More Exercises for Algebraic Topology by Allen Hatcher

Chapter 0.

1. Given amap f:X—Y, show that there exists amap g:Y —X with gf ~ 1 iff X
is a retract of the mapping cylinder M.

2. (a) Suppose a CW complex X is the union of a finite number of subcomplexes X; and
that a subcomplex A of X is the union of subcomplexes A; C X;. Show that if each
X; deformation retracts onto A; and each intersection of a subcollection of the X;’s
deformation retracts onto the corresponding intersection of A;’s, then X deformation
retracts onto A. [By an induction argument the problem reduces to the case of two
X;’s and A;’s. In this special case show that the inclusions A — AU (X; N X,) & X
are homotopy equivalences.]

(b) Use mapping cylinders to deduce the more general result that a map of CW com-
plexes f:X—Y is a homotopy equivalence if it restricts to homotopy equivalences
Xy n--nX; —Y;, n---nY,; for decompositions of X and Y as finite unions of
subcomplexes X; ¢ X and Y; ¢ Y with f(X;) C Y;. Assume that f is a cellular
map, sending n-skeleton to n-skeleton for all n. This guarantees that the mapping
cylinder M, is a CW complex. [The technique of cellular approximation described in
§4.1 can be applied to show that the cellularity hypothesis can be dropped.]

3. Show that the n-skeleton of the simplex AK has the homotopy type of a wedge

k

n+1) n-spheres.

sum of (

4. For spaces X C Y C Z, show that X is a deformation retract of Y if Y is a retract
of Z and Z deformation retracts onto X.

5. Suppose that a space X deformation retracts onto a subspace X, and we attach X
to a space Y along a subspace A C X, viaamap f:A—Y toformaspace Z = YueX.
Show that Z deformation retracts onto Z, =Y Uy Xj.

Section 1.1.

1. If x, and x; are two points in the same path component of X, construct a bijection
between the set of homotopy classes of paths from x, to x; and 1 (X, x;).

2. For spaces X and Y with basepoints x, and Yy, let (X,Y) denote the set of
basepoint-preserving homotopy classes of basepoint-preserving maps X—Y.

(a) Show that a homotopy equivalence (Y,y,) = (Y', () induces a bijection (X,Y) ~
(X,Y"y.

(b) Show that a homotopy equivalence (X, x,) =~ (X', x,) induces a bijection (X,Y) ~
(X',Y).

(c) When X is a finite connected graph, compute (X,Y) in terms of (Y, y,). [Use
part (b) to reduce to the case that X is a wedge sum of circles.]



3. Show that if two maps f,g: (X, xy) — (Sl,SO) are homotopic just as maps X —S*
without regard to basepoints, then they are homotopic through basepoint-preserving
maps via a homotopy f;: (X, xy) — (S L So) - [Hint: Use rotations of S 1]

Section 1.2.

1. Rederive the calculation 17, (RP?) ~ Z, using the CW structure on RP? obtained by
identifying antipodal vertices, edges, and faces of a cube.

2. Let K be the graph with six vertices and nine edges shown at the

right, and let X be obtained from K by attaching a 2-cell along each M
loop formed by a cycle of four edges in K. Show that T, (X) = 0.

3. Let T be the torus S'xS! and let T’ be T with a small open disk removed. Let X
be obtained from T by attaching two copies of T', identifying their boundary circles

with longitude and meridian circles S* x {x,} and {x,}xS! in T. Find a presentation
for 1 (X).

4. For X a finite connected graph, verify that (XxShH = T (X)X 114 (s by com-
puting 11, (XX S 1y using a CW structure on X xS'. In a similar fashion, verify that
T (XXY) = 11 (X) X1 (Y) when X and Y are wedge sums of circles.

5. Using a CW structure, compute the fundamental group of the mapping torus of the
map f:X— X in the following cases:
(a) X is the graph formed by a circle with n equally-spaced radii and f is a rotation
of this wheel graph sending each radius to the next.
(b) X is the graph which is the suspension of n points and f is the suspension of a
cyclic permutation of the n points.

6. One way to modify a presentation (g, - *,gm | 71,7, ) to another presenta-
tion for the same group is to replace a relation 7; by one of the products r;7;, rirj_l ,
¥y, Or 1/]11’1- for some j # i. Show that the 2-complexes X, associated to these
different presentations are homotopy equivalent. [Hint: Attach the 2-cell eiz last and
deform its attaching map so as to change #; to one of the new relations, then apply

Proposition 0.18.]

7. Apply the preceding problem to show that the complex X, for the presentation
(a|a”,a?) with p,q > 1 is homotopy equivalent to S v X, where X, is the com-
plex associated to the presentation (a | a?) for d the greatest common divisor of p
and q.

8. Describe each of the following spaces as a mapping torus:
(@) S'x S! with the identifications (1,z) ~ (1,—z) and (-1,z) ~ (-1, -2).
(b) S' xS' with the identifications (1,z) ~ (1,iz) and (-1,z) ~ (-=1,-2).

9. (a) Show that a finite CW complex, or more generally one with a finite 1-skeleton,
has finitely generated fundamental group.



(b) Show that amap f:X—Y with X compact and Y a CW complex cannot induce an
isomorphismon mr, if 17, (X) is not finitely generated. [Use part (a) and Proposition A.1
in the Appendix.]

(c) Deduce that the shrinking wedge of circles in Example 1.25 or an infinite product
of circles is not homotopy equivalent to a CW complex.

10. [This is a revised version of Exercise 16 on page 54.] (a) Show that the noncompact
surface of infinite genus shown below deformation retracts onto a graph, and use this
to show that the fundamental group of the surface is free on a countably infinite
number of generators.

(b) Do the same thing for the noncompact surface R? — C where C is the Cantor set
in the x-axis.

11. Let X be the disk, annulus, or Mobius band, and let 0 X C X be its boundary circle
or circles.

(a) For x € X show that the inclusion X — {x} — X induces an isomorphism on 1,
iff x € 0X.

(b) If Y is also a disk, annulus, or Mobius band, show that a homeomorphism f: X—Y
restricts to a homeomorphism 0X —0Y.

(c) Deduce that the Mobius band is not homeomorphic to an annulus.

Section 1.3.

1. Construct an uncountable number of nonisomorphic connected covering spaces of
St v St Deduce that a free group on two generators has an uncountable number of
distinct subgroups. Is this also true of a free abelian group on two generators?

2. [An expanded version of number 4 on page 79.] Construct a simply-connected
covering space for each of the following spaces: (a) S' v §%. (b) The union of S with
an arc joining two distinct points of S2. (c) $? with two points identified. (d) RP? v RP?.
(e) $? with two arcs joining two pairs of points, or the same pair of points. (f) S'v RP?.
(g) RP? with an arc joining two distinct points. (h) S! v T? where T? is the torus.

3. Describe geometrically the structure of an arbitrary covering space of S' v RP?.

4. If I\ denotes the closed nonorientable surface defined in §1.2, construct an
n-sheeted covering space N,,,,.»—N,,,» foreach m > 0 and n = 2.

5. [An addition to number 18 on page 80.] Determine explicitly all the abelian covering
spaces of S v S!. How are these related to covering spaces of S'xS!?

6. (@) Show that a map f:X—Y between Hausdorff spaces is a covering space if X
is compact and f is a local homeomorphism, meaning that for each x € X there are



open neighborhoods U of x in X and V of f(x) in Y with f a homeomorphism
from U onto V.
(b) Give an example where this fails if X is noncompact.

7. [A second part to number 6 on page 79.] Show that the composition of two covering
spaces is a covering space if the second one is finite-sheeted.

8. Show that the noncompact surface of infinite genus shown in Exercise 16 for §1.2
is a covering space of the closed orientable surface of genus 2 in two different ways,
one way via an action of Z on the noncompact surface and the other way via an action
of the infinite dihedral group 7, * Z,.

9. Using covering spaces, show that a finite index subgroup of a finitely generated
group is finitely generated, and similarly with ‘finitely generated’ replaced by ‘finitely
presented’ (finite number of generators and relations). Is there a bound on the number
of generators of the subgroup in terms of the index and the number of generators of
the full group?

10. A third part of Exercise 21 on page 81: Do the same for the space obtained from
Y by attaching a second Mobius band along the same circle that the first one was
attached along.

11. Another part to Exercise 16 on page 80, showing the necessity of the hypothesis
that Z belocally path-connected in the first part of the exercise: Let Z be the subspace
of R consisting of the sequence x,, = 1/n, n = 1,2, ---, together with its limit 0. Let
XcZx{0,1,2,---} C R? consist of the pairs (0, k), the pairs (x,,2j+1) with n > 1
and j > 0, and the pairs (x,,,2j) with n > j > 0. Let Y = Zx{0,1} C X. Reducing
the second coordinate modulo 2 gives a map X — Y, and then forgetting the second
coordinate gives a map Y — Z. Show that the composition X —Y — Z is a covering
space, as is the map Y — Z, but the map X —Y is not a covering space.

12. Give an example of a map p : X — X that is not a covering space but satisfies the
covering homotopy property, including uniqueness of the lift.

13. (Exercise on non-pathconnected covering spaces) Assume X is locally pathcon-
nected. (a) Show that a map p X—Xisa covering space if and only if the restriction
p:p ' (X,) — X, is a covering space for each component X, of X, and do the same for
normal covering spaces. (b) Now assume X is connected as well as locally pathcon-
nected. Show thatif p X—Xisa covering space then so is the restriction p :)?0—>X
for each path component )?0 of X, and give a counterexample where the converse
fails. Do the same also for normal covering spaces.

14. Let X be one of the five graphs formed by the vertices and edges of a regular
polyhedron: tetrahedron, cube, octahedron, dodecahedron, or icosahedron. Deter-
mine the values of n > 1 such that there exists an n-sheeted covering space X —Y.
[Hint: A finite graph must have an odd number of odd-valence vertices, where the



valence of a vertex means the number of edges that abut it, using the convention that
if both ends of an edge abut the same vertex, this contributes 2 to the valence.]

15. Let X be a path-connected Hausdorff space. Show that a covering space X—X
must be finite-sheeted if X is compact. Deduce that 7r; (X) is finite if X has a compact
simply-connected covering space.

16. [An enhanced version of Exercise 20 on page 81.] Let K be the Klein bottle and T
the torus.

(a) Construct an n-sheeted normal covering space K— K for each n > 1.

(b) Construct an n-sheeted nonnormal covering space K— K for each n > 2. [Note
that 2-sheeted covering spaces are normal since index-two subgroups are normal.]
(c) Show that a covering space T— K must have an even number of sheets.

(d) Construct an n-sheeted normal covering space T — K for each even n > 1.

(e) Construct an n-sheeted nonnormal covering space T— K for each even n > 2.

17. For p prime, find all the index p normal subgroups of Z*7Z and the corresponding
covering spaces of S' v S!.

18. [An addendum to problem 14 on page 80.] Classify the subgroups of 7, * Z, up
to isomorphism, showing there are only four possibilities. How many isomorphism
types of subgroups of Z, x Z; and Z; * Z5 are there?

Section 1.B.

1. Addition to Exercise 5: How does the universal cover change if the relator bab ‘a2

is replaced by bab 'a??
Section 2.1.

1. Compute the simplicial homology groups of S' with the A-complex structure
having n vertices and n edges.

2. Show that the simplicial homology groups of an oriented graph do not depend on
the orientations of the edges.

3. Regarding A" as a A-complex in the natural way, show that if a subcomplex X c A"
has H,_;(X) nonzero then X = 0A™".

4. Amap f:X—Y induces a function from the set of path-components of X to the
set of path-components of Y. Show that this function determines and is determined
by the induced homomorphism f, : Hy(X)—Hy(Y).

5. Compute the local homology groups of the mapping cylinders of the maps R— R
given by f(x) =sinx and g(x) = xsinl/x.

6. Show that the local homology groups of a finite simplicial complex are finitely
generated, and construct a finite CW complex having a local homology group that is
not finitely generated. [See the previous problem.]



7. Show that the obvious quotient map from the augmented chain complex of a space
X to the unaugmented chain complex is a chain map. Thus this map is part of a
short exact sequence of chain complexes, with kernel the complex having only a Z
in dimension —1, so there is an induced long exact sequence of homology groups
which includes the short exact sequence H(X)— H,(X)—Z— 0. Observe that these
various sequences are all natural.

8. There are exactly three ways to identify the faces of A® in pairs to produce a
A-complex. Compute the homology groups of this A-complex in each case. [This is
related to exercise 7 on page 131.]

9. (a) Show that the set { (x;,---,x,) € R" |0 <x; <--- < x, <1} is a simplex of
dimension n.

(b) Show that the n-dimensional cube I" has the structure of a simplicial complex
with the same set of 2" vertices as the cube and with n! n-simplices.

10. Given a set S, let X be the simplicial complex whose vertices are the elements
of S and whose simplices are all the finite subsets of S. Show that X is contractible
if $+d.

Section 2.2.

1. Here is a corrected and extended version of problem 13 on page 156. Let X be the
2-complex obtained from S! with its usual cell structure by attaching two 2-cells by
maps of degrees 2 and 3, respectively.

(a) Compute the homology groups of all the subcomplexes A C X and the corre-
sponding quotient complexes X/A.

(b) Show that the only subcomplex A C X such that the quotient map X—X/A is a
homotopy equivalence is the trivial subcomplex consisting of the 0-cell alone.

(c) Show that X ~ S$2. [Hint: Use Proposition 0.18 and consider the possibility of
attaching one 2-cell after the other and then deforming its attaching map.]

(d) Let Y be obtained from X by attaching a 3-cell by a map S?— X that is the
composition of a degree 2 map of $° with a homotopy equivalence S? — X. Show
that if B is a nontrivial subcomplex of Y then Y and Y /B are not homotopy
equivalent.

2. Show that if X is a CW complex with k n-cells then H,(X) = 7" iff the cellular
boundary maps d,, and d,,., are both zero.

3. Use Euler characteristic to determine which orientable surface results from identi-
fying opposite edges of a 2n-gon.



4. Suppose a simplicial complex structure on a closed surface of Euler characteristic
X has v vertices, e edges, and f faces, which are triangles. Show that e = 3f/2,
f=2v-X),e=3w-X),and e < v(v —1)/2. Deduce that 6(v — X) < v° —v.

For the torus conclude that v > 7, f > 14, and e > 21. 1 5 3 4
Explain how the diagram at the right gives a simplicial \/ v
complex structure on the torus realizing the minimum 4 5
values (v,e, f) = (7,21,14). For the projective plane /7v
show that v > 6, f > 10, and e > 15, and use the icosa- > A 1
hedron to describe a simplicial complex structure real- A /\

izing the minimum values (v,e, f) = (6,15,10). Why 1 2 3 4

does the octahedron not work?

5. The degree of a homeomorphism f:R"—R" can be defined as the degree of
the extension of f to a homeomorphism of the one-point compactification S™. Using
this notion, fill in the details of the following argument due to R. Fokkink which shows
that R" is not homeomorphic to a product X x X if n is odd. Assuming R" = X x X,
consider the homeomorphism f of R"xR" = Xx Xx X x X that cyclically permutes
the factors, f(x;,X,,X3,X,) = (X, X3,X4,X;). Then f* switches the two factors of
R"xR"™, so f? has degree —1 if n is odd. But deg(f?) = (deg f)* = +1.

6. Show that the homology groups of a join X % Y are given by ﬁn(X *xY) =~
H, {(XXY,XVY).

7. For a simplicial complex X construct a A-complex A(X) having an n-simplex for
each linear map of A" to a simplex of X that takes vertices to vertices but not neces-
sarily injectively. The faces of such a simplex of A(X) are obtained by restricting the
map to faces of A™. Show that the natural map A(X)— X induces an isomorphism
on all homology groups. Thus the homology of X can be computed using the sim-
plicial chain complex of A(X), which lies between the simplicial and singular chain
complexes of X. [First do the case that X is a simplex, then use a Mayer-Vietoris
argument to do the case that X is a finite complex by induction on the number of
simplices, then deduce the general case.]

8. Suppose the definition of A(X) in the preceding exercise was modified to allow
only injective linear maps A" — X. Show that in the cases X = A! and X = A? itis
no longer true with the more restrictive definition that X and A(X) have isomorphic
homology groups.

9. Let S™ be given the CW structure lifting the standard CW structure on RP", so that
S™ has two i-cells for each i < n. Compute the resulting cellular chain complex for
S™ and verify that it has the correct homology groups. [Use orientations for the cells
that lift orientations of the cells of RP".]

10. Compute the homology groups of the quotient space of S™ obtained by identifying
antipodal points in the standard sk c S™, for a fixed k < n.



11. Compute the reduced Mayer-Vietoris sequence for the CW complex X = A U B
where A n B is RP? and we obtain A from A N B by attaching a cone on RP! c RP?
and we obtain B by attaching a cone on all of RP?. Thus A ~ S 2, B is contractible,
and X ~ S%. [The Mayer-Vietoris sequence reduces to a short exact sequence that
does not split. This gives a counterexample to the original formulation of the Mayer-
Vietoris sequence by Mayer and Vietoris, which was not in terms of exact sequences
since these had not yet been invented, but rather as a direct sum statement. The error
is repeated more recently in [Dieudonneé 1989], page 39.]

12. (a) Compute the homology groups of the quotient space of the unit sphere S 2R3
obtained by identifying (x,y,z) ~ (y,z,x) ~ (z,x,y) whenever at least one of
x,v,z is 0. [To get a cell structure, replace S° by a regular octahedron centered at
the origin with vertices on the coordinate axes.]

(b) Determine whether this space is homotopy equivalent to the wedge sum of Moore
spaces giving the same homology.

13. Show that if (X,A) is a CW pair of dimension n (so all cells of X — A have
dimension at most n) then the map H,, (A) — H,,(X) induced by the inclusion A — X
is injective with image a direct summand of H,,(X).

14. Does the singular chain defined by the quotient map A" — A™/0A™ = S™ represent
a generator of H, (S") for n > 07? If not, what can be added to get a generator?

15. Show that if f:A"™ — A" is a map that takes each (n — 1)-dimensional face of A"
to itself, then f is surjective. [Consider the induced map A™/0A™ — A" /0A™ ]

16. Show that the spaces S'x$% and S' v $? v S? have isomorphic homology and fun-
damental groups but are not homotopy equivalent. [Compute the homology groups
of their universal covers.]

17. Give a proof or a counterexample to the following statement, for each n > 0: If X
is an n-dimensional CW complex having exactly one cell in each dimension 0,1, ---,n
and H;(X) ~ZforO<i<n,then X ~S'vS§>v...vSs",

18. Show that the Mayer-Vietoris sequence fails to hold for the decomposition of
the shrinking wedge of circles in Example 1.25 as the union of its upper and lower
halves. (By a modification of the argument there show that H; of the shrinking wedge
is uncountable, but the Mayer-Vietoris sequence would imply it is countable.)

Section 2.B.

1. Generalizing Corollary 2B.4, show that if a map from a compact manifold to a con-
nected manifold of the same dimension is locally an embedding, then it is a covering
space.

2. Using Proposition 2B.1, show that a subspace X c S™ homeomorphic to S™ ! is
the frontier of each of the two components of S" — X. [Observe that each point x € X
has arbitrarily small open neighborhoods N in X such that S — (X —N) is connected,



then consider a path in S™ — (X — N) connecting a point in one component of §" — X
to a point in the other component.]

Section 3.1.

1. Write down an explicit cocycle in C'(S';Z) representing a generator of H'(S'; 7).

Section 3.2.

1. Compute the ring H* (X;Z) when X is obtained from CP" ! by attaching a cell ¢*"
by the composition S ! S, g2n-1 9, cpn-l where f has degree k > 1 and g is
the attaching map for the 2n-cell of CP".

2. Compute the ring H* (X;Z) when X is obtained from CP* v § an-l by attaching a
cell e2" by the composition 27! — §2n-1y, §2n=1 1Y9, g2n-1, cpn-1 yhere the first
map collapses the equator $°" 2 c $°"~! to a point, the map f has degree k > 1,
and g is the attaching map for the 2n-cell of CP".

3. Generalizing Example 3.7, compute the ring H™(X;Z) where X is obtained from
a wedge sum of finitely many circles by attaching a 2-cell according to an arbitrary
product of commutators of the 1-cells. More generally, do this for any attaching map
for which H*(X:7) ~ Z.

4. Show that if there exists a map f:S"xS"—S" that is an odd function of each
variable separately, so f(-x,y) = —f(x,y) = f(x,—y), then n = 2k _ 1 for some
integer k. [See Theorem 3.20.]

5. For a space X let c(X) denote the minimum number of sets in a covering of X by
contractible open sets, if such a cover exists. Using Exercise 2 on page 228 show:

(@) c(RP") =c(CP") =n+1.

(b) c(M) = 3 for closed surfaces M other than $°.

() c(T") =n+1 for T" the n-dimensional torus.

6. From the calculation H* ((RP*)";Z,) =~ Z,[xy,---,x,] deduce that all cellular
boundary and coboundary maps with Z, coefficients are zero for the product (RP%)"
with its standard CW structure.

7. Taking the product of the inclusion RP! < RP* with itself n times gives a map from
the n-torus T" to (RP”)". Compute the induced maps on H*(—;Z,) and H, (—;Z,).
8. By Proposition 1B.9 there is a map p: RP” X RP*” — RP® whose induced map on 1,
is the multiplication map in this group. Compute the maps induced by y on H*(—;Z,)
and H,(—;Z,), showing that the latter map takes the cellular homology class of the
product cell e*xe’ to (”l.j )e”j where the binomial coefficient is taken mod?2. [This
can be interpreted as saying that H, (RP”;Z,) is a divided polynomial algebra using
the multiplication induced by u. See §3.C for more on this idea.]

9. Deduce the cup product structure for a product of spheres from the special case
of the n-torus T" using the fact that S Uis T' with its (i — 1)-skeleton collapsed to
a point, where T" is given its standard CW structure.



Section 3.3.

1. Show that the degree of a map f:T"—T" of the n-dimensional torus is the
determinant of f*:H (T™;2)—H (T"; 7).

2. For a connected nonorientable manifold show that a two-sheeted covering space
that is orientable is unique up to isomorphism.

3. Let p:M—M be the two-sheeted orientable cover of the nonorientable closed
n-manifold M. Show that Hk(M;F) ~ H,(M;F)®H,_;(M;F) for F = Q or Z, with
p an odd prime, by filling in details in the following outline:

(a) For a vector space V over F let T:V—YV be a linear map with T? = 1, and
let V* = {v € V|T(v) = zv}. Show that V = V" @V~ using the formula
v=1hlv+TW)]+1,v-Tw)].

(b) In particular, there are splittings H;, (M iF)=H ,j (M F)® H, (M ; F) induced by the
nontrivial deck transformation 7: M — M, and similarly for cohomology, with the
latter splitting being the Hom-dual of the former.

(c) Identify H, (M;F) with H; (M; F) and likewise for cohomology, by associating to
each singular simplex in M the sum of its two lifts to M.

(d) Show that the Poincaré duality isomorphism « +— [M] ~ « identifies the + and
— parts of H*(M;F) with the — and + parts of Hn,k(M;F), respectively, using
the fact that T, [M] = —[M].

4. Using Poincaré duality and the naturality property of cap products, show that
amap f:M—N of degree 1 between closed orientable n-manifolds induces split
surjections f, :H;(M;R)— H;(N;R) for all i.

5. Let M be a closed 3-manifold embedded in S* so that it has a neighborhood
homeomorphic to M x (—¢,¢), with M corresponding to M x {0} under this homeo-
morphism. Show that the torsion subgroup of H, (M) splits as a direct sum T® T for
some finite abelian group T.

6. Show that the space X = R>—{ (x,0) | x # 0} is not a manifold, nor is the product
X xR for any k.

Section 3.B.

1. Show that S" is not homeomorphic to a product XxY unless X or Y is a point.
[Hint: If S = XxY then X and Y embed in S™ as retracts.]

Section 3.C.

1. Apply Proposition 1B.9 to show that if G is an abelian group then a CW complex
K(G,1) is a homotopy-associative, homotopy-commutative H-space.

2. An additional part (d) for the existing problem 10: In case H™ (X;R) is an exterior
algebra Ag[«y, -+ -, «,] on  odd-dimensional generators «; show that the k"-power
map x — x* induces multiplication by k" on the top-dimensional cohomology group
H™(X;R) for n = o | + -+ + |, |.



Section 4.1.

1. For X path-connected show that 1, (X) = 0 iff every pair of maps f, f;:D"—X
with f,,|0D™ = f,|oD" is joined by a homotopy f;,:D" — X with f,|oD"™ = f,|oD"
for all t.

2. Let X C R consist of the sequence 1/,,1/5,1/,,--- together with its limit 0. Show
that the suspension SX has T, (SX) =0 forall n > 1.

3. Let f:S"xS™—S%" be the quotient map collapsing S" v S" to a point. Show that
f induces the zero map on all homotopy groups but f is not nullhomotopic.

4. Let (X,A) be an n-connected CW pair with A of dimension less than n. Show that
if (X', A") is another such pair with X ~ X' then A ~ A". Give an example where this
fails when A has dimension n.

5. Show that for a pair (X, A), the image of the map 1, (X, xy) — (X, A, x) lies in
the center of m,(X, A, x,). (This was Exercise 27 in Section 4.2, but it really belongs
in Section 4.1 since it can be proved directly from the definitions.)

6. For a path-connected space X with suspension SX show that there are isomor-
phisms m,, (SX, X) =~ m,,(§X) x1,_;(X) for all n > 2. [The case n = 2 needs special
attention since it can involve nonabelian groups.]

7. As a second part to exercise 13 on page 359, use the Brouwer fixed point theorem
to show that every map from a contractible finite simplicial complex to itself has a
fixed point.

8. For path-connected X and Y, use the long exact sequence of homotopy groups for
the pair (XxY,XVvY) toshow that ,,(XVY) = 11, (X)X 17, (Y) X 1T, 1 (XX Y, XVY)
forall n > 2.

9. The following exercise can be a preliminary step for exercise 20 on page 359. The
sphere S ! c §" is the common boundary of three disks: The upper hemisphere
D" of S", the lower hemisphere D", and the disk D" halfway between these two
hemispheres. Givenamap F:S"uD" —Y taking a basepoint s, in S" ! to abasepoint
Yo in Y, let f be the restriction of F to S and let f, and f_ be the restrictions of
F to the spheres DT u D™ and D" U D". Show that [f] =[f,1+ [f_]in m,(Y,»,).

Section 4.2.

1. A space Y is a homotopy retract of a space X if there are maps Y L x5ty
whose composition is homotopic to the identity. Show that if a simply-connected
CW complex Y is a homotopy retract of a wedge of spheres \/;S", for example if
\;S™ ~Y v Z for some Z, then Y is also homotopy equivalent to a wedge of spheres.
[Hint: If the Hurewicz map 1,,— H,, is surjective for a space X thenitis also surjective
for any homotopy retract of X. Use this to construct a map from a wedge of spheres
to Y inducing an isomorphism on homology.]



2. Show that if X is m-connected and Y is n-connected then the join X x Y is
(m + n + 2)-connected. This also holds when m or n is —1 if (—1)-connected is
taken to mean nonempty. [Simple-connectivity is an exercise for §1.2. For higher
connectivity use the Hurewicz theorem and the fact that H,(X * Y) is isomorphic to
H;, {(XXY,XVvY),an exercise for §2.2.]

3. Give examples of maps between simply-connected CW complexes that induce a
surjection on 1, but not on H,, and vice versa, and do the same for injections. Four
examples are needed in total. The spaces can be chosen to be spheres and complex
projective spaces.

4. Let F — E -2 B be a fiber bundle with base B a finite CW complex. Show that if
H, (F;Z) is finitely generated then sois H, (E;Z) and X (E) = X (F) X (B). [Proceed by
induction on the number of cells in B. Write B = C U D" where D" is a disk in a top-
dimensional cell e” of B such that the bundle is a product over D" and CnD"™ = 0D™".
Show the inclusion p 1 (B — e") — p~1(C) is a weak homotopy equivalence, and use
the Mayer-Vietoris sequence for the decomposition E = p 1 (C) u p 1 (D™) ]

5. Let Cp = S" U ek where the cell ¢* is attached by f:S'—S™, and let C, be
constructed similarly using g:Sk’1 — S™. Show that if C ¢ = C, then g is homotopic
to the composition of f with homotopy equivalences of S k=1 and S™. In particular,
if Cp=S"v S¥ then f is nullhomotopic.

6. Let f:(X,A)— (Y,B) be amap of CW pairs such that both the restriction f:A—B
and the induced quotient map X/A—Y /B are homotopy equivalences. Show that
f:X—Y is a homotopy equivalence if X and Y are simply-connected. Show also,
by means of an example of a map (S' v §",5') — (S! v §™,S!) with n > 1, that the
simple-connectivity assumption cannot be dropped.

7. Show that if a map f:X—Y of CW complexes induces isomorphisms on homol-
ogy f.«:H,(X)—H,(Y) for all n, then the suspension Sf:SX—SY is a homotopy
equivalence, even when X and Y are not connected.

8. Show that if G is a finite group having a finite presentation with the same number
of generators as relations, then H,(G) = 0, where H;(G) means H,;(K(G,1)) for any
K(G,1) CW complex.

9. Show that for X path-connected the suspension map 71, (X)— 11, (5X) is abelian-
ization.

10. For the space X in Example 4.35 compute the homology groups of the universal
cover X with coefficients in Z, Q, and Z, with p prime.

Section 4.3.

1. Show that associating to a map CP" — CP" the induced homomorphism on H,
gives a bijection [CP",CP"] =~ Z.



2. A short exact sequence of groups 1 —-A — B— (C—1 corresponds to a fibration
K(A,1)—K(B,1)—K(C,1). Show this fibration is principal if and only if A lies in
the center of B.

3. Construct a pair (X, Y) such that 1t (Y) is abelian but 1, (X, Y) is nonabelian, by
applying the preceding problem in a case where A is in the center of the nonabelian
group B with abelian quotient C (for example, B is the quaternion group of order 8
and A is its center), using the general fact that m, ., (X,Y) is m, of the homotopy
fiber of the inclusion Y — X.

4. (a) Let p:E— B be a fibration and let v :E—E, be a retraction onto a subspace
E, C E such that pr = p (so r preserves fibers of p). Show that the restriction
p :E,— B is also a fibration.

(b) Use part (a) to give simple examples of fibrations which are not fiber bundles, with
E aproduct BXF and, say, B = F = I. [This gives a simpler solution to Exercise 9 on
page 419 not using the hint given there.]

Section 4.D.

1. Prove the following refinement of the Leray-Hirsch theorem: Let F L EF-Z Bbe
a fiber bundle such that, for some commutative coefficient ring R and some fixed
integer m > 0 the R-modules H’/(F;R) for j < m are free with a finite basis
consisting of the restrictions i*(cjk) of elements c;; € H’(E;R). Then the map
o:@; (H' 7 (B;R) & H' (F;R)) ~H'(E;R), S biei*(c;) = Siup*(by) < cjy, is
an isomorphism for £ < m.

Section 4.K.

1. Show that a map p:E— B is a quasifibration if it satisfies a weaker form of the
homotopy lifting property which allows a homotopy D¥x1— B to be reparametrized
by composition with a map D¥xI—D¥*xTI of the form (x,t) — (x,9,(t)) for some
family of maps g,.:(1,0,1)—(I,0,1) before lifting the homotopy.

Section 4.L.

1. Using the argument in Proposition 4L.11 together with the Adem relations Sq'Sq* +
Sq25q3+5q45q1 =0, Sq15q8+5q25q7+5q85q1 =0,and Sq25q8+5q45q6+5q85q2+
$q°Sq' = 0, show that 2v, 20, and o n are nonzero in ;. . Explain why the argument
fails for the products vn and ov, where the Adem relations in question are Sg>Sq* +
$q°Sq' +5q° = 0 and Sq*Sq®+54'°Sq* +Sq''Sq' +Sq'% = 0. However the argument
does work unstably for the compositions vn -8 55" —>s* and ov:S8 -SSP 88,
together with a few suspensions of these compositions. [In fact vn and ov are both
zero in 13 .]

Appendix

1. A CW complex is said to be countable if it has countably many cells, and it is locally



finite if every point has a neighborhood that is contained in a finite subcomplex. The
latter condition is equivalent to being locally compact.

(a) Show that every countable CW complex can be expressed as the union of an in-
creasing sequence of finite subcomplexes X; C X, C ---.

(b) Show that every countable CW complex is homotopy equivalent to a locally finite
CW complex. [Consider the mapping telescope of the inclusions in (a); see the proof of
Lemma 2.34.] Refine the construction to show that when the given complex is finite-
dimensional, the locally finite complex can be taken to be of the same dimension.

(c) Show that a locally finite CW complex that is connected must be countable.



