1. Give details in the proof of the fact, stated in class, that for a composition gf of smooth maps $f: M \to N$ and $g: N \to P$, the induced maps on tangent bundles $Df: TM \to TN$ and $Dg: TN \to TP$ satisfy $D(gf) = Dg \circ Df$. (Here we are using the definition of tangent bundles in terms of coordinate charts.)

2. Show that for smooth manifolds M and N, $T(M \times N)$ is diffeomorphic to $TM \times TN$.

3. (a) Show that if $p_1: E_1 \to M$ and $p_2: E_2 \to M$ are smooth vector bundles, then so is their direct sum $E_1 \oplus E_2 \to M$.

(b) Verify that in a smooth vector bundle $p: E \to M$ the operations of vector addition $E \oplus E \to E$, $(v, w) \mapsto v + w$, and scalar multiplication $\mathbb{R} \times E \to E$, $(t, v) \mapsto tv$, are smooth maps.

(c) Verify that a smooth section of a smooth vector bundle is a smooth embedding.

4. (a) Show that the Klein bottle $K = (S^1 \times [0,1])/(z,0) \sim (\bar{z},1)$ has a nonvanishing (i.e., nowhere zero) vector field.

(b) Express the tangent bundle TK as the direct sum $E_1 \oplus E_2$ of two 1-dimensional vector bundles, where E_2 is the trivial bundle. Describe E_1 explicitly.

5. If M is a submanifold of N, show that TM is the subspace of TN consisting of vectors tangent to smooth curves in M.

6. (a) Recall that $\mathbb{R}P^n$ is the space of lines L in \mathbb{R}^{n+1} passing through the origin. The canonical line bundle over $\mathbb{R}P^n$ is the space $E = \{(L, v) \in \mathbb{R}P^n \times \mathbb{R}^{n+1} \mid v \in L\}$, or loosely speaking, "the vectors in lines through the origin". Show that the projection $p: E \to \mathbb{R}P^n$, p(L, v) = L, defines a vector bundle, i.e., verify the local triviality condition. Hint: think about projecting one line orthogonally onto another.

(b) Determine whether the vector bundle E in part (a) is the trivial bundle in the special case n = 1. (Give reasons for your answer, of course.)

(c) Define the orthogonal complement $E^{\perp} = \{(L, v) \in \mathbb{R}P^n \times \mathbb{R}^{n+1} \mid v \perp L\}$ with projection $p: E^{\perp} \to \mathbb{R}P^n$ sending (L, v) to L. Show that this too is a vector bundle, and determine whether it is trivial when n = 1.

(d) Show that $E \oplus E^{\perp}$ is isomorphic to the trivial bundle $\mathbb{R}P^n \times \mathbb{R}^{n+1}$.

7. (a) Regarding S^n as the unit sphere in \mathbb{R}^{n+1} as usual, let E be the quotient space of $TS^n = \{(x, v) \in S^n \times \mathbb{R}^{n+1} \mid v \perp x\}$ under the identifications $(x, v) \sim (-x, -v)$. Give an explanation for why E is the tangent bundle $T\mathbb{RP}^n$. (This implies in particular that E is a vector bundle over \mathbb{RP}^n .)

(b) Show that $T\mathbb{R}P^n$ is the trivial bundle for n = 1, 3, following the same line of reasoning as for TS^n in these dimensions. (This holds also for n = 7 using octonions, but let's skip that case.)

(c) One might guess that $T\mathbb{RP}^n$ is the same as the bundle E^{\perp} in the previous problem. Show that this is false for n = 1. (Later we will be able to show it is false for all odd n.) (d) Let E' be the quotient space of the normal bundle

$$NS^{n} = \{(x, v) \in S^{n} \times \mathbb{R}^{n+1} \mid v = tx \text{ for some } t \in \mathbb{R}\}$$

under the identifications $(x, v) \sim (-x, -v)$. Show that E' is the trivial bundle $\mathbb{R}P^n \times \mathbb{R}$. Bonus problem — it's a little tricky:

(e*) Show that $T\mathbb{R}P^n \oplus E'$ is the direct sum of n+1 copies of the canonical line bundle over $\mathbb{R}P^n$ defined in the previous problem. Hint: consider the quotient of $S^n \times \mathbb{R}^{n+1}$ under the identifications $(x, v) \sim (-x, -v)$. Show this is the direct sum of n+1 copies of the bundle $(S^n \times \mathbb{R})/(x, v) \sim (-x, -v)$, and show this 1-dimensional bundle over $\mathbb{R}P^n$ is isomorphic to the canonical line bundle by thinking of $S^n \times \mathbb{R}$ as the normal bundle NS^n .