1. (a) Show that if α and β are elements of $\mathbb{Z}[\sqrt{D}]$ such that α is a unit times β , then $N(\alpha) = \pm N(\beta)$.

<u>Solution</u>: If $\alpha = \beta \varepsilon$ with ε a unit, then $N(\alpha) = N(\beta)N(\varepsilon)$ and $N(\varepsilon) = \pm 1$, so $N(\alpha) = \pm N(\beta)$.

(b) Either prove or give a counterexample to the following statement: If α and β are Gaussian integers with $N(\alpha) = N(\beta)$ then α is a unit times β .

<u>Solution</u>: Let $\alpha = a + bi$ and $\beta = c + di$. Then the condition $N(\alpha) = N(\beta)$ says that $a^2 + b^2 = c^2 + d^2$. This equation has many solutions, for example $3^2 + 4^2 = 5^2 + 0^2$, which gives $\alpha = 3 + 4i$ and $\beta = 5$, and obviously 3 + 4i is not a unit times 5 since the only units are ± 1 and $\pm i$.

2. Show that a Gaussian integer x + yi with both x and y odd is divisible by 1 + i but not by $(1 + i)^2$.

Solution: We have
$$\frac{x + yi}{1 + i} = \frac{(x + yi)(1 - i)}{(1 + i)(1 - i)} = \frac{(x + y) + (y - x)i}{2}$$

This is a Gaussian integer if x and y are odd since x + y and y - x are then even. Thus 1+i divides x + yi when x and y are odd. For $(1+i)^2$, note that this equals 2i, so if x + yi was divisible by 2i it would be divisible by 2, but x + yi is not divisible by 2 if x and y are odd.

3. There are four different ways to write the number $1105 = 5 \cdot 13 \cdot 17$ as a sum of two squares. Find these four ways using the factorization of 1105 into primes in $\mathbb{Z}[i]$. [Here we are not counting $5^2 + 2^2$ and $2^2 + 5^2$ as different ways of expressing 29 as the sum of two squares. Note that an equation $n = a^2 + b^2$ is equivalent to an equation n = (a + bi)(a - bi).]

Solution: The prime factorization is

$$1105 = 5 \cdot 13 \cdot 17 = (2+i)(2-i)(3+2i)(3-2i)(4+i)(4-i)$$

We want to find the various ways we can combine these into two terms (a+bi)(a-bi)by choosing the signs + and - in the various factors:

$$(+++)(---): [(2+i)(3+2i)(4+i)][(2-i)(3-2i)(4-i)] = (9+32i)(9-32i)$$

$$(++-)(--+): [(2+i)(3+2i)(4-i)][(2-i)(3-2i)(4+i)] = (23+24i)(23-24i)$$

$$(+--)(-++): [(2+i)(3-2i)(4-i)][(2-i)(3+2i)(4+i)] = (31-12i)(31+12i)$$

$$(+-+)(-+-): [(2+i)(3-2i)(4+i)][(2-i)(3+2i)(4-i)] = (33+4i)(33-4i)$$
So we get 1105 = 9² + 32² = 23² + 24² = 31² + 12² = 33² + 4².

4. (a) Find four different units in $\mathbb{Z}[\sqrt{3}]$ that are positive real numbers, and find four that are negative.

Solution: We find the smallest positive solution of Pell's equation $x^2 - 3y^2 = \pm 1$ by looking at the separator line in the topograph for

 $x^2 - 3y^2$. This gives the solution (x, y) = (2, 1) which gives the unit $2 + \sqrt{3}$. This is a unit since $(2 + \sqrt{3})(2 - \sqrt{3}) = 1$. Another unit is $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$, with $(7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 1$. Thus we have four positive units $2 \pm \sqrt{3}$ and $7 \pm 4\sqrt{3}$. The negatives of these numbers give four negative units.

(b) Do the same for $\mathbb{Z}[\sqrt{11}]$.

Solution: This time the separator line is:

The smallest positive solution of $x^2 - 11y^2 = \pm 1$ is (x, y) = (10, 3) so we have the four positive units $10 \pm 3\sqrt{11}$ and $(10 \pm 3\sqrt{11})^2 = 199 \pm 60\sqrt{11}$. Taking the negatives of these gives four negative units.

5. Make a list of all the Gaussian primes x + yi with $-7 \le x \le 7$ and $-7 \le y \le 7$. <u>Solution</u>: We know the Gaussian primes are the ordinary primes p = 4k + 3 (and units times these) and the Gaussian integers a + bi such that $a^2 + b^2$ is a prime in \mathbb{Z} , either 2 or p = 4k + 1. When $a \le 7$ and $b \le 7$ we have $2 = 1^2 + 1^2$, $5 = 2^2 + 1^2$, $13 = 3^2 + 2^2$, $17 = 4^2 + 1^2$, $29 = 5^2 + 2^2$, $37 = 6^2 + 1^2$, $41 = 5^2 + 4^2$, $53 = 7^2 + 2^2$, $61 = 6^2 + 5^2$. We stop here since the next few would be $73 = 8^2 + 3^2$, $89 = 8^2 + 5^2$, $97 = 9^2 + 4^2$. The list of Gaussian primes is then ± 3 , $\pm 3i$, ± 7 , $\pm 7i$, $\pm 1 \pm i$, $\pm 2 \pm i$, $\pm 1 \pm 2i$, $\pm 3 \pm 2i$, $\pm 2 \pm 3i$, $\pm 4 \pm i$, $\pm 1 \pm 4i$, $\pm 5 \pm 2i$, $\pm 2 \pm 5i$, $\pm 6 \pm i$, $\pm 1 \pm 6i$, $\pm 5 \pm 4i$, $\pm 4 \pm 5i$, $\pm 7 \pm 2i$, $\pm 2 \pm 7i$, $\pm 6 \pm 5i$, $\pm 5 \pm 6i$.

6. Factor the following Gaussian integers into primes in $\mathbb{Z}[i]$: 3 + 5i, 8 - i, 10 + i, 5 - 12i, 35i, -35 + 120i, 253 + 204i.

Solution: For 3 + 5i we have $N(3 + 5i) = 3^2 + 5^2 = 34 = 2 \cdot 17$. So the possible prime

factors of 3 + 5i are the prime factors of 2 = (1 + i)(1 - i) and 17 = (4 + i)(4 - i). Testing i + i first, we have

$$\frac{3+5i}{1+i} = \frac{(3+5i)(1-i)}{(1+i)(1-i)} = \frac{8+2i}{2} = 4+i$$

Thus we have the prime factorization 3 + 5i = (1 + i)(4 + i). The two factors are prime since their norms are 2 and 17 which are prime in \mathbb{Z} .

8 - i has norm $65 = 5 \cdot 13 = (2 + i)(2 - i)(3 + 2i)(3 - 2i)$. Testing whether 2 + i divides 8 - i, we have

$$\frac{8-i}{2+i} = \frac{(8-i)(2-i)}{(2+i)(2-i)} = \frac{15-10i}{5} = 3-2i$$

So 8 - i = (2 + i)(3 - 2i) and these two factors are prime since their norms are 5 and 13 which are prime in \mathbb{Z} .

Next, 10 + i has norm 101 which is prime, so 10 + i is already a prime.

5 - 12i has norm $5^2 + 12^2 = 13^2 = (3 + 2i)^2(3 - 2i)^2$. To see whether 5 - 12i is divisible by 3 + 2i we compute

$$\frac{5-12i}{3+2i} = \frac{(5-12i)(3-2i)}{(3+2i)(3-2i)} = \frac{-9-46i}{13}$$

This is not in $\mathbb{Z}[i]$ so it must be 3-2i that divides 5-12i, and in fact $5-12i = (3-2i)^2$. This is the prime factorization since the norm of 3-2i is 13, a prime in \mathbb{Z} .

 $35i = 5 \cdot 7i = (2 + i)(2 - i)(7i)$ and these are primes since $N(2 \pm i) = 5$ is prime and 7 is congruent to 3 mod 4.

-35+120i = 5(-7+24i) = (2+i)(2-i)(-7+24i). We have $N(-7+24i) = 7^2+24^2 = 25^2 = 5^4 = (2+i)^4(2-i)^4$. We know that -7+24i is divisible by either $(2+i)^4$ or $(2-i)^4$ since if it were divisible by some mixture of powers of 2+i and 2-i it would be divisible by (2+i)(2-i) = 5, which it obviously isn't. A calculation shows that $(2+i)^4 = -7+24i$, so the final factorization is $-35+120i = (2+i)^5(2-i)$.

253 + 204i. Using a calculator one computes that this has norm $105625 = 5^4 13^2 = (2 + i)^4 (2 - i)^4 (3 + 2i)^2 (3 - 2i)^2$. Then one computes

$$\frac{253 + 204i}{2 + i} = 142 + 31i \qquad \frac{142 + 31i}{2 + i} = 63 - 16i \qquad \frac{63 - 16i}{2 + i} = 22 - 19i \\ \frac{22 - 19i}{2 + i} = 5 - 12i$$

We also have $5 - 12i = (3 - 2i)^2$ so the final factorization is:

$$253 + 204i = (2+i)^4 (3-2i)^2$$

7. In this problem we consider $\mathbb{Z}[\sqrt{-2}]$. To simplify notation, let $\omega = \sqrt{-2}$, so elements of $\mathbb{Z}[\omega]$ are sums $x + y\omega$ with $x, y \in \mathbb{Z}$ and with $\omega^2 = -2$. We have $N(x + y\omega) = x^2 + 2y^2 = (x + y\omega)(x - y\omega)$.

(a) Draw the topograph of $x^2 + 2y^2$ including all values less than 70 (by symmetry, it suffices to draw just the upper half of the topograph). Circle the values that are prime (prime in \mathbb{Z} , that is). Also label each region with its x/y fraction.

(b) Which primes in \mathbb{Z} factor in $\mathbb{Z}[\omega]$?

<u>Solution</u>: These are the primes that are represented by the norm form $x^2 + 2y^2$. From the topograph we can see that these are 2 (which is the only prime dividing the discriminant $\Delta = -8$) and the primes $p \equiv 1, 3$ modulo 8.

(c) Using the information in part (a), list all primes in $\mathbb{Z}[\omega]$ of norm less than 70.

<u>Solution</u>: We know that $\mathbb{Z}[\omega]$ has unique factorization since it has a Euclidean algorithm. Therefore the primes in $\mathbb{Z}[\omega]$ are of two types: First there are the primes in \mathbb{Z} that stay prime in $\mathbb{Z}[\omega]$. These are the primes not represented by $x^2 + 2y^2$, which are the primes congruent to 5 or 7 modulo 8. The only two that have norm less than 70 are 5 and 7. And second there are the numbers $x + y\omega$ such that $x^2 + 2y^2 = p$, a prime in \mathbb{Z} . Reading from the circled entries in the topograph in the order of increasing norm we get $\pm \omega, \pm 1 \pm \omega, \pm 3 \pm \omega, \pm 3 \pm 2\omega, \pm 1 \pm 3\omega, \pm 3 \pm 4\omega, \pm 5 \pm 3\omega, \pm 3 \pm 5\omega, \pm 7 \pm 3\omega$.

(d) Draw a diagram in the xy-plane showing all elements $x + y\omega$ in $\mathbb{Z}[\omega]$ of norm less than 70 as small dots, with larger dots or squares for the elements that are prime in $\mathbb{Z}[\omega]$.

(e) Show that the only primes $x + y\omega$ in $\mathbb{Z}[\omega]$ with x even are $\pm \omega$. (Your diagram in part (d) should give some evidence that this is true.)

<u>Solution</u>: The primes in \mathbb{Z} that stay prime in $\mathbb{Z}[\omega]$ are congruent to 5 or 7 mod 8 so they are odd and hence don't have the form $x + y\omega$ with x even. The other primes in $\mathbb{Z}[\omega]$ are of the form $x + y\omega$ with $x^2 + 2y^2$ prime in \mathbb{Z} . If x is even then $x^2 + 2y^2$ is even, and the only even prime in \mathbb{Z} is 2, so we have $x^2 + 2y^2 = 2$ whose only solutions are (0 ± 1) , corresponding to $\pm \omega$.

(f) Factor $4 + \omega$ into primes in $\mathbb{Z}[\omega]$.

Solution: The norm of $4+\omega$ is $(4+\omega)(4-\omega) = 18 = 2 \cdot 3^2 = -\omega^2 (1+\omega)^2 (1-\omega)^2$. So the prime factorization of $4+\omega$ will be either $\pm \omega (1+\omega)^2$ or $\pm \omega (1-\omega)^2$. Multiplying these products out, we see that the correct factorization is $4+\omega = -\omega (1+\omega)^2$.