1. Find a formula for the linear fractional transformation that rotates the triangle $\langle 0/1, 1/2, 1/1 \rangle$ to $\langle 1/1, 0/1, 1/2 \rangle$.

2. Find the linear fractional transformation that reflects the Farey diagram across the edge $\langle 1/2, 1/3 \rangle$ (so in particular, the transformation takes 1/2 to 1/2 and 1/3 to 1/3).

3. Find a formula for the linear fractional transformation that reflects the upper halfplane version of the Farey diagram across the vertical line x = 3/2.

4. Find an infinite periodic strip of triangles in the Farey diagram such that the transformation $\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ is a glide-reflection along this strip and the transformation $\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$ is a translation along this strip.

5. Let *T* be an element of $LF(\mathbb{Z})$ with matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Show that the composition $T\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}T^{-1}$ is the reflection across the edge $\langle a/c, b/d \rangle = T(\langle 1/0, 0/1 \rangle)$.

For each of the remaining six problems, compute the value of the given periodic or eventually periodic continued fraction by first drawing the associated infinite strip of triangles, then finding a linear fractional transformation T in $LF(\mathbb{Z})$ that gives the periodicity in the strip, then solving T(z) = z.

6. $\overline{\frac{1}{2} + \frac{1}{5}}$ 7. $\overline{\frac{1}{2} + \frac{1}{1} + \frac{1}{1}}$ 8. $\overline{\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{2}}$ 9. $2 + \overline{\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{4}}$ 10. $2 + \overline{\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{4}}$ 11. $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3}$