1. This exercise is intended to illustrate the proof of the Theorem on page 15 of Chapter 1 in the concrete case of the continued fraction $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$. (a) Write down the product $A_1A_2A_3A_4 = \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a_3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a_4 \end{pmatrix}$ associated to $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$.

(b) Compute the four matrices A_1 , A_1A_2 , $A_1A_2A_3$, $A_1A_2A_3A_4$ and relate these to the edges of the zigzag path in the strip of triangles for $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$.

(c) Compute the four matrices A_4 , A_3A_4 , $A_2A_3A_4$, $A_1A_2A_3A_4$ and relate these to the successive fractions that one gets when one computes the value of $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$, namely $\frac{1}{5}$, $\frac{1}{4} + \frac{1}{5}$, $\frac{1}{3} + \frac{1}{4} + \frac{1}{5}$, and $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$.

2. (a) Find all integer solutions of the equations 40x + 89y = 1 and 40x + 89y = 5. (b) Find another equation ax + by = 1 that has an integer solution in common with 40x + 89y = 1. [Hint: use the Farey diagram.]

3. There is a close connection between the Diophantine equation ax + by = n and the congruence $ax \equiv n \mod b$, where the symbol \equiv means "is congruent to". Namely, if one has a solution (x, y) to ax + by = n then $ax \equiv n \mod b$, and conversely, if one has a number x such that $ax \equiv n \mod b$ then this means that ax - n is a multiple of b, say k times b, so ax - n = kb or equivalently ax - kb = n so one has a solution of ax + by = n with y = -k.

Using this viewpoint, solve the congruences $31x \equiv 1 \mod 71$ and $31x \equiv 10 \mod 71$. Are the solutions unique mod 71, i.e., unique up to adding multiples of 71?