
More Exercises for Algebraic Topology by Allen Hatcher

Chapter 0.

1. Given a map f :X→Y , show that there exists a map g :Y→X with gf ≃ 11 iff X

is a retract of the mapping cylinder Mf .

2. (a) Suppose a CW complex X is the union of a finite number of subcomplexes Xi and

that a subcomplex A of X is the union of subcomplexes Ai ⊂ Xi . Show that if each

Xi deformation retracts onto Ai and each intersection of a subcollection of the Xi ’s

deformation retracts onto the corresponding intersection of Ai ’s, then X deformation

retracts onto A . [By an induction argument the problem reduces to the case of two

Xi ’s and Ai ’s. In this special case show that the inclusions A֓A∪ (X1 ∩ X2)֓ X

are homotopy equivalences.]

(b) Use mapping cylinders to deduce the more general result that a map of CW com-

plexes f :X→Y is a homotopy equivalence if it restricts to homotopy equivalences

Xi1 ∩ ··· ∩ Xik→Yi1 ∩ ··· ∩ Yik for decompositions of X and Y as finite unions of

subcomplexes Xi ⊂ X and Yi ⊂ Y with f(Xi) ⊂ Yi . Assume that f is a cellular

map, sending n skeleton to n skeleton for all n . This guarantees that the mapping

cylinder Mf is a CW complex. [The technique of cellular approximation described in

§4.1 can be applied to show that the cellularity hypothesis can be dropped.]

3. Show that the n skeleton of the simplex ∆k has the homotopy type of a wedge

sum of
(
k
n+1

)
n spheres.

4. For spaces X ⊂ Y ⊂ Z , show that X is a deformation retract of Y if Y is a retract

of Z and Z deformation retracts onto X .

5. Suppose that a space X deformation retracts onto a subspace X0 and we attach X

to a space Y along a subspace A ⊂ X0 via a map f :A→Y to form a space Z = Y⊔fX .

Show that Z deformation retracts onto Z0 = Y ⊔f X0 .

Section 1.1.

1. If x0 and x1 are two points in the same path component of X , construct a bijection

between the set of homotopy classes of paths from x0 to x1 and π1(X,x0) .

2. For spaces X and Y with basepoints x0 and y0 let 〈X,Y 〉 denote the set of

basepoint-preserving homotopy classes of basepoint-preserving maps X→Y .

(a) Show that a homotopy equivalence (Y ,y0) ≃ (Y
′, y ′0) induces a bijection 〈X,Y 〉 ≈

〈X,Y ′〉 .

(b) Show that a homotopy equivalence (X,x0) ≃ (X
′, x′0) induces a bijection 〈X,Y 〉 ≈

〈X′, Y 〉 .

(c) When X is a finite connected graph, compute 〈X,Y 〉 in terms of π1(Y ,y0) . [Use

part (b) to reduce to the case that X is a wedge sum of circles.]



3. Show that if two maps f ,g : (X,x0)→(S1, s0) are homotopic just as maps X→S1

without regard to basepoints, then they are homotopic through basepoint-preserving

maps via a homotopy ft : (X,x0)→(S1, s0) . [Hint: Use rotations of S1 .]

Section 1.2.

1. Rederive the calculation π1(RP2) ≈ Z2 using the CW structure on RP2 obtained by

identifying antipodal vertices, edges, and faces of a cube.

2. Let K be the graph with six vertices and nine edges shown at the

right, and let X be obtained from K by attaching a 2 cell along each

loop formed by a cycle of four edges in K . Show that π1(X) = 0.

3. Let T be the torus S1
×S1 and let T ′ be T with a small open disk removed. Let X

be obtained from T by attaching two copies of T ′ , identifying their boundary circles

with longitude and meridian circles S1
×{x0} and {x0}×S

1 in T . Find a presentation

for π1(X) .

4. For X a finite connected graph, verify that π1(X×S
1) ≈ π1(X)×π1(S

1) by com-

puting π1(X×S
1) using a CW structure on X×S1 . In a similar fashion, verify that

π1(X×Y) ≈ π1(X)×π1(Y ) when X and Y are wedge sums of circles.

5. Using a CW structure, compute the fundamental group of the mapping torus of the

map f :X→X in the following cases:

(a) X is the graph formed by a circle with n equally-spaced radii and f is a rotation

of this wheel graph sending each radius to the next.

(b) X is the graph which is the suspension of n points and f is the suspension of a

cyclic permutation of the n points.

6. One way to modify a presentation
〈
g1, ··· , gm |||| r1, ··· , rn

〉
to another presenta-

tion for the same group is to replace a relation ri by one of the products rirj , rir
−1
j ,

rjri , or r−1
j ri for some j ≠ i . Show that the 2 complexes XG associated to these

different presentations are homotopy equivalent. [Hint: Attach the 2 cell e2
i last and

deform its attaching map so as to change ri to one of the new relations, then apply

Proposition 0.18.]

7. Apply the preceding problem to show that the complex XG for the presentation〈
a |||| a

p, aq
〉

with p,q > 1 is homotopy equivalent to S2
∨ Xd where Xd is the com-

plex associated to the presentation
〈
a |||| a

d 〉 for d the greatest common divisor of p

and q .

8. Describe each of the following spaces as a mapping torus:

(a) S1
×S1 with the identifications (1, z) ∼ (1,−z) and (−1, z) ∼ (−1,−z) .

(b) S1
×S1 with the identifications (1, z) ∼ (1, iz) and (−1, z) ∼ (−1,−z) .

9. (a) Show that a finite CW complex, or more generally one with a finite 1 skeleton,

has finitely generated fundamental group.



(b) Show that a map f :X→Y with X compact and Y a CW complex cannot induce an

isomorphism on π1 if π1(X) is not finitely generated. [Use part (a) and Proposition A.1

in the Appendix.]

(c) Deduce that the shrinking wedge of circles in Example 1.25 or an infinite product

of circles is not homotopy equivalent to a CW complex.

10. [This is a revised version of Exercise 16 on page 54.] (a) Show that the noncompact

surface of infinite genus shown below deformation retracts onto a graph, and use this

to show that the fundamental group of the surface is free on a countably infinite

number of generators.

(b) Do the same thing for the noncompact surface R2
− C where C is the Cantor set

in the x axis.

11. Let X be the disk, annulus, or Möbius band, and let ∂X ⊂ X be its boundary circle

or circles.

(a) For x ∈ X show that the inclusion X − {x}֓ X induces an isomorphism on π1

iff x ∈ ∂X .

(b) If Y is also a disk, annulus, or Möbius band, show that a homeomorphism f :X→Y

restricts to a homeomorphism ∂X→∂Y .

(c) Deduce that the Möbius band is not homeomorphic to an annulus.

Section 1.3.

1. Construct an uncountable number of nonisomorphic connected covering spaces of

S1
∨ S1 . Deduce that a free group on two generators has an uncountable number of

distinct subgroups. Is this also true of a free abelian group on two generators?

2. [An expanded version of number 4 on page 79.] Construct a simply-connected

covering space for each of the following spaces: (a) S1
∨ S2 . (b) The union of S2 with

an arc joining two distinct points of S2 . (c) S2 with two points identified. (d) RP2
∨RP2 .

(e) S2 with two arcs joining two pairs of points, or the same pair of points. (f) S1
∨RP2 .

(g) RP2 with an arc joining two distinct points. (h) S1
∨ T 2 where T 2 is the torus.

3. Describe geometrically the structure of an arbitrary covering space of S1
∨RP2 .

4. If Ng denotes the closed nonorientable surface defined in §1.2, construct an

n sheeted covering space Nmn+2→Nm+2 for each m ≥ 0 and n ≥ 2.

5. [An addition to number 18 on page 80.] Determine explicitly all the abelian covering

spaces of S1
∨ S1 . How are these related to covering spaces of S1

×S1 ?

6. (a) Show that a map f :X→Y between Hausdorff spaces is a covering space if X

is compact and f is a local homeomorphism, meaning that for each x ∈ X there are



open neighborhoods U of x in X and V of f(x) in Y with f a homeomorphism

from U onto V .

(b) Give an example where this fails if X is noncompact.

7. [A second part to number 6 on page 79.] Show that the composition of two covering

spaces is a covering space if the second one is finite-sheeted.

8. Show that the noncompact surface of infinite genus shown in Exercise 16 for §1.2

is a covering space of the closed orientable surface of genus 2 in two different ways,

one way via an action of Z on the noncompact surface and the other way via an action

of the infinite dihedral group Z2 ∗ Z2 .

9. Using covering spaces, show that a finite index subgroup of a finitely generated

group is finitely generated, and similarly with ‘finitely generated’ replaced by ‘finitely

presented’ (finite number of generators and relations). Is there a bound on the number

of generators of the subgroup in terms of the index and the number of generators of

the full group?

10. A third part of Exercise 21 on page 81: Do the same for the space obtained from

Y by attaching a second Möbius band along the same circle that the first one was

attached along.

11. Another part to Exercise 16 on page 80, showing the necessity of the hypothesis

that Z be locally path-connected in the first part of the exercise: Let Z be the subspace

of R consisting of the sequence xn = 1/n , n = 1,2, ··· , together with its limit 0. Let

X ⊂ Z×{0,1,2, ···} ⊂ R2 consist of the pairs (0, k) , the pairs (xn,2j+1) with n ≥ 1

and j ≥ 0, and the pairs (xn,2j) with n > j ≥ 0. Let Y = Z×{0,1} ⊂ X . Reducing

the second coordinate modulo 2 gives a map X→Y , and then forgetting the second

coordinate gives a map Y→Z . Show that the composition X→Y→Z is a covering

space, as is the map Y→Z , but the map X→Y is not a covering space.

12. Give an example of a map p : X̃→X that is not a covering space but satisfies the

covering homotopy property, including uniqueness of the lift.

13. (Exercise on non-pathconnected covering spaces) Assume X is locally pathcon-

nected. (a) Show that a map p : X̃→X is a covering space if and only if the restriction

p :p−1(X0)→X0 is a covering space for each component X0 of X , and do the same for

normal covering spaces. (b) Now assume X is connected as well as locally pathcon-

nected. Show that if p : X̃→X is a covering space then so is the restriction p : X̃0→X

for each path component X̃0 of X̃ , and give a counterexample where the converse

fails. Do the same also for normal covering spaces.

14. Let X be one of the five graphs formed by the vertices and edges of a regular

polyhedron: tetrahedron, cube, octahedron, dodecahedron, or icosahedron. Deter-

mine the values of n > 1 such that there exists an n sheeted covering space X→Y .

[Hint: A finite graph must have an odd number of odd-valence vertices, where the



valence of a vertex means the number of edges that abut it, using the convention that

if both ends of an edge abut the same vertex, this contributes 2 to the valence.]

15. Let X be a path-connected Hausdorff space. Show that a covering space X̃→X

must be finite-sheeted if X̃ is compact. Deduce that π1(X) is finite if X has a compact

simply-connected covering space.

16. [An enhanced version of Exercise 20 on page 81.] Let K be the Klein bottle and T

the torus.

(a) Construct an n sheeted normal covering space K→K for each n > 1.

(b) Construct an n sheeted nonnormal covering space K→K for each n > 2. [Note

that 2 sheeted covering spaces are normal since index-two subgroups are normal.]

(c) Show that a covering space T→K must have an even number of sheets.

(d) Construct an n sheeted normal covering space T→K for each even n > 1.

(e) Construct an n sheeted nonnormal covering space T→K for each even n > 2.

17. For p prime, find all the index p normal subgroups of Z∗Z and the corresponding

covering spaces of S1
∨ S1 .

18. [An addendum to problem 14 on page 80.] Classify the subgroups of Z2 ∗ Z2 up

to isomorphism, showing there are only four possibilities. How many isomorphism

types of subgroups of Z2 ∗ Z3 and Z3 ∗ Z3 are there?

Section 1.B.

1. Addition to Exercise 5: How does the universal cover change if the relator bab−1a−2

is replaced by bab−1a2 ?

Section 2.1.

1. Compute the simplicial homology groups of S1 with the ∆ complex structure

having n vertices and n edges.

2. Show that the simplicial homology groups of an oriented graph do not depend on

the orientations of the edges.

3. Regarding ∆n as a ∆ complex in the natural way, show that if a subcomplex X ⊂ ∆n
has Hn−1(X) nonzero then X = ∂∆n .

4. A map f :X→Y induces a function from the set of path-components of X to the

set of path-components of Y . Show that this function determines and is determined

by the induced homomorphism f∗ :H0(X)→H0(Y ) .

5. Compute the local homology groups of the mapping cylinders of the maps R→R

given by f(x) = sinx and g(x) = x sin 1/x .

6. Show that the local homology groups of a finite simplicial complex are finitely

generated, and construct a finite CW complex having a local homology group that is

not finitely generated. [See the previous problem.]



7. Show that the obvious quotient map from the augmented chain complex of a space

X to the unaugmented chain complex is a chain map. Thus this map is part of a

short exact sequence of chain complexes, with kernel the complex having only a Z

in dimension −1, so there is an induced long exact sequence of homology groups

which includes the short exact sequence H̃0(X)→H0(X)→Z→0. Observe that these

various sequences are all natural.

8. There are exactly three ways to identify the faces of ∆3 in pairs to produce a

∆ complex. Compute the homology groups of this ∆ complex in each case. [This is

related to exercise 7 on page 131.]

9. (a) Show that the set
{
(x1, ··· , xn) ∈ R

n |||| 0 ≤ x1 ≤ ··· ≤ xn ≤ 1
}

is a simplex of

dimension n .

(b) Show that the n dimensional cube In has the structure of a simplicial complex

with the same set of 2n vertices as the cube and with n! n simplices.

10. Given a set S , let XS be the simplicial complex whose vertices are the elements

of S and whose simplices are all the finite subsets of S . Show that XS is contractible

if S ≠∅ .

Section 2.2.

1. Here is a corrected and extended version of problem 13 on page 156. Let X be the

2 complex obtained from S1 with its usual cell structure by attaching two 2 cells by

maps of degrees 2 and 3, respectively.

(a) Compute the homology groups of all the subcomplexes A ⊂ X and the corre-

sponding quotient complexes X/A .

(b) Show that the only subcomplex A ⊂ X such that the quotient map X→X/A is a

homotopy equivalence is the trivial subcomplex consisting of the 0 cell alone.

(c) Show that X ≃ S2 . [Hint: Use Proposition 0.18 and consider the possibility of

attaching one 2 cell after the other and then deforming its attaching map.]

(d) Let Y be obtained from X by attaching a 3 cell by a map S2→X that is the

composition of a degree 2 map of S2 with a homotopy equivalence S2→X . Show

that if B is a nontrivial subcomplex of Y then Y and Y/B are not homotopy

equivalent.

2. Show that if X is a CW complex with k n cells then Hn(X) ≈ Z
k iff the cellular

boundary maps dn and dn+1 are both zero.

3. Use Euler characteristic to determine which orientable surface results from identi-

fying opposite edges of a 2n gon.



4. Suppose a simplicial complex structure on a closed surface of Euler characteristic

χ has v vertices, e edges, and f faces, which are triangles. Show that e = 3f/2,

f = 2(v − χ) , e = 3(v − χ) , and e ≤ v(v − 1)/2. Deduce that 6(v − χ) ≤ v2
− v .

For the torus conclude that v ≥ 7, f ≥ 14, and e ≥ 21.

Explain how the diagram at the right gives a simplicial

complex structure on the torus realizing the minimum

values (v, e, f ) = (7,21,14) . For the projective plane

show that v ≥ 6, f ≥ 10, and e ≥ 15, and use the icosa-

hedron to describe a simplicial complex structure real-

izing the minimum values (v, e, f ) = (6,15,10) . Why

does the octahedron not work?

5. The degree of a homeomorphism f :Rn→R
n can be defined as the degree of

the extension of f to a homeomorphism of the one-point compactification Sn . Using

this notion, fill in the details of the following argument due to R. Fokkink which shows

that Rn is not homeomorphic to a product X×X if n is odd. Assuming Rn = X×X ,

consider the homeomorphism f of Rn×Rn = X×X×X×X that cyclically permutes

the factors, f(x1, x2, x3, x4) = (x2, x3, x4, x1) . Then f 2 switches the two factors of

R
n
×R

n , so f 2 has degree −1 if n is odd. But deg(f 2) = (deg f)2 = +1.

6. Show that the homology groups of a join X ∗ Y are given by H̃n(X ∗ Y) ≈

Hn−1(X×Y ,X ∨ Y) .

7. For a simplicial complex X construct a ∆ complex ∆(X) having an n simplex for

each linear map of ∆n to a simplex of X that takes vertices to vertices but not neces-

sarily injectively. The faces of such a simplex of ∆(X) are obtained by restricting the

map to faces of ∆n . Show that the natural map ∆(X)→X induces an isomorphism

on all homology groups. Thus the homology of X can be computed using the sim-

plicial chain complex of ∆(X) , which lies between the simplicial and singular chain

complexes of X . [First do the case that X is a simplex, then use a Mayer-Vietoris

argument to do the case that X is a finite complex by induction on the number of

simplices, then deduce the general case.]

8. Suppose the definition of ∆(X) in the preceding exercise was modified to allow

only injective linear maps ∆n→X . Show that in the cases X = ∆1 and X = ∆2 it is

no longer true with the more restrictive definition that X and ∆(X) have isomorphic

homology groups.

9. Let Sn be given the CW structure lifting the standard CW structure on RPn , so that

Sn has two i cells for each i ≤ n . Compute the resulting cellular chain complex for

Sn and verify that it has the correct homology groups. [Use orientations for the cells

that lift orientations of the cells of RPn .]

10. Compute the homology groups of the quotient space of Sn obtained by identifying

antipodal points in the standard Sk ⊂ Sn , for a fixed k < n .



11. Compute the reduced Mayer-Vietoris sequence for the CW complex X = A ∪ B

where A∩ B is RP2 and we obtain A from A ∩ B by attaching a cone on RP1
⊂ RP2

and we obtain B by attaching a cone on all of RP2 . Thus A ≃ S2 , B is contractible,

and X ≃ S2 . [The Mayer-Vietoris sequence reduces to a short exact sequence that

does not split. This gives a counterexample to the original formulation of the Mayer-

Vietoris sequence by Mayer and Vietoris, which was not in terms of exact sequences

since these had not yet been invented, but rather as a direct sum statement. The error

is repeated more recently in [Dieudonné 1989], page 39.]

12. (a) Compute the homology groups of the quotient space of the unit sphere S2
⊂ R

3

obtained by identifying (x,y, z) ∼ (y, z,x) ∼ (z,x,y) whenever at least one of

x,y, z is 0. [To get a cell structure, replace S2 by a regular octahedron centered at

the origin with vertices on the coordinate axes.]

(b) Determine whether this space is homotopy equivalent to the wedge sum of Moore

spaces giving the same homology.

13. Show that if (X,A) is a CW pair of dimension n (so all cells of X − A have

dimension at most n ) then the map Hn(A)→Hn(X) induced by the inclusion A֓X

is injective with image a direct summand of Hn(X) .

14. Does the singular chain defined by the quotient map ∆n→∆n/∂∆n = Sn represent

a generator of Hn(S
n) for n > 0? If not, what can be added to get a generator?

15. Show that if f :∆n→∆n is a map that takes each (n−1) dimensional face of ∆n
to itself, then f is surjective. [Consider the induced map ∆n/∂∆n→∆n/∂∆n .]

16. Show that the spaces S1
×S2 and S1

∨S2
∨S3 have isomorphic homology and fun-

damental groups but are not homotopy equivalent. [Compute the homology groups

of their universal covers.]

17. Give a proof or a counterexample to the following statement, for each n > 0: If X

is an n dimensional CW complex having exactly one cell in each dimension 0,1, ··· , n

and Hi(X) ≈ Z for 0 ≤ i ≤ n , then X ≃ S1
∨ S2

∨ ··· ∨ Sn .

18. Show that the Mayer-Vietoris sequence fails to hold for the decomposition of

the shrinking wedge of circles in Example 1.25 as the union of its upper and lower

halves. (By a modification of the argument there show that H1 of the shrinking wedge

is uncountable, but the Mayer-Vietoris sequence would imply it is countable.)

Section 2.B.

1. Generalizing Corollary 2B.4, show that if a map from a compact manifold to a con-

nected manifold of the same dimension is locally an embedding, then it is a covering

space.

2. Using Proposition 2B.1, show that a subspace X ⊂ Sn homeomorphic to Sn−1 is

the frontier of each of the two components of Sn−X . [Observe that each point x ∈ X

has arbitrarily small open neighborhoods N in X such that Sn−(X−N) is connected,



then consider a path in Sn− (X −N) connecting a point in one component of Sn −X

to a point in the other component.]

Section 3.1.

1. Write down an explicit cocycle in C1(S1;Z) representing a generator of H1(S1;Z) .

Section 3.2.

1. Compute the ring H∗(X;Z) when X is obtained from CPn−1 by attaching a cell e2n

by the composition S2n−1 f
-----→ S2n−1 g

-----→CPn−1 where f has degree k > 1 and g is

the attaching map for the 2n cell of CPn .

2. Compute the ring H∗(X;Z) when X is obtained from CPn−1
∨S2n−1 by attaching a

cell e2n by the composition S2n−1→S2n−1
∨S2n−1 f∨g

------------→S2n−1
∨CPn−1 where the first

map collapses the equator S2n−2
⊂ S2n−1 to a point, the map f has degree k > 1,

and g is the attaching map for the 2n cell of CPn .

3. Generalizing Example 3.7, compute the ring H∗(X;Z) where X is obtained from

a wedge sum of finitely many circles by attaching a 2 cell according to an arbitrary

product of commutators of the 1 cells. More generally, do this for any attaching map

for which H2(X;Z) ≈ Z .

4. Show that if there exists a map f :Sn×Sn→Sn that is an odd function of each

variable separately, so f(−x,y) = −f(x,y) = f(x,−y) , then n = 2k − 1 for some

integer k . [See Theorem 3.20.]

5. For a space X let c(X) denote the minimum number of sets in a covering of X by

contractible open sets, if such a cover exists. Using Exercise 2 on page 228 show:

(a) c(RPn) = c(CPn) = n+ 1.

(b) c(M) = 3 for closed surfaces M other than S2 .

(c) c(Tn) = n+ 1 for Tn the n dimensional torus.

6. From the calculation H∗
(
(RP∞)n;Z2

)
≈ Z2[x1, ··· , xn] deduce that all cellular

boundary and coboundary maps with Z2 coefficients are zero for the product (RP∞)n

with its standard CW structure.

7. Taking the product of the inclusion RP1֓RP∞ with itself n times gives a map from

the n torus Tn to (RP∞)n . Compute the induced maps on H∗(−;Z2) and H∗(−;Z2) .

8. By Proposition 1B.9 there is a map µ :RP∞×RP∞→RP∞ whose induced map on π1

is the multiplication map in this group. Compute the maps induced by µ on H∗(−;Z2)

and H∗(−;Z2) , showing that the latter map takes the cellular homology class of the

product cell ei×ej to
(
i+j
i

)
ei+j where the binomial coefficient is taken mod2. [This

can be interpreted as saying that H∗(RP∞;Z2) is a divided polynomial algebra using

the multiplication induced by µ . See §3.C for more on this idea.]

9. Deduce the cup product structure for a product of spheres from the special case

of the n torus Tn using the fact that Si is T i with its (i − 1) skeleton collapsed to

a point, where T i is given its standard CW structure.



Section 3.3.

1. Show that the degree of a map f :Tn→Tn of the n dimensional torus is the

determinant of f∗ :H1(Tn;Z)→H1(Tn;Z) .

2. For a connected nonorientable manifold show that a two-sheeted covering space

that is orientable is unique up to isomorphism.

3. Let p : M̃→M be the two-sheeted orientable cover of the nonorientable closed

n manifold M . Show that Hk(M̃ ;F) ≈ Hk(M ;F)⊕Hn−k(M ;F) for F = Q or Zp with

p an odd prime, by filling in details in the following outline:

(a) For a vector space V over F let T :V→V be a linear map with T 2
= 11, and

let V± =
{
v ∈ V |||| T(v) = ±v

}
. Show that V = V+⊕V− using the formula

v = 1/2[v + T(v)]+
1/2[v − T(v)].

(b) In particular, there are splittings Hk(M̃ ;F) = H+k (M̃ ;F)⊕H−k (M̃ ;F) induced by the

nontrivial deck transformation τ : M̃→M̃ , and similarly for cohomology, with the

latter splitting being the Hom-dual of the former.

(c) Identify Hk(M ;F) with H+k (M̃ ;F) and likewise for cohomology, by associating to

each singular simplex in M the sum of its two lifts to M̃ .

(d) Show that the Poincaré duality isomorphism α֏ [M̃]a α identifies the + and

− parts of Hk(M̃ ;F) with the − and + parts of Hn−k(M̃ ;F) , respectively, using

the fact that τ∗[M̃] = −[M̃] .

4. Using Poincaré duality and the naturality property of cap products, show that

a map f :M→N of degree 1 between closed orientable n manifolds induces split

surjections f∗ :Hi(M ;R)→Hi(N ;R) for all i .

5. Let M be a closed 3 manifold embedded in S4 so that it has a neighborhood

homeomorphic to M×(−ε, ε) , with M corresponding to M×{0} under this homeo-

morphism. Show that the torsion subgroup of H1(M) splits as a direct sum T⊕T for

some finite abelian group T .

6. Show that the space X = R2
−
{
(x,0) |||| x ≠ 0

}
is not a manifold, nor is the product

X×Rk for any k .

Section 3.B.

1. Show that Sn is not homeomorphic to a product X×Y unless X or Y is a point.

[Hint: If Sn = X×Y then X and Y embed in Sn as retracts.]

Section 3.C.

1. Apply Proposition 1B.9 to show that if G is an abelian group then a CW complex

K(G,1) is a homotopy-associative, homotopy-commutative H–space.

2. An additional part (d) for the existing problem 10: In case H∗(X;R) is an exterior

algebra ΛR[α1, ··· , αr ] on r odd-dimensional generators αi show that the kth power

map x֏xk induces multiplication by kr on the top-dimensional cohomology group

Hn(X;R) for n = |α1| + ··· + |αr | .



Section 4.1.

1. For X path-connected show that πn(X) = 0 iff every pair of maps f0, f1 :Dn→X

with f0
||∂D

n
= f1

||∂D
n is joined by a homotopy ft :Dn→X with ft ||∂D

n
= f0

||∂D
n

for all t .

2. Let X ⊂ R consist of the sequence 1/2,
1/3,

1/4, ··· together with its limit 0. Show

that the suspension SX has πn(SX) = 0 for all n > 1.

3. Let f :Sn×Sn→S2n be the quotient map collapsing Sn ∨ Sn to a point. Show that

f induces the zero map on all homotopy groups but f is not nullhomotopic.

4. Let (X,A) be an n connected CW pair with A of dimension less than n . Show that

if (X′, A′) is another such pair with X ≃ X′ then A ≃ A′ . Give an example where this

fails when A has dimension n .

5. Show that for a pair (X,A) , the image of the map π2(X,x0)→π2(X,A,x0) lies in

the center of π2(X,A,x0) . (This was Exercise 27 in Section 4.2, but it really belongs

in Section 4.1 since it can be proved directly from the definitions.)

6. For a path-connected space X with suspension SX show that there are isomor-

phisms πn(SX,X) ≈ πn(SX)×πn−1(X) for all n ≥ 2. [The case n = 2 needs special

attention since it can involve nonabelian groups.]

7. As a second part to exercise 13 on page 359, use the Brouwer fixed point theorem

to show that every map from a contractible finite simplicial complex to itself has a

fixed point.

8. For path-connected X and Y , use the long exact sequence of homotopy groups for

the pair (X×Y ,X∨Y) to show that πn(X∨Y) ≈ πn(X)×πn(Y )×πn+1(X×Y ,X∨Y)

for all n ≥ 2.

9. The following exercise can be a preliminary step for exercise 20 on page 359. The

sphere Sn−1
⊂ Sn is the common boundary of three disks: The upper hemisphere

Dn+ of Sn , the lower hemisphere Dn− , and the disk Dn halfway between these two

hemispheres. Given a map F :Sn∪Dn→Y taking a basepoint s0 in Sn−1 to a basepoint

y0 in Y , let f be the restriction of F to Sn and let f+ and f− be the restrictions of

F to the spheres Dn+ ∪D
n and Dn ∪Dn− . Show that [f ] = [f+]+ [f−] in πn(Y ,y0) .

Section 4.2.

1. A space Y is a homotopy retract of a space X if there are maps Y
i
-----→ X

r
-----→ Y

whose composition is homotopic to the identity. Show that if a simply-connected

CW complex Y is a homotopy retract of a wedge of spheres
∨
iS
ni , for example if∨

iS
ni ≃ Y ∨Z for some Z , then Y is also homotopy equivalent to a wedge of spheres.

[Hint: If the Hurewicz map πn→Hn is surjective for a space X then it is also surjective

for any homotopy retract of X . Use this to construct a map from a wedge of spheres

to Y inducing an isomorphism on homology.]



2. Show that if X is m connected and Y is n connected then the join X ∗ Y is

(m + n + 2) connected. This also holds when m or n is −1 if (−1) connected is

taken to mean nonempty. [Simple-connectivity is an exercise for §1.2. For higher

connectivity use the Hurewicz theorem and the fact that H̃i(X ∗ Y) is isomorphic to

Hi−1(X×Y ,X ∨ Y) , an exercise for §2.2.]

3. Give examples of maps between simply-connected CW complexes that induce a

surjection on π∗ but not on H∗ , and vice versa, and do the same for injections. Four

examples are needed in total. The spaces can be chosen to be spheres and complex

projective spaces.

4. Let F -→E
p
-----→B be a fiber bundle with base B a finite CW complex. Show that if

H∗(F ;Z) is finitely generated then so is H∗(E;Z) and χ(E) = χ(F)χ(B) . [Proceed by

induction on the number of cells in B . Write B = C ∪Dn where Dn is a disk in a top-

dimensional cell en of B such that the bundle is a product over Dn and C∩Dn = ∂Dn .

Show the inclusion p−1(B − en)֓ p−1(C) is a weak homotopy equivalence, and use

the Mayer-Vietoris sequence for the decomposition E = p−1(C)∪ p−1(Dn) .]

5. Let Cf = Sn ∪ ek where the cell ek is attached by f :Sk−1→Sn , and let Cg be

constructed similarly using g :Sk−1→Sn . Show that if Cf ≃ Cg then g is homotopic

to the composition of f with homotopy equivalences of Sk−1 and Sn . In particular,

if Cf ≃ S
n
∨ Sk then f is nullhomotopic.

6. Let f : (X,A)→(Y , B) be a map of CW pairs such that both the restriction f :A→B

and the induced quotient map X/A→Y/B are homotopy equivalences. Show that

f :X→Y is a homotopy equivalence if X and Y are simply-connected. Show also,

by means of an example of a map (S1
∨ Sn, S1)→(S1

∨ Sn, S1) with n > 1, that the

simple-connectivity assumption cannot be dropped.

7. Show that if a map f :X→Y of CW complexes induces isomorphisms on homol-

ogy f∗ :Hn(X)→Hn(Y ) for all n , then the suspension Sf :SX→SY is a homotopy

equivalence, even when X and Y are not connected.

8. Show that if G is a finite group having a finite presentation with the same number

of generators as relations, then H2(G) = 0, where Hi(G) means Hi(K(G,1)) for any

K(G,1) CW complex.

9. Show that for X path-connected the suspension map π1(X)→π2(SX) is abelian-

ization.

10. For the space X in Example 4.35 compute the homology groups of the universal

cover X̃ with coefficients in Z , Q , and Zp with p prime.

Section 4.3.

1. Show that associating to a map CPn→CPn the induced homomorphism on H2

gives a bijection [CPn,CPn] ≈ Z .



2. A short exact sequence of groups 1→A֓ B→C→1 corresponds to a fibration

K(A,1)→K(B,1)→K(C,1) . Show this fibration is principal if and only if A lies in

the center of B .

3. Construct a pair (X, Y ) such that π1(Y ) is abelian but π2(X, Y ) is nonabelian, by

applying the preceding problem in a case where A is in the center of the nonabelian

group B with abelian quotient C (for example, B is the quaternion group of order 8

and A is its center), using the general fact that πn+1(X, Y ) is πn of the homotopy

fiber of the inclusion Y֓X .

4. (a) Let p :E→B be a fibration and let r :E→E0 be a retraction onto a subspace

E0 ⊂ E such that pr = p (so r preserves fibers of p ). Show that the restriction

p :E0→B is also a fibration.

(b) Use part (a) to give simple examples of fibrations which are not fiber bundles, with

E a product B×F and, say, B = F = I . [This gives a simpler solution to Exercise 9 on

page 419 not using the hint given there.]

Section 4.D.

1. Prove the following refinement of the Leray-Hirsch theorem: Let F
i
-----→E

p
-----→B be

a fiber bundle such that, for some commutative coefficient ring R and some fixed

integer m > 0 the R modules Hj(F ;R) for j ≤ m are free with a finite basis

consisting of the restrictions i∗(cjk) of elements cjk ∈ Hj(E;R) . Then the map

Φ :
⊕
j

(
Hℓ−j(B;R)⊗RH

j(F ;R)
)
→Hℓ(E;R) ,

∑
ijk bi ⊗ i

∗(cjk)֏
∑
ijk p

∗(bi) ` cjk , is

an isomorphism for ℓ ≤m .

Section 4.K.

1. Show that a map p :E→B is a quasifibration if it satisfies a weaker form of the

homotopy lifting property which allows a homotopy Dk×I→B to be reparametrized

by composition with a map Dk×I→Dk×I of the form (x, t)֏ (x,gx(t)) for some

family of maps gx : (I,0,1)→(I,0,1) before lifting the homotopy.

Section 4.L.

1. Using the argument in Proposition 4L.11 together with the Adem relations Sq1Sq4
+

Sq2Sq3
+Sq4Sq1

= 0, Sq1Sq8
+Sq2Sq7

+Sq8Sq1
= 0, and Sq2Sq8

+Sq4Sq6
+Sq8Sq2

+

Sq9Sq1
= 0, show that 2ν , 2σ , and ση are nonzero in π s∗ . Explain why the argument

fails for the products νη and σν , where the Adem relations in question are Sq2Sq4
+

Sq5Sq1
+Sq6

= 0 and Sq4Sq8
+Sq10Sq2

+Sq11Sq1
+Sq12

= 0. However the argument

does work unstably for the compositions νη :S8→S7→S4 and σν :S18→S15→S8 ,

together with a few suspensions of these compositions. [In fact νη and σν are both

zero in π s∗ .]

Appendix

1. A CW complex is said to be countable if it has countably many cells, and it is locally



finite if every point has a neighborhood that is contained in a finite subcomplex. The

latter condition is equivalent to being locally compact.

(a) Show that every countable CW complex can be expressed as the union of an in-

creasing sequence of finite subcomplexes X1 ⊂ X2 ⊂ ··· .

(b) Show that every countable CW complex is homotopy equivalent to a locally finite

CW complex. [Consider the mapping telescope of the inclusions in (a); see the proof of

Lemma 2.34.] Refine the construction to show that when the given complex is finite-

dimensional, the locally finite complex can be taken to be of the same dimension.

(c) Show that a locally finite CW complex that is connected must be countable.


