
Math 3320 Problem Set 1 Solutions 1

When a problem asks you to show that some statement is true, this means that you

should give a logical mathematical argument why the statement is always true.

1. (a) Make a list of the 16 primitive Pythagorean triples (a, b, c) with c ≤ 100,

regarding (a, b, c) and (b,a, c) as the same triple.

Solution: Plugging in values for p and q of opposite parity in the formulas x =

2pq , y = p2
− q2 , z = p2

+ q2 gives the triples (4,3,5) , (12,5,13) , (8,15,17) ,

(24,7,25) , (20,21,29) , (40,9,41) , (12,35,37) , (60,9,61) , (28,45,53) , (56,33,65) ,

(84,13,85) , (16,63,65) , (48,55,73) , (80,39,89) , (36,77,85) , (72,65,97) .

(b) How many more would there be if we allowed nonprimitive triples?

Solution: For the primitive triple (4,3,5) we get 19 nonprimitive triples with c ≤

100 by multiplying (4,3,5) by 2,3,4, · · · ,20. Similarly, (12,5,13) gives 6 more,

(8,15,17) gives 4 more, (24,7,25) gives 3 more, (20,21,29) gives 2 more, and

both(40,9,41) and ((12,35,37) give 1 more, for a grand total of 36 more.

(c) How many triples (primitive or not) are there with c = 65?

Solution: The two in part (a) are (56,33,65) and (16,63,65) . There are two more that

are not primitive, obtained by multiplying (4,3,5) by 13 and (12,5,13) by 5, so the

total number is 4.

2. (a) Find all the positive integer solutions of x2
−y2

= 512 by factoring x2
−y2 as

(x + y)(x −y) and considering the possible factorizations of 512.

Solution: The equation (x + y)(x − y) = n can be solved by factoring n as n = pq

to obtain two equations x + y = p and x − y = q . Solving for x and y , we get

x = (p+q)/2 and y = (p−q)/2. In order for x and y to be positive integers, p and

q must have the same parity (both even or both odd), and we must have p > q . For n =

512 = 29 the only possibilities are then (p, q) = (256,2), (128,4), (64,8), (32,16)

with corresponding solutions (x,y) = (129,127), (66,62), (36,28), (24,8) .

(b) Show that the equation x2
−y2

= n has only a finite number of integer solutions

for each value of n .

Solution: There are only a finite number of factorizations n = pq , and by part (a) each

such factorization gives at most one solution (x,y) =
(

(p+ q)/2, (p− q)/2
)

, so this

means there are only finitely many solutions in total, for a fixed value of n .

(c) Find a value of n for which the equation x2
− y2

= n has at least 100 different

positive integer solutions.
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Solution: Generalizing part (a), if we take n = 2201 we get 100 different factorizations

n = pq with (p, q) = (2200,2), (2199,22), · · · , (2101,2100) and each of these factoriza-

tions gives a different solution (x,y) (because the numbers p = x+y and q = x−y

are uniquely determined by x and y ).

Another possibility would be to build n from distinct prime factors. For example, if

n is a product of 8 distinct odd primes, say n = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23, then

this yields 28 factorizations n = pq , but if we allow interchanging p and q to get

p > q this number drops to 27
= 128. Note that the number n in this case is much

smaller than 2201 .

3. Show that there are only a finite number of Pythagorean triples (a, b, c) with a , b ,

or c equal to a given number n .

Solution: Since a and b are interchangeable, we only need to show this for a and c .

For the case of c , if c is a given number n then from a2
+b2

= n2 we get that a2
≤ n2

and b2
≤ n2 , so a ≤ n and b ≤ n . This limits a and b to finitely many possibilities.

If a is a given number n then the equation can be rewritten c2
− b2

= n2 . Part (b) of

the previous problem then gives the desired result.

4. Find an infinite sequence of primitive Pythagorean triples where two of the numbers

in each triple differ by 2.

Solution: Since we are looking for primitive triples we can use the formulas a = 2pq ,

b = p2
− q2 , c = p2

+ q2 . If we try to make a and b differ by 2 we get the equation

2pq − p2
+ q2

= ±2, and as the left side of the equation doesn’t factor, it’s not

clear how to find solutions. If we try to make a and c differ by 2 we get the equation

p2
+q2

−2pq = 2, or (p−q)2 = 2. Since 2 is not a square, there are no integer solutions

here. The last possibility is that b and c differ by 2, so (p2
+ q2) − (p2

− q2) = 2,

which is equivalent to 2q2
= 2 or q2

= 1. Taking q = 1 and p to be any even integer

2k (so that p and q have opposite parity) we get a = 4k , b = 4k2
− 1, c = 4k2

+ 1

for k = 1,2, · · · .

5. Find a right triangle whose sides have integer lengths and whose acute angles are

close to 30 and 60 degrees by first finding the irrational value of r that corresponds to

a right triangle with acute angles exactly 30 and 60 degrees, then choosing a rational

number close to this irrational value of r .

Solution: The point on the unit circle making a 60 degree angle with the x -axis is
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(x,y) = (1/2,
√

3/2) . This gives

r =
x

(1−y)
=

1/2

1−
√

3/2
=

1

2−
√

3
= 2+

√

3

which is approximately 3.732. This is approximately 3.75 = 15/4 so we take (p, q) =

(15,4) . This yields the Pythagorean triple (a, b, c) = (2pq,p2
− q2, p2

+ q2) =

(120,209,241) . This has c approximately equal to 2a , as it would be in a 60 de-

gree right triangle.

6. Find a right triangle whose sides have integer lengths and where one of the nonhy-

potenuse sides is approximately twice as long as the other, using a method like the

one in the preceding problem. (One possible answer might be the (8,15,17) triangle,

or a triangle similar to this, but you should do better than this.)

Solution: This time we take (x,y) = (2/
√

5,1/
√

5) for the exact triangle. This gives

r =
x

(1−y)
=

2/
√

5

1− 1/
√

5
=

2
√

5− 1
=

√

5+ 1

2

which is approximately 1.618. Approximating this by 1.625 = 13/8 means we take

(p, q) = (13,8) so (a, b, c) = (208,105,233) , with 208 being approximately twice

105.

7. Find a rational point on the sphere x2
+y2

+z2
= 1 whose x , y , and z coordinates

are nearly equal.

Solution: When the coordinates are exactly equal we have x = y = z = 1/
√

3.

Substituting into the formulas u = x/(1 − z) and v = y/(1 − z) leads to the

values u = v = (
√

3 + 1)/2. If we approximate
√

3 = 1.732 . . . by
5
3

, this gives

u = v = (
5
3
+ 1)/2 =

4
3

. The correspond point on the sphere is

(x,y, z) =
( 2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2
+ v2

− 1

u2 + v2 + 1

)

=

(24

41
,
24

41
,
23

41

)

Other answers are possible by choosing an approximation to
√

3 different from
5
3

.

For example, using
7
4

gives the point
(

88
153
,

88
153
,

89
153

)

.

8. (a) Derive formulas that give all the rational points on the circle x2
+ y2

= 2 in

terms of a rational parameter m , the slope of the line through the point (1,1) on the

circle.

Solution: The line has equation y−1 =m(x−1) . Solving for y gives y =m(x−1)+1

and plugging this into x2
+y2

= 2 yields x2
+ [m(x− 1)+ 1]2 = 2. After expanding
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this and simplifying we get the quadratic equation

(1+m2)x2
+ (2m− 2m2)x + (m2

− 2m− 1) = 0

Then the quadratic formula gives

x =
2(m2

−m)±
√

4(m2 −m)2 − 4(1+m2)(m2 − 2m− 1)

2(1+m2)

After simplification this becomes

x =
m2

−m± (m+ 1)

1+m2

The plus sign gives the value x = 1, which is not very interesting as this leads to the

original point (1,1) on the circle. The minus sign gives

x =
m2

− 2m− 1

m2 + 1

Plugging this into the equation y =m(x − 1)+ 1 then yields

y =
−m2

− 2m+ 1

m2 + 1

(b) Using these formulas, find five different rational points on the circle in the first

quadrant, and hence five solutions of a2
+ b2

= 2c2 with positive integers a , b , c .

Solution: Note that we can change the signs of a , b , and c arbitrarily, and we can

switch a and b . The value m = 2 gives (x,y) = (−1/5,−7/5) , or (1/5,7/5) in the

first quadrant, hence a solution (a, b, c) = (1,7,5) . Choosing m = 3 happens to give

the same point in the first quadrant. Choosing m = 4 gives (x,y) = (7/17,−23/17) ,

or (7/17,23/17) in the first quadrant, with (a, b, c) = (7,23,17) . We could choose

other values for m to get more points, or we could just switch the x and y coordi-

nates (hence switching a and b ) to get two more points. There is also the original

point (1,1) , corresponding to (a, b, c) = (1,1,1) .

(c) The equation a2
+ b2

= 2c2 can be rewritten as c2
= (a2

+ b2)/2, which says that

c2 is the average of a2 and b2 , or in other words, the squares a2 , c2 , b2 form an

arithmetic progression. One can assume a < b by switching a and b if necessary.

Find four such arithmetic progressions of three increasing squares where in each case

the three numbers have no common divisors.

Solution: In part (b) we found the solutions (a, b, c) = (1,7,5) and (7,23,17) . These

give the arithmetic progressions 12,52,72 and 72,172,232 . Taking m = 2/3 gives
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(x,y) = (−17/13,−7/13) which yields the arithmetic progression 72,132,172 . Tak-

ing m = 3/4 gives (x,y) = (−31/25,−17/25) , which yields the arithmetic progres-

sion 172,252,312 . There are of course many other possibilities.

9. (a) For integers x , what are the possible values of x2 modulo 8?

Solution: The eight possibilities for x modulo 8 are 0,±1,±2,±3,4. Squaring these

gives 0,1,4,9,16. However, 9 ≡ 1 and 16 ≡ 0 mod 8, so the only squares mod 8 are

0,1,4.

(b) Show that the equation x2
− 2y2

= ±3 has no integer solutions by considering

this equation modulo 8.

Solution: If the equation had an integer solution, this would also be a solution modulo

8, so it suffices to show there are no solutions mod 8. By part (a) there are 3 choices

0,1,4 for each of x2 and y2 mod 8. This gives 9 possibilities for x2
− 2y2 , namely

0− 2(0) = 0, 1− 2(0) = 1, 4− 2(0) = 4, 0− 2(1) = −2, 1− 2(1) = −1, 4− 2(1) = 2,

0 − 2(4) ≡ 0, 1 − 2(4) ≡ 1, and 4 − 2(4) ≡ 4. In summary, the possible values

of x2
− 2y2 mod 8 are 0,±1,±2,4 mod 8. In particular we never get ±3 mod 8.

Thus the equation x2
− 2y2

= ±3 has no solutions mod 8 so it has no actual integer

solutions.

(c) Show that there are no primitive Pythagorean triples (a, b, c) with a and b differing

by 3.

Solution: Since we are dealing with primitive Pythagorean triples we have a = 2pq and

b = p2
−q2 , so we are asking whether the difference b−a = p2

−q2
−2pq can equal

±3. There is a little trick to simplify p2
−q2

−2pq by writing it as (p−q)2−2q2 , which

has the form x2
−2y2 for x = p−q , y = q . Thus if the equation p2

−q2
−2pq = ±3

had an integer solution, so would the equation x2
−2y2

= ±3. But we showed in part

(b) that this doesn’t happen.

10. Show that for every Pythagorean triple (a, b, c) the product abc must be divisible

by 60. (It suffices to show that abc is divisible by 3, 4, and 5.)

Solution: The first thing to notice is that if this is true for primitive triples (a, b, c)

then it is true for nonprimitive triples as well since these are obtained by multiplying

each of a,b, c in a primitive triple by some integer n . So we can assume that (a, b, c)

is a primitive Pythagorean triple. Then abc = (2pq)(p2
−q2)(p2

+q2) , which can be

rewritten as 2pq(p4
−q4) if we want. This is divisible by 4 since the first factor 2pq

will be divisible by 4 unless p and q are both odd, but in this case the factor 2pq is



Math 3320 Problem Set 1 Solutions 6

divisible by 2 and the factor p2
+ q2 is also divisible by 2 (since p2 and q2 are both

odd) so the product abc is divisible by 4.

Next let’s check that abc is divisible by 3 by seeing that its value must be 0 modulo

3. The possibilities for p and q modulo 3 are 0 and ±1. If either p or q is 0 mod

3 then the factor 2pq is 0 mod 3 hence abc is 0 mod 3. The only other possibility

is that p and q are both ±1 mod 3. Then p2 and q2 are both 1 mod 3 so the factor

p2
− q2 of abc is 0 mod 3. Hence in all cases abc is 0 mod 3.

Checking that 5 divides abc is similar. Mod 5 the possible numbers are 0,±1,±2.

If either p or q is 0 mod 5 then the factor 2pq is 0 mod 5 and abc is divisible

by 5. If neither p nor q is 0 mod 5, then they are ±1 or ±2, so p4 and q4 are

(±1)4 = 1 or (±2)4 = 16 ≡ 1. Then p4
−q4

≡ 0 so 5 divides p4
−q4 hence 5 divides

abc = 2pq(p4
− q4) .

This finishes the proof. Notice incidentally that for the Pythagorean triple (3,4,5) we

have abc = 60 so there can be no number larger than 60 that divides abc for all

Pythagorean triples.


