1. Describe how to construct a surjective immersion $\mathbb{R}^2 \to S^2$.

2. Show that the punctured torus $S^1 \times S^1 - \{point\}$ has an immersion into \mathbb{R}^2 . Include some explanation of why your construction is C^{∞} . [Hint for the construction: enlarge the puncture.]

3. Show that a C^{∞} homeomorphism $M \to N$ whose inverse is C^1 is a diffeomorphism.

4. Show that any product of (finitely many) spheres can be embedded into Euclidean space of one higher dimension.

5. Show that if M is a smooth compact n-manifold, n > 0, then any smooth map $f: M \to \mathbb{R}$ has at least two critical points.

6. Show that $\mathbb{R}P^2$ and the Klein bottle can both be smoothly embedded in \mathbb{R}^4 . [Hint: for $\mathbb{R}P^2$, decompose it as the union of a Möbius band M and a disk D with their boundary circles identified. Embed M and D separately in \mathbb{R}^3 with a common boundary circle, and so that their union $\mathbb{R}P^2$ is immersed, then push the interiors of M and D out into opposite sides of \mathbb{R}^3 in \mathbb{R}^4 .]

7. (a) Let the torus T be embedded in \mathbb{R}^3 in the standard way, say as the surface of revolution obtained by rotating the circle $(x-2)^2 + z^2 = 1$ in the xz-plane about the z-axis. Determine all the critical points and critical values of the projection $f: T \to \mathbb{R}^2$, f(x, y, z) = (x, y).

(b) What are the critical points and critical values if we project the same embedded T onto the xz-plane instead of the xy-plane?

(c) Construct an embedding of T in \mathbb{R}^3 such that the critical points and critical values of the projection $T \to \mathbb{R}^2$ each consist of n disjoint circles, for arbitrary $n \ge 2$.