1. Compute the values of the following infinite continued fractions:

(a) 1/4

Solution: Let $x = \frac{1}{4} + \frac{1}{4} + \cdots$. Then $1/x = 4 + \frac{1}{4} + \frac{1}{4} + \cdots = 4 + x$. This gives the quadratic equation $1 = 4x + x^2$, or $x^2 + 4x - 1 = 0$, with solutions $x = (-4 \pm \sqrt{20})/2 = -2 \pm \sqrt{5}$. We want the positive root $-2 + \sqrt{5}$.

(b) $\overline{1/k}$ for an arbitrary positive integer *k*.

<u>Solution</u>: Let $x = \frac{1}{k} + \frac{1}{k} + \cdots$. Then $1/x = k + \frac{1}{k} + \frac{1}{k} + \cdots = k + x$. Thus we have $1 = kx + x^2$, so $x^2 + kx - 1 = 0$ with roots $x = (-k \pm \sqrt{k^2 + 4})/2$ and we want the positive root $(-k + \sqrt{k^2 + 4})/2$.

(c) $\overline{1/2 + 1/3}$ and $1/1 + \overline{1/2 + 1/3}$

Solution: Let $x = \overline{1/2} + \overline{1/3}$. Then $1/x - 2 = \frac{1}{3} + x$. After rewriting the left side of this equation as (1 - 2x)/x, we get the equation x/(1 - 2x) = 3 + x. This simplifies to $2x^2 + 6x - 3 = 0$ with positive root $x = \overline{1/2} + \frac{1}{3} = (-3 + \sqrt{15})/2$.

To compute $\frac{1}{1} + \frac{1}{2} + \frac{1}{3}$ we take the previous answer, add 1, then invert, to get $2/(-1 + \sqrt{15}) = (1 + \sqrt{15})/7$.

(d)
$$\overline{1/_1 + 1/_2 + 1/_1 + 1/_6}$$
 and $1/_1 + 1/_4 + \overline{1/_1 + 1/_2 + 1/_1 + 1/_6}$

<u>Solution</u>: We set $x = \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{6}$. Then $1/x = 1 + \frac{1}{2} + \frac{1}{1} + \frac{1}{6} + x$ and $1/x - 1 = (1 - x)/x = \frac{1}{2} + \frac{1}{1} + \frac{1}{6} + x$, so $x/(1 - x) = 2 + \frac{1}{1} + \frac{1}{6} + x$. Subtracting 2 from both sides and inverting leads to $(1 - x)/(3x - 2) = 1 + \frac{1}{6} + x$. Then subtract 1 from both sides and invert to get (3x - 2)/(4 - 3x) = 6 + x. This simplifies to $x^2 + 6x - 5 = 0$, with positive root $x = \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{6} = -3 + \sqrt{14}$.

To go from this to $\frac{1}{1} + \frac{1}{4} + \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{6}$ we add 4 and invert, then add 1 and invert. This produces the answer of $(12 - \sqrt{14})/10$.

(e) $\overline{1/2 + 1/3 + 1/5}$

<u>Solution</u>: Set $x = \frac{1}{2} + \frac{1}{3} + \frac{1}{5}$, so $1/x = 2 + \frac{1}{3} + \frac{1}{5} + x$. rewrite this equation as $1/x - 2 = (1 - 2x)/x = \frac{1}{3} + \frac{1}{5} + x$, and inverting this gives $x/(1 - 2x) = 3 + \frac{1}{5} + x$. Then $x/(1 - 2x) - 3 = (7x - 3)/(1 - 2x) = \frac{1}{5} + x$ and inverting this gives (1 - 2x)/(7x - 3) = 5 + x which simplifies to the quadratic equation $7x^2 + 34x - 16 = 0$. The positive root of this equation is $(-17 + \sqrt{401})/7$. This calculation shows that a fairly simple-looking continued fraction like $\frac{1}{2} + \frac{1}{3} + \frac{1}{5}$ can have a fairly complicated value.

2. Compute the continued fractions for $\sqrt{5}$ and $\sqrt{23}$.

Solution: Since $\sqrt{5}$ is between 2 and 3 we have

$$\sqrt{5} = 2 + (\sqrt{5} - 2)$$
 and $\frac{1}{\sqrt{5} - 2} = \sqrt{5} + 2$
 $\sqrt{5} + 2 = 4 + (\sqrt{5} - 2)$

This is the same remainder as in the first line, so we conclude that $\sqrt{5} = 2 + \frac{1}{4}$. For $\sqrt{23}$ which is between 4 and 5 we have

$$\sqrt{23} = 4 + (\sqrt{23} - 4) \text{ and } \frac{1}{\sqrt{23} - 4} = \frac{\sqrt{23} + 4}{7}$$

$$\frac{\sqrt{23} + 4}{7} = 1 + \frac{\sqrt{23} - 3}{7} \text{ and } \frac{7}{\sqrt{23} - 3} = \frac{7(\sqrt{23} + 3)}{14} = \frac{\sqrt{23} + 3}{2}$$

$$\frac{\sqrt{23} + 3}{2} = 3 + \frac{\sqrt{23} - 3}{2} \text{ and } \frac{2}{\sqrt{23} - 3} = \frac{2(\sqrt{23} + 3)}{14} = \frac{\sqrt{23} + 3}{7}$$

$$\frac{\sqrt{23} + 3}{7} = 1 + \frac{\sqrt{23} - 4}{7} \text{ and } \frac{7}{\sqrt{23} - 4} = \frac{7(\sqrt{23} + 4)}{7} = \sqrt{23} + 4$$

$$\sqrt{23} + 4 = 8 + (\sqrt{23} - 4)$$

Finally we are back to the original remainder, so $\sqrt{23} = 4 + \frac{1}{1} + \frac{1}{3} + \frac{1}{1} + \frac{1}{8}$.

3. Compute the continued fractions for $\sqrt{n^2 + 1}$ and $\sqrt{n^2 + n}$ where *n* is an arbitrary positive integer.

Solution: $\sqrt{n^2 + 1}$ is between *n* and *n* + 1 so we have

$$\sqrt{n^2 + 1} = n + (\sqrt{n^2 + 1} - n)$$
 and $\frac{1}{\sqrt{n^2 + 1} - n} = \sqrt{n^2 + 1} + n$
 $\sqrt{n^2 + 1} + n = 2n + (\sqrt{n^2 + 1} - n)$

So we have a repeated remainder and $\sqrt{n^2 + 1} = n + \frac{1}{2n}$. For $\sqrt{n^2 + n}$, this is also between *n* and *n* + 1 and we have

$$\sqrt{n^2 + n} = n + (\sqrt{n^2 + n} - n) \text{ and } \frac{1}{\sqrt{n^2 + n} - n} = \frac{\sqrt{n^2 + n} + n}{n}$$
$$\frac{\sqrt{n^2 + n} + n}{n} = 2 + \frac{\sqrt{n^2 + n} - n}{n} \text{ and } \frac{n}{\sqrt{n^2 + n} - n} = \sqrt{n^2 + n} + n$$
$$\sqrt{n^2 + n} + n = 2n + (\sqrt{n^2 + n} - n)$$

which brings us to a repeated remainder, so $\sqrt{n^2 + n} = n + \frac{1}{2} + \frac{1}{2n}$.