hopf bifurcation might occur, we express the first
Lyapunov coefficient as a rational function of X, A, B,C. Denote its numerator by P. We
then compute the resultant of P and the Hopf polynomial BC' +2X, +4C X2 +2X.C? — A as
functions of X, to obtain a polynomial Ry (A, B, C) that vanishes at degenerate Hopf points:

Ry (A, B,C) =256 C*(—12 A’B — 15 B2 A% + 20 C°A 4+ 16 C?A? + 76 C* A% +- 92 C3 A3
+36C%A* +8CTA+16C5A%2 +8C5A3 +8C A3 +16C?B + 56 BCS
+54C*B —120C*B? — 65C*B? + 36 C*B® + 91 C°B* + 8C'B3
—26C%B? —10C*B* — 85 C%B? — 10 C®B% + 46 C?B® + 4 B2C1°
—32B3C® +55C%B* + 26 C®B+4C°B+8C3A —24 B> — 24 B?
+100C3BA% —144C°B3A — 124 CB3A — 156 CB?A + 22 C? BA?
—32C%B3A% —64CA®B?> + 60 C®*B*A+ 76 C"AB — 52 BC A3
+50BC%A? +4CYAB — 95C*B?A? +172C3B3*A — 170 C®B%A
—244C°B%A
+ 128 C3BA + 148 C°BA + 4 BCA + 192 C*BA?

—210C%B%A% + 14C"B%A).

The leading order terms of Ry (A, B,C) are

~1024C°B (6 B+3 A% — CA+6B*—4C?),
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implying that B ~ (A + C)(4C — 3A)/6 at degenerate Hopf points with (A, B, C) small. For
example, two approximate solutions of Ry (A, B,C) = 0 are (—0.01,0.00013335,0.02) and
(—0.01,0.00005, 0.02).

3.4. Periodic orbits. When A = B = 0 but C # 0, the family of periodic orbits at
1 = 0 is normally hyperbolic. Normal hyperbolicity implies that this surface of periodic
orbits in (X, Y, Z, u) space deforms but does not disappear when A and/or B are perturbed
from zero. For most values of the parameters, the periodic orbits are isolated in the (X,Y, Z)
state space. Continuation methods implemented in AUTO [11] and MATCONT [10] track
the periodic orbits and locate saddle-node, period-doubling, and torus bifurcations as a single
parameter is varied. Continuation methods further track curves of these bifurcations as two
parameters are varied. This subsection presents some results obtained with MATCONT.
Numerical integration has been used to check these continuation calculations and visualize
complex trajectories from the family (2.2).

The first Lyapunov coefficient of the Hopf bifurcation in system (2.2) is %—i—ﬁ_m(gl/ 2),
When the first Lyapunov coefficient is negative, the bifurcation is supercritical, and stable
periodic orbits emerge from the equilibrium. The periodic orbits can bifurcate as they grow
in amplitude. Figure 1 shows four periodic orbits at the beginning of a period-doubling cascade
computed with (4, B,C) = (—0.05,—0.01,0.1) and p taking the values 0.0082, 0.0084, 0.0086,
and 0.008618. As p increases, three period-doubling bifurcations give successive transitions
from the blue orbit to the green, then the red, and finally the thin blue orbit. The Hopf value of
w for these values of (A, B, C) is approximately 0.0008. Figure 2 shows a cross-section (green)
to a quasi-periodic trajectory (blue) with parameter values (A, B, C, 1) = (—0.08,0,0.1,0.001).

L L )
05 1 15

xol

Figure 1. Four periodic orbits of system (2.2) at the beginning of a period-doubling cascade, projected
onto the (X, Z) plane. The heavy blue periodic orbit undergoes a period-doubling bifurcation to give rise to the
red orbit. Two further period-doubling bifurcations yield the thin green and magenta. Parameter values are
(A,B,C) = (-0.05,—-0.01,0.1) and p = 0.0082,0.0084,0.0086,0.008618 for the successive orbits.
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Figure 2. A cross-section to a quasiperiodic trajectory of system (2.2). Parameter values are (A, B,C, u) =
(—0.08,0,0.1,0.001). A portion of the trajectory is drawn as a blue curve. Intersections of the full computed
trajectory with the plane X = 0 with X increasing are plotted in green.

Figure 3 shows a bifurcation diagram for periodic orbits that emerge from a Hopf bifurca-
tion as p varies with (A, B,C) = (—0.09,0,0.1). In this figure, the maximum and minimum
values of x of the periodic orbits are plotted as a magenta curve. Points of period-doubling
and torus bifurcations along this branch are marked and labeled “PD” and “T.” Since B = 0,
the system has a single equilibrium point, and the amplitude of the periodic orbits continues
to grow as p increases. The calculations are inconclusive as to whether this family of periodic
orbits extends to co. When B # 0, system (2.2) has a second equilibrium on its critical
manifold. If A+ C # 0, then the second equilibrium is at finite distance from the origin. It
appears that homoclinic orbits to this equilibrium can terminate families of periodic orbits.
If A+ C # 0, then the second equilibrium of system (2.1) is at finite distance from the origin
and does not play a role in the local behavior of the singular Hopf bifurcation.

Branches of period-doubling and torus bifurcations with varying u and B were computed
with MATCONT 2.3.3 [10] and are shown in blue and green in Figure 4. Low order resonances
of the torus bifurcations are marked by red dots. The three that occur for values of u < 0.03
are labeled with the order of the resonance; the point labeled R2 is the intersection of the two
curves. The curve of torus bifurcations has a sharp bend near p = 0.1, where MATCONT
detects several resonances of different orders as well as a fold of torus bifurcations very close to
each other along the branch. The location of these resonances is indicated by the red marker
at the right side of the figure.

4. Invariant manifolds. Invariant slow manifolds lie within an O(e) neighborhood of nor-
mally hyperbolic critical manifolds of slow-fast systems [14]. In typical settings, invariant
manifolds are not unique, but their distance from each other is O(exp(—c/¢)) for a suitable
¢ > 0. The critical manifold y = 22 of system (2.1) is normally hyperbolic away from the fold



1364 JOHN GUCKENHEIMER

Bifurcation Diagram
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® 0 e T
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-101
_18 L L L L
-0.02 0.00 0.02 0.04 0.06 0.08
mu
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801
60
>~
401
201
— PD
0 — T
20 L L L
-15 -10 -5 0 5 10 15
X
(b)

Figure 3. (a) A bifurcation diagram showing the growth of periodic orbits emerging from a Hopf bifurcation
(labeled “H”) of system (2.2) as p is varied. The mazima and minima of X along the periodic orbits are drawn
as a magenta curve. Torus and period-doubling bifurcations along the family of periodic orbits are labeled “T”
and “PD.” The parameters (A, B,C) = (—0.09,0,0.1). (b) Five periodic orbits within the family, including
those at the torus and period-doubling bifurcations.

curve x = y = 0, with a stable sheet in the half space x > 0 and an unstable sheet in the half
space x < 0. The slow stable and unstable manifolds associated to these sheets of the critical
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1 I I I I I I I I I

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
n

Figure 4. Curves of torus and period-doubling bifurcations in a two dimensional slice of the parameter
space with varying (u, B). The values of A and C are 0.1 and —0.08. The curve of torus bifurcations is drawn
in green and points of second (R2), third (R3), and fourth (R4) order resonance are marked as red dots along
the curve. Additional resonances occur near the red dot at the right-hand bend in this curve. The curve of
period-doubling bifurcations is drawn in blue. The two bifurcation curves intersect at the point of second order
resonance.

manifold are important objects in the phase portrait of the system. Away from the critical
manifold, the vector field is almost parallel to the x axis. The critical manifold and the slow
stable and unstable manifolds separate trajectories on which = decreases rapidly from those
on which z increases rapidly. The region of trajectories flowing from z = 400 to the stable
slow manifold W is denoted M ~, and the region of trajectories flowing toward z = —oo from
the unstable slow manifold W is denoted M. On the fast time scale, trajectories are drawn
toward W7 and away from W{. In many cases, parts of W7 and W lie on the boundary
of the domain of attraction for bounded attractors. This section visualizes these manifolds,
examining their intersections with each other and with the stable and unstable manifolds of
the equilibrium.

4.1. Intersections of stable and unstable slow manifolds. Numerical investigations are
more convenient with the rescaled system (2.2) than with system (2.1). The stable and unsta-
ble slow manifolds of system (2.2) lie close to the parabolic cylinder Y = X? for large values of
| X |, though the theory does not specify how large. The stable slow manifold W is computed
by forward numerical integration starting with initial conditions on a curve parallel to the Z
axis with X suitably larger than /Y, while the unstable slow manifold W is computed by
backward numerical integration starting with initial conditions on a curve parallel to the Z
axis with X suitably smaller than —vY. In the examples below, the initial conditions are
chosen with X = 45 and Y = 10. These trajectories approach W7 and W exponentially
fast, so beyond a transient they give good approximations to the manifolds. Estimates for



1366 JOHN GUCKENHEIMER

how close the trajectories are to W7 and W can be obtained by comparing their distance
from trajectories with initial conditions on the critical manifold since the critical manifold lies
on the opposite side of the slow manifolds from the curves of initial conditions.

Figure 5(a) visualizes portions of the slow stable manifold W (blue) and the slow unstable
manifold W (red) of system (2.2) as bundles of trajectories that begin on the lines X = %5,
Y = 10 until they reach X = F5,Y = 11, or T' = 500. Note that these stopping criteria extend
the stable and unstable slow manifolds beyond the region where they lie close to the critical
manifold. The parameter values used in Figure 5 are (u, A, B,C) = (0, —0.05, —0.01,0.1). The
equilibrium is at the origin for these parameter values. It is on the fold curve and is stable
with eigenvalues approximately —0.0506, —0.0247 4+0.9934:. The strong stable manifold of the
equilibrium tangent to the eigenvector of its real eigenvalue is drawn in green. One branch
of the strong stable manifold with X and Z negative approaches the slow unstable manifold
while the other branch tends to co in the X direction after its projection onto the (X,Y)
plane makes a loop. The manifolds W7 and W appear to intersect transversally along a
single trajectory I" whose intersection with the plane Z = X is depicted in Figure 5(b). In
Figure 5(b), Y/ = Z — X = 0 is the stopping criterion for the trajectories and piecewise

Figure 5. (a) Trajectories approaching and flowing along the slow stable manifold W3 are drawn in blue;
trajectories approaching and flowing along the slow unstable manifold W are drawn in red. The initial condi-
tions for these trajectories lie on the lines defined by X = +5, Y = 10. The magenta curve approrimates the
intersection I' of these two manifolds. The strong stable manifold of the equilibrium point is drawn in green.
The equilibrium point is the forward limit set of the cyan trajectory and the dark blue trajectories above it. The
blue trajectories below the magenta trajectory are unbounded, tending to x = —oo in finite time. Trajectories in
the unstable manifold above the magenta trajectory tend to x = +oo as time decreases. The trajectories in the
unstable manifold below the magenta trajectory tend to a branch of the strong stable manifold of the equilibrium
which itself approaches the slow unstable manifold as time decreases. The slow unstable manifold W' bounds
the basin of attraction of the equilibrium point. (b) The same trajectories approaching W3 and W' are drawn
up to their intersection with the plane Y' = Z — X = 0. It is apparent that the intersection of these manifolds
is transverse. The parameter values are (u, A, B,C) = (0,—0.05, —0.01,0.1).
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linear interpolations of the endpoints of these trajectories are drawn. An approximation to
I is plotted as a magenta curve in Figure 5(a). Trajectories in W¢ above I' approach the
equilibrium point, while trajectories below I' tend to —oo along the X direction. The lowest
trajectory in W7 above I' is drawn in cyan to distinguish it from the others; the highest
trajectory in W below I is drawn in black. In W, the trajectories above I' tend to oo along
the X direction while the trajectories below I' spiral around the strong stable manifold of the
equilibrium point. These observations motivate the conjecture that W is the boundary of
the basin of attraction of the equilibrium point.

Figure 6. (a) Trajectories approaching and flowing along the slow stable manifold W3 are drawn in blue;
trajectories approaching and flowing along the slow unstable manifold Wg' are drawn in red. The initial con-
ditions for these trajectories lie on the lines defined by X = £5, Y = 10. A stable periodic orbit is drawn
in green. All of the computed trajectories in W reach the plane X = —5 on their way to X = —oco. The
thick red trajectory shows that some of the trajectories in W' that tend to X = oo oscillate before doing so.
(b) The slow stable and unstable manifolds W and W¢' intersect transversally. The parameter values are
(p, A, B,C) = (0.0084, —0.05, —0.01,0.1).

4.2. Intersections of the unstable slow manifold with the unstable manifold of the
equilibrium point. As p increases, the phase portraits of system (2.2) become more compli-
cated. The equilibrium point has a supercritical Hopf bifurcation near p = 0.0008 and the
periodic orbits born in this Hopf bifurcation enter a cascade of period-doubling bifurcations
near p = 0.008, as illustrated in Figure 1. While p increases, the asymptotic properties of the
slow stable and unstable manifolds also change. Figure 6(a) visualizes portions of the slow
stable (blue) and unstable (red) manifolds of system (2.2) as bundles of trajectories that begin
on the lines X = £5, Y = 10 and end on the plane defined by Z’ = 0. The parameter values
are (u, A, B,C) = (0.0084, —0.05, —0.01, 0.1) used for the green period-doubled orbit displayed
in Figure 1. This periodic orbit is also drawn in green here. As shown in Figure 6(b), the
manifolds W7 and W intersect transversally, as they do when p = 0. However, in contrast to



1368 JOHN GUCKENHEIMER

—0.04,
-0.045
-0.05
—0.055/
—O.D(a
—0.065/
—-0.07,
-0.075

-0.08

-02" |

-0.15

(a) (b)

Figure 7. (a) Three pairs of trajectories for system (2.2) with parameter values (u,A,B,C) =
(0.003686, —0.05,—0.01,0.1). The black and blue trajectories are forward trajectories that approach the slow
stable manifold W¢; the magenta and red trajectories are backward trajectories that approach the slow unstable
manifold W¢'; and the olive and green trajectories are forward trajectories starting close to the unstable mani-
fold of the equilibrium point. Note that the olive and green trajectories approach W' but then diverge from it in
opposite directions. (b) A detailed view showing how the green trajectory spirals around the red stable manifold
of the equilibrium point before approaching the periodic orbit.

the situation with p = 0, trajectories above the intersection in W; escape the bounded region
containing the periodic orbits, and some trajectories above the intersection in W oscillate
before they tend to X = co. The dynamical events that produce these qualitative changes in
WS and W as p increases from 0 to 0.0084 are hardly clear.

For values of y slightly larger than the Hopf bifurcation value, the equilibrium is a saddle
with a two dimensional unstable manifold W' bounded by the periodic orbit. As y increases,
W' begins to spiral around the periodic orbit as the eigenvalues of its return map become
complex. Near p = 0.003686, it appears that W' begins to intersect W', the unstable slow
manifold. Figure 7 presents evidence for this intersection. Figure 7(a) plots three pairs of
trajectories, each of which is separated by the slow manifolds. The black and blue trajectories
are forward trajectories with initial conditions (5,10, —0.704948) and (5,10, —0.704947). The
black trajectory lies below the intersection of W and W and flows to X = —oo, while the
blue trajectory turns back toward positive values of X and then appears to spiral around the
stable manifold of the equilibrium point before approaching the periodic orbit. The magenta
and red trajectories have initial conditions (—5,10,—0.291832) and (—5,10, —0.291831) and
are followed backward. The magenta orbit lies below the intersection of W and W and flows
backward to X = —oo while the red trajectory flows backward to X = oo. The olive and green
trajectories have approximate initial conditions (—0.073363697,0.005235108, —0.072670595)
and (—0.073363704, 0.005235153, —0.072670597), points that lie close to the unstable manifold
of the equilibrium. These trajectories approach the unstable slow manifold W and follow
it to near its intersection with Y = 6 before separating. The olive trajectory then tends to
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X = —oo while the green trajectory follows a similar path as the blue trajectory, spiraling
around the stable manifold of the equilibrium and then approaching the periodic orbit. One
might conjecture that the equilibrium point has a homoclinic orbit for a value of u close to
0.003686. Figure 7(b) shows the green trajectory spiraling around the red stable manifold of
the equilibrium point in more detail. However, the close approach of the trajectory to the
equilibrium point does not imply that the parameters are close to those with a homoclinic
orbit. As explained by Guckenheimer and Willms [19], the stable manifold of the equilibrium
may be transversally stable as one moves away from the equilibrium, and large volumes of the
state space may flow close to the stable manifold. This example demonstrates that qualitative
changes in the intersections of invariant manifolds for system (2.2) typically occur at different
parameter values than those where there are local bifurcations of the equilibrium point or
periodic orbits of the system.

4.3. Intersections of the stable slow manifold with the stable manifold of the equilib-
rium point. When the equilibrium point has a one dimensional stable manifold, intersections
of that manifold with the slow stable manifold might be expected to occur as codimension one
bifurcations. This section presents evidence for this bifurcation by examining parameters with
A=B=pu=0and C > 0. For these parameters, the equilibrium is at the origin, the plane
Z = 0 is invariant under the flow and time reversible, and there is a family of periodic orbits
surrounding the origin and bounded by the parabola Y — X2 = —1/2 in the plane Z = 0. The
orbits below this parabola are unbounded, tending to X = —oo in finite time as ¢ increases
and to X = oo as t decreases. The family of periodic orbits is normally hyperbolic: each
orbit has a strong stable manifold consisting of trajectories that tend toward it as t — oc.
Figure 8(a) shows a branch of the stable manifold of the origin for six values of C, namely
(0.01,0.1002,0.1004, 0.1006, 0.1008,0.101). Figure 8(b) shows the intersection of the stable
manifolds with the plane X = 3 for 51 equally spaced values in the C' interval [0.01,0.0101].
Figure 8(c) shows the intersections from a much finer mesh of 5001 parameter values in this
interval. It is evident that the stable manifold W of the origin oscillates in the (X,Y’) plane
as Z increases. These oscillations cease and X tends to oo for values of Z that depend upon
C'. Since trajectories tend to co in finite time, the values of (Y, Z) typically approach finite
limits along W,;. However, there are values of C' where these limits appear to jump. These are
produced by small ranges of C' in which W7 crosses W7. Figure 8(d) visualizes one crossing.
The intersection of W with the plane Y = 3 is plotted in red as C varies through a regular
mesh of 11 points in the interval [0.01000965,0.01000975]. As C varies in this interval, the
intersections of W# with the plane Y = 3, drawn as a set of 11 blue curves in Figure 8(d),
hardly move. The three dimensional manifold in (X,Y, Z, C) space swept out by W¢ and the
surface swept out by W) clearly intersect transversally. When A, B, and p are perturbed so
that the equilibrium point becomes a saddle, the transverse intersection persists.

4.4. Contrasts between systems with one and two slow variables. The figures of this
section hardly begin a systematic analysis of the global bifurcations of the invariant manifolds
of system (2.2). Since the system likely has chaotic attractors for some parameter values, a
complete analysis does not seem feasible. The behavior displayed here contrasts with the sim-
pler two dimensional flows of singular Hopf bifurcations in systems with one slow variable and
one fast variable. There, the slow stable and unstable manifolds are each a single trajectory
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Figure 8. (a) Trajectories lying in the stable manifold of the equilibrium point of system (2.2) for siz
different values of the parameter C: 0.01,0.1002,0.1004,0.1006,0.1008,0.101. The remaining parameters are
zero. (b) Numbered intersections of the stable manifold of the equilibrium point of system (2.2) with the plane
X = 3 for varying values of the parameter C in the interval [0.01,0.0101]. Parameters p, A, B are all zero.
(¢) Intersections from a mesh of 5001 parameter values in the interval [0.01,0.0101]. (d) Intersections with
the plane Y = 3 of the stable manifold of the equilibrium (red) for a mesh of 11 wvalues of C in the interval
[0.01000965, 0.01000975] and intersections of the slow stable manifold (blue) with the plane Y = 3. There are
11 blue curves that are indistinguishable at this resolution.

and the global bifurcation happens when the manifolds coincide. In the three dimensional
setting investigated here, the slow stable and unstable manifolds are two dimensional and
appear to intersect transversally in the vicinity of singular Hopf bifurcations. These intersec-
tions separate portions of the slow manifolds that turn in different directions. In some cases,
parts of the manifolds become entangled with periodic orbits and the stable and unstable
manifolds of the equilibrium. Sometimes the trajectories of these tangles remain bounded and
sometimes they reemerge from the region of entanglement and proceed to X = +o0. Further
analysis of the intersections of these invariant sets is not pursued in this paper.

5. Mixed-mode oscillations in an example. Mixed-mode oscillations (MMOs) have been
observed and studied in chemical systems, for example, the Belousov—Zhabotinsky reac-
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tion [20], and in the oxidation of carbon monoxide on platinum catalysts [22]. Several models
have been proposed for these systems, but previous analysis has not identified that many of
the properties seen in both the experimental data and models can be produced by singular
Hopf bifurcations. Barkley [4] suggested that the minimum dimension of a system that fit the
characteristics of MMOs in the Belousov—Zhabotinsky reaction was four. The more recent
literature on MMOs in neural systems has focused upon MMOs produced by folded nodes
[9, 30, 16], but some MMOs associated with singular Hopf bifurcations have characteristics
that differ from those seen in the folded-node MMOs. Note that systems with singular Hopf
bifurcations also have folded nodes, so singular Hopf bifurcations may produce MMOs that
pass through folded nodes as well as ones that do not.

This section revisits one of the simplest models for MMOs—the autocatalator studied by
Petrov, Scott, and Showalter [28] and Milik and Szmolyan [27]. The equations for this model
are

a=pu(k+c)—ab® —a,
(5.1) eb=ab? +a—b,

c=b—c.

In the studies of this system cited above, k = 2.5 was held fixed and the parameters p and/or
¢ were varied. The critical manifold of this system is given by a = b/(1+b?) and its fold curve
is defined by a = 1/2, b = 1. At equilibrium points, b = ¢, so the equilibrium is on the fold
curve when b = ¢ =1, a = 1/2, implying that = 1/(1+&). In general, if we parametrize the
equilibria of the system by ¢, then the curve of equilibrium points is given by a = ¢/(1 + ¢2),
b=c, p=c/(c+ k). Computing the Jacobian of the system (5.1), we find that the criterion
for Hopf bifurcation of the system is a polynomial expression that is affine in £ and quadratic
in e, so we can readily parametrize the Hopf bifurcation as a function of the variables ¢ and
€. In addition to the equilibrium equations,

Rhopf
0(902€+2—62+5€+6C4E+5C682+96482+702€2+3066+262+0862+686—06)
24+ 3cte+5c%2 + B2 +6c2e +9cte2+Tc2e2 +2c0%e +cBe —c2+4e+2e2— (5

The function kpepy is singular at ¢ = 1,e = 0. For fixed «, the Hopf criterion defines ¢ as
a smooth function of ¢ that vanishes at ¢ = 1 and has slope (3 + 2x)/(1 + ). Thus, there
is indeed a singular Hopf bifurcation in this system. This does not appear in the analysis of
Milik and Szmolyan [27] because they transform the parameters to set 4 = e+ 1/(1+ k) and
then use i and ¢ as the parameters they vary. In this representation, the Hopf bifurcations
have parameter values that are close to i = 0.4375 and are apparent as € — 0 only if i is
also varied in the region near this Hopf value. Indeed, they do not analyze properties of the
equilibrium point at all except at the values at which the Hopf bifurcation lies on the fold
curve, a point termed a folded saddle-node in their work.

Petrov, Scott, and Showalter [28] studied the periodic orbits of system (5.1) using
AUTO [11]. They work with two values of €, namely, e = 0.01 and £ = 0.013. For ¢ = 0.013,
they observe that there is a supercritical Hopf bifurcation at p & 0.29202 and a second super-
critical Hopf bifurcation at g /= 0.77372. The first of these is the singular Hopf bifurcation: the
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value of (a, b) is approximately (0.49977,1.031080). Petrov, Scott, and Showalter [28] observe
that there is a narrow band of values of € [0.297,0.303] where the system has complex dy-
namics. The periodic orbits born at the singular Hopf bifurcation undergo a period-doubling
cascade to a small amplitude chaotic attractor. Near pu = 0.29795, the chaotic attractor
disappears, and trajectories starting near the previous attractor approach a periodic MMO.
Milik and Szmolyan use geometric and singular perturbation methods to study this system,
producing return maps for some of the attractors. Figures 9 and 10 extend this analysis using
the insights into the singular Hopf bifurcation described in this paper.

MMOs are formed from trajectories which concatenate small and large amplitude oscil-
lations. In system (5.1), the large amplitude oscillations come from trajectories that pass
“outside” the unstable slow manifold; i.e., they have larger values of a. To test whether tra-
jectories with small amplitude oscillations flow to the outside of the unstable slow manifold,
trajectories in the unstable manifold of the equilibrium were computed, similar to the calcula-
tions of the singular Hopf normal form illustrated in Figures 5, 6, and 7. Figures 9(a) and 9(b)
display trajectories on the unstable manifold of the equilibrium point in blue and trajectories
on the unstable slow manifold in red for parameter values (e, k, 1) = (0.013,2.5,0.2963) and
(e,k,p) = (0.013,2.5,0.2964), respectively. It appears that as p increases from 0.2963 to
0.2964, the unstable manifold of the equilibrium point begins to intersect the unstable slow
manifold. The intersection of these invariant manifolds seems to be intimately related to the
formation of MMOs. Nonetheless, it is difficult to make definitive statements about these
dynamics because the periodic orbits of the system have followed a period-doubling route
to chaotic attractors for smaller values of u, similar to the behavior displayed by the singu-
lar Hopf normal form (2.2) for parameters (A, B,C) = (—0.05,—0.01,0.1) and increasing pu
(cf. Figure 1). Here, Petrov, Scott, and Showalter [28] showed that there are several families
of MMOs as well as the small amplitude chaotic attractors in parameter ranges close to those
displayed here.

Figure 9 suggests that intersections of the unstable slow manifold with the basins of small
amplitude attractors are critical to the formation of MMOs. The value of € used in this figure
makes the system only moderately stiff. Figure 10 displays similar calculations for the smaller
value € = 0.001. Subfigure (a) shows trajectories in the unstable manifold of the equilibrium
(blue) and the unstable slow manifold (blue) for (e, x, ) = (0.001,2.5,0.2864). There is a
stable periodic orbit, and this orbit forms the boundary of the unstable manifold of the equi-
librium point. Subfigure (b) shows analogous information for (e, x, ;) = (0.001,2.5,0.2865).
The stable periodic orbit persists, but some trajectories near the equilibrium point flow to the
outside of the unstable slow manifold and generate MMOs. Figure 11 shows a portion of one
of these MMOs as it passes close to the equilibrium point. The large amplitude excursions
of the trajectory approach the stable manifold of the equilibrium point closely, and these are
followed by slowly growing small amplitude oscillations similar to those that can appear in
the aftermath of a subcritical Hopf bifurcation [19]. For these parameter values, the birth of
MMGOs is clearly the direct result of the intersections of the unstable slow manifold with the
unstable manifold of the equilibrium.

6. Discussion. As a slow-fast system, the equations for singular Hopf bifurcation are
reduced to a three dimensional vector field that can be rescaled so that the Hopf frequency
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(a) (b)

Figure 9. (a) Trajectories on the unstable manifold of the equilibrium point (blue) and unstable slow
manifold (red) of system (5.1) are drawn for (e,r,p) = (0.0013,2.5,0.2963). The unstable manifold of the
equilibrium point remains to the left side of the slow unstable manifold. (b) Analogous trajectories are drawn
for (g,k, 1) = (0.0013,2.5,0.2963). Here the unstable manifold of the equilibrium point intersects the unstable
slow manifold. Some trajectories with initial conditions near the equilibrium point make large excursions before
approaching the small amplitude attractor.

Figure 10. (a) Trajectories on the unstable manifold of the equilibrium point (blue) and unstable slow
manifold (red) of system (5.1) are drawn for (¢,k,u) = (0.001,2.5,0.2864). The unstable manifold of the
equilibrium point remains to the left side of the slow unstable manifold and lies in the basin of attraction of a
stable periodic orbit. (b) Analogous trajectories are drawn for (e, x, ) = (0.001,2.5,0.2865). Here the unstable
manifold of the equilibrium point intersects the unstable slow manifold. Some trajectories with initial conditions
near the equilibrium point make large excursions and approach MMOs.
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Figure 11. (a) A portion of an MMO trajectory of system (5.1) is drawn for (e, k, u) = (0.001,2.5,0.2865)
and initial condition (0.5,1,1). The trajectory was computed to time 2000, and its intersections with a region
around the equilibrium point were plotted for the time interval [1700,2000]. The trajectory approaches the
stable manifold of the equilibrium and flows out along its unstable manifold with slowly growing small amplitude
oscillations before making another large excursion. The trajectory is approximately periodic, but the calculations
do not conclusively rule out the possibility that there is a more complicated attractor that is very “thin.” (b) The
final cycle of the time series displaying the ¢ coordinate of the trajectory displayed in subfigure (a).

remains close to one as the singular perturbation parameter € tends to zero. This scaling
emphasizes the fast time scale whose singular limit is a vector field with an equilibrium
point with pure imaginary and zero eigenvalues and a one parameter family of periodic orbits
emanating from the equilibrium. Two coefficients of the Taylor expansion of the rescaled
vector field, the real eigenvalue of its equilibrium and the first Lyapunov coefficient of its Hopf
bifurcation, are O(¢!/?). An interesting aspect of the normal form analysis is that an O(e)
term in the Taylor expansion of the rescaled system still contributes to the first Lyapunov
coefficient of the Hopf bifurcation at O(¢'/2). The truncated normal form used in this paper
includes this O(e) term. Thus the normal form has five parameters: the singular perturbation
parameter, a primary parameter that drives the equilibrium point across the fold curve of the
critical manifold, and three secondary parameters that can be regarded as moduli.

This paper highlights the complexity of Hopf bifurcation in multiple time scale systems
with two slow variables and one fast variable. Numerical simulations and continuation calcula-
tions with the normal form demonstrate that periodic orbits near a singular Hopf bifurcation
can have secondary bifurcations that produce quasiperiodic or chaotic trajectories of these
systems in an O(g) neighborhood of the equilibrium undergoing Hopf bifurcation. The de-
pendence of the secondary bifurcations on the moduli in the normal form is clearly very
complicated. There are additional global bifurcations that separate parameter regimes with
only small amplitude attractors from parameter regimes in which trajectories starting near
the equilibrium can make large excursions. These transitions have been studied here by test-
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ing for intersections of the two dimensional unstable manifold of the equilibrium point with
the unstable slow manifold. From a pragmatic point of view, the boundary between trajec-
tories that remain in the vicinity of the equilibrium point of the system and those that leave
a neighborhood of the equilibrium point is an important aspect of the dynamics of singular
Hopf bifurcation.

This paper is partly motivated by attempts to understand the mechanisms that create
MMOs in slow-fast systems. MMOs have been observed in diverse physical systems and dy-
namical models. These MMOs appear to fall into different dynamical classes that have yet to
be clearly delineated or analyzed. One class that has been identified and studied are MMOs
associated with flow through a folded node [9, 16]. This paper identifies singular Hopf bifur-
cation as another mechanism for generating MMOs. As illustrated with the model chemical
system (5.1), the intersections of the unstable slow manifold with the unstable manifold of
a saddle-focus equilibrium point can produce MMOs. These intersections are a byproduct
of singular Hopf bifurcation. The small oscillations of MMOs associated with singular Hopf
bifurcation often begin with very small amplitude as they approach a saddle-focus equilibrium
along its stable manifold and depart with growing oscillations along its unstable manifold. In
contrast, the trajectories that pass through a folded node have oscillations that first decrease
and then increase in amplitude. Figure 12 displays a trajectory of the system

&=y — a2
y:Z—I',
z = —0.002

with initial conditions (50,395,0.16). The oscillations of this trajectory typify the small
oscillations that one finds for MMOs produced by folded nodes. Compare this figure with
Figure 11, showing an MMO associated with singular Hopf bifurcation in the autocatalator.
In the normal form for the folded node, the numbers of oscillations with decreasing and
increasing amplitude are equal. Further work to analyze the dynamical origins of MMOs
from experimental observations of chemically reacting systems might be of interest [20]. It

Figure 12. Oscillations of a trajectory passing through a folded node.
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seems likely that MMOs associated with folded nodes and those associated with singular Hopf
bifurcations both occur as well as MMOs that are far from these bifurcations.
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