1. Use a quadratic form to compute continued fractions for the following pairs of numbers (see pages 20-21 of Chapter 2 for examples like these):

(a) $(3 + \sqrt{6})/2$ and $(3 - \sqrt{6})/2$ (b) $(11 + \sqrt{13})/6$ and $(11 - \sqrt{13})/6$

(c) $(14 + \sqrt{7})/9$ and $(14 - \sqrt{7})/9$

2. For the quadratic form $x^2 - 14y^2$ do the following things:

(a) Draw the separator line in the topograph and compute the continued fraction for $\sqrt{14}$.

(b) Find the smallest positive integer solutions of $x^2 - 14y^2 = 1$ and $x^2 - 14y^2 = -1$, if these equations have integer solutions.

(c) Find the linear fractional transformation that gives the periodicity translation along the separator line and use this to find a second positive solution of $x^2 - 14y^2 = 1$. (d) Determine the integers n with $|n| \le 12$ such that the equation $x^2 - 14y^2 = n$ has an integer solution. (Don't forget the possibility that there could be solutions (x, y) that aren't primitive.)

3. For the quadratic form $x^2 - 29y^2$ do the following things:

(a) Draw the separator line and compute the continued fraction for $\sqrt{29}$.

(b) Find the smallest positive integer solution of $x^2 - 29y^2 = -1$.

(c) Find a glide-reflection symmetry of the separator line and use this to find the smallest positive integer solution of $x^2 - 29y^2 = 1$.

4. Compute the periodic separator line for the form $x^2 - 43y^2$ and use this to find the continued fraction for $\sqrt{43}$.