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We come now to the second main topic of this chapter, covering spaces. We

have in fact already encountered one example of a covering space in our calculation

of π1(S
1) . This was the map R→S1 that we pictured as the projection of a helix

onto a circle, with the helix lying above the circle, ‘covering’ it. A number of things

we proved for this covering space are valid for all covering spaces, and this allows

covering spaces to serve as a useful general tool for calculating fundamental groups.

But the connection between the fundamental group and covering spaces runs much

deeper than this, and in many ways they can be regarded as two viewpoints toward the

same thing. This means that algebraic features of the fundamental group can often

be translated into the geometric language of covering spaces. This is exemplified

in one of the main results in this section, giving an exact correspondence between

the various connected covering spaces of a given space X and subgroups of π1(X) .
This is strikingly reminiscent of Galois theory, with its correspondence between field

extensions and subgroups of the Galois group.

Definition and Examples

Let us begin with the definition. A covering space of a space X is a space X̃
together with a map p : X̃→X satisfying the following condition: There exists an

open cover {Uα} of X such that for each α , p−1(Uα) is a disjoint union of open sets

in X̃ , each of which is mapped by p homeomorphically onto Uα .

In the helix example one has p :R→S1 given by p(t) = (cos 2πt, sin 2πt) , and

the cover {Uα} can be taken to consist of any two open arcs whose union is S1 .

A related example is the helicoid surface S ⊂ R3 consisting of points of the form

(s cos 2πt, s sin 2πt, t) for (s, t) ∈ (0,∞)×R . This projects onto R2 − {0} via the

map (x,y, z), (x,y) , and this projection defines a covering space p :S→R2 −{0}
since for each open disk U in R2 − {0} , p−1(U) consists of countably many disjoint

open disks in S , each mapped homeomorphically onto U by p .

p

Another example is the map p :S1→S1 , p(z) = zn where we

view z as a complex number with |z| = 1 and n is any positive

integer. The closest one can come to realizing this covering space

as a linear projection in 3 space analogous to the projection of the

helix is to draw a circle wrapping around a cylinder n times and

intersecting itself in n − 1 points that one has to imagine are not

really intersections. For an alternative picture without this defect,

embed S1 in the boundary torus of a solid torus S1×D2 so that it winds n times

monotonically around the S1 factor without self-intersections, like the strands of a

circular cable, then restrict the projection S1×D2→S1×{0} to this embedded circle.
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As our general theory will show, these examples for n ≥ 1 together with the

helix example exhaust all the connected coverings spaces of S1 . There are many

other disconnected covering spaces of S1 , such as n disjoint circles each mapped

homeomorphically onto S1 , but these disconnected covering spaces are just disjoint

unions of connected ones. We will usually restrict our attention to connected covering

spaces as these contain most of the interesting features of covering spaces.

For a covering space p : X̃→X the cardinality of the sets p−1(x) is locally con-

stant over X , so if X is connected it is independent of x and called the number of

sheets of the covering space. Thus the covering S1→S1 , z, zn , is n sheeted and

the covering R→S1 is infinite-sheeted. This terminology arises from regarding the

disjoint subspaces of p−1(Uα) mapped homeomorphically to Uα in the definition of

a covering space as the individual ‘sheets’ of the covering space. When X is discon-

nected the number of sheets can be different over different components of X , and can

even be zero over some components since p−1(Uα) is not required to be nonempty.

The covering spaces of S1∨S1 form a remarkably rich family illustrating most of

the general theory very concretely, so let us look at a few of these covering spaces to

get an idea of what is going on. To abbreviate notation, set X = S1∨ S1 . We view this

as a graph with one vertex and two edges. We label the edges

b aa and b and we choose orientations for a and b . Now let

X̃ be any other graph with four edges meeting at each vertex,

and suppose the edges of X̃ have been assigned labels a and b and orientations in

such a way that the local picture near each vertex is the same as in X , so there is an

a edge oriented toward the vertex, an a edge oriented away from the vertex, a b edge

oriented toward the vertex, and a b edge oriented away from the vertex. To give a

name to this structure, let us call X̃ a 2 oriented graph.

The table on the next page shows just a small sample of the infinite variety of

possible examples.

Given a 2 oriented graph X̃ we can construct a map p : X̃→X sending all vertices

of X̃ to the vertex of X and sending each edge of X̃ to the edge of X with the same

label by a map that is a homeomorphism on the interior of the edge and preserves

orientation. It is clear that the covering space condition is satisfied for p . The con-

verse is also true: Every covering space of X is a graph that inherits a 2 orientation

from X .

As the reader will discover by experimentation, it seems that every graph having

four edges incident at each vertex can be 2 oriented. This can be proved for finite

graphs as follows. A very classical and easily shown fact is that every finite connected

graph with an even number of edges incident at each vertex has an Eulerian circuit,

a loop traversing each edge exactly once. If there are four edges at each vertex, then

labeling the edges of an Eulerian circuit alternately a and b produces a labeling with

two a and two b edges at each vertex. The union of the a edges is then a collection
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of disjoint circles, as is the union of the b edges. Choosing orientations for all these

circles gives a 2 orientation.

It is a theorem in graph theory that infinite graphs with four edges incident at

each vertex can also be 2 oriented; see Chapter 13 of [König 1990] for a proof. There

is also a generalization to n oriented graphs, which are covering spaces of the wedge

sum of n circles.

A simply-connected covering space of X can be constructed in the following way.

Start with the open intervals (−1,1) in the coordinate

axes of R2 . Next, for a fixed number λ , 0 < λ < 1/2, for

example λ = 1/3, adjoin four open segments of length

2λ , at distance λ from the ends of the previous seg-

ments and perpendicular to them, the new shorter seg-

ments being bisected by the older ones. For the third

stage, add perpendicular open segments of length 2λ2

at distance λ2 from the endpoints of all the previous

segments and bisected by them. The process is now

repeated indefinitely, at the nth stage adding open segments of length 2λn−1 at dis-

tance λn−1 from all the previous endpoints. The union of all these open segments is

a graph, with vertices the intersection points of horizontal and vertical segments, and

edges the subsegments between adjacent vertices. We label all the horizontal edges

a , oriented to the right, and all the vertical edges b , oriented upward.

This covering space is called the universal cover of X because, as our general

theory will show, it is a covering space of every other connected covering space of X .

The covering spaces (1)–(14) in the table are all nonsimply-connected. Their fun-

damental groups are free with bases represented by the loops specified by the listed

words in a and b , starting at the basepoint x̃0 indicated by the heavily shaded ver-

tex. This can be proved in each case by applying van Kampen’s theorem. One can

also interpret the list of words as generators of the image subgroup p∗
(
π1(X̃, x̃0)

)
in π1(X,x0) =

〈
a,b

〉
. A general fact we shall prove about covering spaces is that

the induced map p∗ :π1(X̃, x̃0)→π1(X,x0) is always injective. Thus we have the at-

first-glance paradoxical fact that the free group on two generators can contain as a

subgroup a free group on any finite number of generators, or even on a countably

infinite set of generators as in examples (10) and (11). Another general fact we shall

prove is that the index of the subgroup p∗
(
π1(X̃, x̃0)

)
in π1(X,x0) is equal to the

number of sheets of the covering space.

Changing the basepoint x̃0 to another point in p−1(x0) changes the subgroup

p∗
(
π1(X̃, x̃0)

)
to a conjugate subgroup in π1(X,x0) , with the conjugating element

of π1(X,x0) represented by any loop that is the projection of a path in X̃ joining

one basepoint to the other. For example, the covering spaces (3) and (4) differ only

in the choice of basepoints, and the corresponding subgroups of π1(X,x0) differ by
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conjugation by b .

The main classification theorem for covering spaces says that by associating the

subgroup p∗
(
π1(X̃, x̃0)

)
to the covering space p : X̃→X , we obtain a one-to-one

correspondence between all the different connected covering spaces of X and the

conjugacy classes of subgroups of π1(X,x0) . If one keeps track of the basepoint

vertex x̃0 ∈ X̃ , then this is a one-to-one correspondence between covering spaces

p : (X̃, x̃0)→(X,x0) and actual subgroups of π1(X,x0) , not just conjugacy classes.

Of course, for these statements to make sense one has to have a precise notion of

when two covering spaces are the same, or ‘isomorphic.’ In the case at hand, an iso-

morphism between covering spaces of X is just a graph isomorphism that preserves

the labeling and orientations of edges. Thus the covering spaces in (3) and (4) are

isomorphic, but not by an isomorphism preserving basepoints, so the two subgroups

of π1(X,x0) corresponding to these covering spaces are distinct but conjugate. On

the other hand, the two covering spaces in (5) and (6) are not isomorphic, though the

graphs are homeomorphic, so the corresponding subgroups of π1(X,x0) are isomor-

phic but not conjugate.

Some of the covering spaces (1)–(14) are more symmetric than others, where by

a ‘symmetry’ we mean an automorphism of the graph preserving the labeling and

orientations. The most symmetric covering spaces are those having symmetries taking

any one vertex onto any other. The examples (1), (2), (5)–(8), and (11) are the ones with

this property. We shall see that a covering space of X has maximal symmetry exactly

when the corresponding subgroup of π1(X,x0) is a normal subgroup, and in this case

the symmetries form a group isomorphic to the quotient group of π1(X,x0) by the

normal subgroup. Since every group generated by two elements is a quotient group

of Z∗ Z , this implies that every two-generator group is the symmetry group of some

covering space of X .

After this extended preview-by-examples let us return to general theory by defin-

ing a natural generalization of the symmetry group idea that we just encountered.

Group Actions

Given a group G and a space X , an action of G on X is a homomorphism ρ from

G to the group Homeo(X) of all homeomorphisms from X to itself. Thus to each

g ∈ G is associated a homeomorphism ρ(g) :X→X , which for notational simplicity

we write as just g :X→X . For ρ to be a homomorphism amounts to requiring that

(g1g2)(x) = g1(g2(x)) for all g1, g2 ∈ G and x ∈ X , so the notation g1g2(x) is

unambiguous. If ρ is injective then it identifies G with a subgroup of Homeo(X) ,
and in practice not much is lost in assuming ρ is an inclusion G↩Homeo(X) since

in any case the subgroup ρ(G) ⊂ Homeo(X) contains all the topological information

about the action.
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We shall be interested in actions satisfying the following condition:

(∗) Each x ∈ X has a neighborhood U such that all the images g(U) for varying

g ∈ G are disjoint. In other words, g1(U)∩ g2(U) ≠∅ implies g1 = g2 .

Note that it suffices to take g1 to be the identity since g1(U)∩g2(U) ≠∅ is equivalent

to U ∩ g−1
1 g2(U) ≠ ∅ . Thus we have the equivalent condition that U ∩ g(U) ≠ ∅

only when g is the identity.

Given an action of a group G on a space X , we can form a space X/G , the quotient

space of X in which each point x is identified with all its images g(x) as g ranges

over G . The points of X/G are thus the orbits Gx = {g(x) | g ∈ G } in X , and X/G
is called the orbit space of the action.

If an action of a group G on a space X satisfies (∗) , then the quotient map

p :X→X/G , p(x) = Gx , is a covering space. For, given an open set U ⊂ X as in

condition (∗) , the quotient map p simply identifies all the disjoint homeomorphic

sets {g(U) | g ∈ G } to a single open set p(U) in X/G . By the definition of the

quotient topology on X/G , p restricts to a homeomorphism from g(U) onto p(U)
for each g ∈ G so we have a covering space.

In view of this fact, we shall call an action satisfying (∗) a covering space ac-

tion. This is not standard terminology, but there does not seem to be a universally

accepted name for actions satisfying (∗) . Sometimes these are called ‘properly dis-

continuous’ actions, but more often this rather unattractive term means something

weaker: Every point x ∈ X has a neighborhood U such that U ∩ g(U) is nonempty

for only finitely many g ∈ G . Many symmetry groups have this proper discontinuity

property without satisfying (∗) , for example the group of symmetries of the familiar

tiling of R2 by regular hexagons. The reason why the action of this group on R2 fails

to satisfy (∗) is that there are fixed points: points x for which there is a nontrivial

element g ∈ G with g(x) = x . For example, the vertices of the hexagons are fixed

by the 120 degree rotations about these points, and the midpoints of edges are fixed

by 180 degree rotations. An action without fixed points is called a free action. Thus

for a free action of G on X , only the identity element of G fixes any point of X . This

is equivalent to requiring that all the images g(x) of each x ∈ X are distinct, or in

other words g1(x) = g2(x) only when g1 = g2 , since g1(x) = g2(x) is equivalent

to g−1
1 g2(x) = x . Though condition (∗) implies freeness, the converse is not always

true. An example is the action of Z on S1 in which a generator of Z acts by rotation

through an angle α that is an irrational multiple of 2π . In this case each orbit Zy is

dense in S1 , so condition (∗) cannot hold since it implies that orbits are discrete sub-

spaces. An exercise at the end of the section is to show that for actions on Hausdorff

spaces, freeness plus proper discontinuity implies condition (∗) . Note that proper

discontinuity is automatic for actions by a finite group.
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Example 1.31. Let X be the closed orientable surface of genus 11, an ‘11 hole

torus’ as shown in the figure. This has a 5 fold rota-

tional symmetry, generated by a rotation of angle 2π/5.

Thus we have the cyclic group Z5 acting on X , and the

condition (∗) is obviously satisfied. The quotient space

C2

C1

C 3C4

C5

C

p

X/Z5 is a surface of genus 3, obtained from one of the

five subsurfaces of X cut off by the circles C1, ··· , C5 by

identifying its two boundary circles Ci and Ci+1 to form

the circle C as shown. Thus we have a covering space

M11→M3 where Mg denotes the closed orientable sur-

face of genus g . In particular, we see that π1(M3) con-

tains the ‘larger’ group π1(M11) as a normal subgroup of

index 5, with quotient Z5 . This example obviously gen-

eralizes by replacing the two holes in each ‘arm’ of M11 by m holes and the 5 fold

symmetry by n fold symmetry. This gives a covering space Mmn+1→Mm+1 . An ex-

ercise in §2.2 is to show by an Euler characteristic argument that if there is a covering

space Mg→Mh then g =mn+ 1 and h =m+ 1 for some m and n .

Example 1.32. If the closed orientable surface Mg of genus g is embedded in R3 in

the standard very symmetric way centered at the origin then the map x,−x restricts

to a homeomorphism τ of Mg generating a cov-

ering space action of Z2 on Mg . The figure at the

right shows the cases g = 2,3, with a spherical

‘bulb’ inserted in the middle of the genus 2 pic-

ture to make the two cases look more alike. When

g = 0 the homeomorphism τ is the antipodal

map of S2 with orbit space RP2 . When g = 1 the

map τ rotates the longitudinal factor of the torus S1×S1 and reflects the meridional

factor, so the orbit space is a Klein bottle. For higher values of g one can regard Mg as

being obtained from a sphere or torus by adding symmetric strings of n tori on either

side, so the orbit space is a projective plane or Klein bottle with n tori added on. All

closed nonorientable surfaces arise this way, so we see that every closed nonorientable

surface has a two-sheeted covering space that is a closed orientable surface.

Example 1.33. Consider the grid in R2 formed by the horizontal and vertical lines

through points in Z2 . Let us decorate this grid with arrows in either of the two ways

shown in the figure, the difference between the two

cases being that in the second case the horizontal

arrows in adjacent lines point in opposition direc-

tions. The group G consisting of all symmetries

of the first decorated grid is isomorphic to Z×Z
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since it consists of all translations (x,y), (x +m,y + n) for m,n ∈ Z . For the

second grid the symmetry group G contains a subgroup of translations of the form

(x,y), (x +m,y + 2n) for m,n ∈ Z , but there are also glide-reflection symme-

tries consisting of vertical translation by an odd integer distance followed by reflection

across a vertical line, either a vertical line of the grid or a vertical line halfway between

two adjacent grid lines. For both decorated grids there are elements of G taking any

square to any other, but only the identity element of G takes a square to itself. The

minimum distance any point is moved by a nontrivial element of G is 1, which easily

implies the covering space condition (∗) . The orbit space R2/G is the quotient space

of a square in the grid with opposite edges identified according to the arrows. Thus

we see that the fundamental groups of the torus and the Klein bottle are the symme-

try groups G in the two cases. In the second case the subgroup of G formed by the

translations has index two, and the orbit space for this subgroup is a torus forming a

two-sheeted covering space of the Klein bottle.

Theorem 1.34. For a covering space action of a group G on a simply-connected

space X the fundamental group π1(X/G) is isomorphic to G .

The proof of the theorem depends on a basic lifting property of all covering

spaces. Recall from the proof of Theorem 1.7 that for a covering space p : X̃→X ,

a lift of a map f :Y→X is a map f̃ :Y→X̃ such that pf̃ = f . The property we need

is the homotopy lifting property, or covering homotopy property, as it is sometimes

called:

Proposition 1.35. Given a covering space p : X̃→X , a homotopy ft :Y→X , and a

map f̃0 :Y→X̃ lifting f0 , then there exists a unique homotopy f̃t :Y→X̃ of f̃0 that

lifts ft .

Proof: For the covering space p :R→S1 this is property (c) in the proof of Theo-

rem 1.7, and the proof there applies to any covering space. tu

Taking Y to be a point gives the path lifting property for a covering space

p : X̃→X , which says that for each path f : I→X and each lift x̃0 of the starting

point f(0) = x0 there is a unique path f̃ : I→X̃ lifting f starting at x̃0 . In particular,

the uniqueness of lifts implies that every lift of a constant path is constant, but this

could be deduced more simply from the fact that p−1(x0) has the discrete topology,

by the definition of a covering space.

Taking Y to be I , we see that every homotopy ft of a path f0 in X lifts to a

homotopy f̃t of each lift f̃0 of f0 . The lifted homotopy f̃t is a homotopy of paths,

fixing the endpoints, since as t varies each endpoint of f̃t traces out a path lifting a

constant path, which must therefore be constant.

Proof of Theorem 1.34: We will construct an explicit isomorphism Φ :G→π1(X/G) ,
defined in the following way. Choose a basepoint x0 ∈ X . Since X is simply-connected
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there is a unique homotopy class of paths γ connecting x0 to g(x0) for each g ∈ G .

The composition of γ with the projection p :X→X/G is then a loop in X/G , and we

let Φ(g) be the homotopy class of this loop.

To see that Φ is a homomorphism, let γ1 and γ2 be paths from x0 to g1(x0) and

g2(x0) . The composed path γ1 (g1γ2) then goes from x0 to g1g2(x0) . This path

projects to (pγ1) (pγ2) , so Φ(g1g2) = Φ(g1)Φ(g2) .
Using the same notation we can also see that Φ is injective. For suppose Φ(g1) =Φ(g2) , so the loops pγ1 and pγ2 are homotopic. The homotopy lifting property then

gives a homotopy of γ1 to a path which must be γ2 since it starts at the same point

as γ2 and has the same projection to X/G , data which determine γ2 uniquely by the

uniqueness part of the path lifting property. Thus γ1 and γ2 are homotopic, and in

particular they have the same endpoint g1(x0) = g2(x0) , which implies g1 = g2 since

we have a covering space action.

Surjectivity of Φ follows from the path lifting property since any loop in X/G at

the basepoint p(x0) lifts to a path γ in X starting at x0 and ending at a point x1

which must equal g(x0) for some g ∈ G since the projection pγ is a loop. tu

Cayley Complexes

Covering spaces can be used to describe a very classical method for viewing

groups geometrically as graphs. Recall from Corollary 1.28 how we associated to each

group presentation G = 〈gα |||| rβ 〉 a 2 dimensional cell complex XG with π1(XG) ≈ G
by taking a wedge-sum of circles, one for each generator gα , and then attaching a

2 cell for each relator rβ . We can construct a cell complex X̃G with a covering space

action of G such that X̃G/G = XG in the following way. Let the vertices of X̃G be the

elements of G themselves. Then, at each vertex g ∈ G , insert an edge joining g to the

vertex ggα for each of the chosen generators gα . The resulting graph is known as the

Cayley graph of G with respect to the generators gα . Each relation rβ determines a

loop in the graph starting at any vertex g and passing across the edges corresponding

to the successive letters of rβ , returning in the end to the vertex g since grβ = g in

G . After we attach a 2 cell for each such loop, we have a cell complex X̃G called the

Cayley complex of G . The group G acts on X̃G by multiplication on the left. Thus,

an element g ∈ G sends a vertex g′ ∈ G to the vertex gg′ , and the edge from g′

to g′gα is sent to the edge from gg′ to gg′gα . The action extends to 2 cells in the

obvious way. This is clearly a covering space action, and the orbit space is just XG .

The Cayley complex X̃G is in fact simply-connected. It is path-connected since

every element of G is a product of gα ’s, so there is a sequence of edges joining each

vertex to the identity vertex e . To see that π1(X̃G )̊ = 0, start with a loop at the

basepoint vertex e . This loop is homotopic to a loop in the 1 skeleton consisting of a

finite sequence of edges, corresponding to a word w in the generators gα and their

inverses. Since this sequence of edges is a loop, the word w , viewed as an element
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of G , is the identity, so as an element of the free group generated by the gα ’s the

word w can be written as a product of conjugates of the rβ ’s and their inverses. This

means that the loop is homotopic in the 1 skeleton to a product of loops each of

which consists of three parts: a path from the basepoint to a vertex in the boundary

of some 2 cell, followed by the boundary loop of this 2 cell, and finishing with the

inverse of the path from the basepoint. Such loops are evidently nullhomotopic in

X̃G , so the original loop was also nullhomotopic.

Let us look at some examples of Cayley complexes.

Example 1.36. When G is the free group on

two generators a and b , XG is S1∨ S1 and

X̃G is the Cayley graph of Z∗ Z pictured at

the right. The action of a on this graph is a

rightward shift along the central horizontal

axis, while b acts by an upward shift along

the central vertical axis. The composition

e
a
ab

ab

baba
b

a

b

b

b
-1

a -1

a -1

a -2

-1

a -1

-1b -2

-1b-1

b -1 ab -1

a2

2

ab of these two shifts then takes the vertex

e to the vertex ab . Similarly, the action of

any w ∈ Z∗ Z takes e to the vertex w .

Example 1.37. For G = Z2 =
〈
a |||| a2 〉 , XG is RP2 and X̃G = S2 . More generally, for

Zn =
〈
a |||| an

〉
, XG is S1 with a disk attached by the map z,zn and X̃G consists of

n disks D1, ··· ,Dn with their boundary circles identified. A generator of Zn acts on

this union of disks by sending Di to Di+1 via a 2π/n rotation, the subscript i being

taken mod n . The common boundary circle of the disks is rotated by 2π/n .

Example 1.38. The group G = Z×Z with presentation
〈
a,b |||| aba−1b−1 〉 has XG

the torus S1×S1 , and X̃G is R2 with vertices the integer lattice Z2 ⊂ R2 and edges

the horizontal and vertical segments between these lattice points. This is the first

figure in Example 1.33, with the addition of labels a on the horizontal edges, b on

the vertical edges, and with the integer lattice point (m,n) labeled by the element

ambn ∈ G .

Example 1.39. The Klein bottle is XG for G = 〈
a,b |||| abab−1 〉 . Here X̃G is shown

in the second figure of Example 1.33 with exactly the same labeling of vertices and

edges as in the preceding example of the torus. In particular, elements of G are again

uniquely representable as products ambn . But with arrows in alternate horizontal

rows going in opposite directions, the rule for multiplication of such products be-

comes ambnapbq = am±pbn+q , the ± being + when n is even and − when n is

odd. This formula can be read off directly from the Cayley graph.

If we modify this group by adding the new relator b2 we obtain the infinite dihe-

dral group D∞ . The Cayley graph in this case can be drawn on an infinite cylinder,

the quotient of the previous Cayley complex R2 by vertical translation by even integer
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distances. The Cayley complex for D∞ is obtained from this cylinder by inserting an

infinite sequence of inscribed spheres formed from pairs of 2 cells attached along

each relator cycle b2 .
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As a further variant, if we add the relator an as well as b2 we obtain the finite

dihedral group D2n of order 2n . The Cayley graph lies on a torus, the quotient of the

previous infinite cylinder by horizontal translation

by n units. The Cayley complex has the inscribed

spheres and also n 2 cells attached along each of

the two an cycles. The figure at the right shows
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the case n = 5. The usual action of D2n on a reg-

ular n gon is not free, and the Cayley graph can be

regarded as an exploded version of the n gon that

makes the action free. Vertices of the n gon are re-

placed by circles in the Cayley graph, and each edge

of the n gon is replaced by two parallel edges.

Example 1.40. If G = Z2 ∗ Z2 =
〈
a,b |||| a2, b2 〉 then the Cayley graph is a union of

an infinite sequence of circles each tangent to its two neighbors.
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a b

bb

b

b

bbab ba b e a abaab

We obtain X̃G from this graph by making each circle the equator of a 2 sphere, yield-

ing an infinite sequence of tangent 2 spheres. Elements of the index-two normal

subgroup Z ⊂ Z2 ∗ Z2 generated by ab act on X̃G as translations by an even number

of units, while each of the remaining elements of Z2∗Z2 acts as the antipodal map on

one of the spheres and flips the whole chain of spheres end-for-end about this sphere.

The orbit space XG is RP2 ∨RP2 .

The Cayley graph for Z2 ∗ Z2 may look a little like the earlier Cayley graph for

the infinite dihedral group D∞ , and in fact these two groups are isomorphic, with the

elements a and b in D∞ corresponding to ab and b in Z2 ∗ Z2 . Geometrically, it

is obvious that the symmetry groups of the two Cayley graphs are isomorphic. Thus

we see that two different presentations for the same group can have different Cayley

graphs, but not so different that their symmetry groups are different. As another

example, the Cayley graph for the presentation
〈
a,b |||| a2, b2, (ab)n

〉
of D2n is a
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‘necklace’ of 2n circles, obtained from the Cayley graph of Z2∗Z2 by factoring out a

translation.

It is not hard to see the generalization of the Z2∗Z2 example to Zm∗Zn with the

presentation
〈
a,b |||| am,bn

〉
. In this case X̃G consists of an infinite union of copies

of the Cayley complexes for Zm and Zn constructed in Example 1.37, arranged in a

tree-like pattern. The case of Z2 ∗ Z3 is pictured below.
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Groups Acting on Spheres

Example 1.41: RPn . The antipodal map of Sn , x, −x , generates an action of Z2

on Sn with orbit space RPn , real projective n space, as defined in Example 0.4. The

action is a covering space action since each open hemisphere in Sn is disjoint from

its antipodal image. As we saw in Proposition 1.14, Sn is simply-connected if n ≥ 2,

so from the covering space Sn→RPn we deduce that π1(RPn) ≈ Z2 for n ≥ 2. A

generator for π1(RPn) is any loop obtained by projecting a path in Sn connecting two

antipodal points. One can see explicitly that such a loop γ has order two in π1(RPn)
if n ≥ 2 since the composition γ γ lifts to a loop in Sn , and this can be homotoped to

the trivial loop since π1(S
n) = 0, so the projection of this homotopy into RPn gives

a nullhomotopy of γ γ .

One may ask whether there are other finite groups that act freely on Sn , defining

covering spaces Sn→Sn/G . We will show in Proposition 2.29 that Z2 is the only

possibility when n is even, but for odd n the question is much more difficult. It is

easy to construct a free action of any cyclic group Zm on S2k−1 , the action generated

by the rotation v,e2πi/mv of the unit sphere S2k−1 in Ck = R2k . This action is free
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since an equation v = e2πi`/mv with 0 < ` < m implies v = 0, but 0 is not a point

of S2k−1 . The orbit space S2k−1/Zm is one of a family of spaces called lens spaces

defined in Example 2.43.

There are also noncyclic finite groups that act freely as rotations of Sn for odd

n > 1. These actions are classified quite explicitly in [Wolf 1984]. Examples in the

simplest case n = 3 can be produced as follows. View R4 as the quaternion algebra H .

Multiplication of quaternions satisfies |ab| = |a||b| where |a| denotes the usual

Euclidean length of a vector a ∈ R4 . Thus if a and b are unit vectors, so is ab , and

hence quaternion multiplication defines a map S3×S3→S3 . This in fact makes S3

into a group, though associativity is all we need now since associativity implies that

any subgroup G of S3 acts on S3 by left-multiplication, g(x) = gx . This action is

free since an equation x = gx in the division algebra H implies g = 1 or x = 0. As

a concrete example, G could be the familiar quaternion group Q8 = {±1,±i,±j,±k}
from group theory. More generally, for a positive integer m , let Q4m be the subgroup

of S3 generated by the two quaternions a = eπi/m and b = j . Thus a has order

2m and b has order 4. The easily verified relations am = b2 = −1 and bab−1 =
a−1 imply that the subgroup Z2m generated by a is normal and of index 2 in Q4m .

Hence Q4m is a group of order 4m , called the generalized quaternion group. Another

common name for this group is the binary dihedral group D∗4m since its quotient by

the subgroup {±1} is the ordinary dihedral group D2m of order 2m .

Besides the groups Q4m = D∗4m there are just three other noncyclic finite sub-

groups of S3 : the binary tetrahedral, octahedral, and icosahedral groups T∗24 , O∗48,
and I∗120, of orders indicated by the subscripts. These project two-to-one onto the

groups of rotational symmetries of a regular tetrahedron, octahedron (or cube), and

icosahedron (or dodecahedron). In fact, it is not hard to see that the homomorphism

S3→SO(3) sending u ∈ S3 ⊂ H to the isometry v→u−1vu of R3 , viewing R3 as the

‘pure imaginary’ quaternions v = ai+ bj + ck , is surjective with kernel {±1} . Then

the groups D∗4m , T∗24 , O∗48 , I∗120 are the preimages in S3 of the groups of rotational

symmetries of a regular polygon or polyhedron in R3 .

There are two conditions that a finite group G acting freely on Sn must satisfy:

(a) Every abelian subgroup of G is cyclic. This is equivalent to saying that G contains

no subgroup Zp×Zp with p prime.

(b) G contains at most one element of order 2.

A proof of (a) is sketched in an exercise for §4.2. For a proof of (b) the original

source [Milnor 1957] is recommended reading. The groups satisfying (a) have been

completely classified; see [Brown 1982], section VI.9, for details. An example of a

group satisfying (a) but not (b) is the dihedral group D2m for odd m > 1.

There is also a much more difficult converse: A finite group satisfying (a) and (b)

acts freely on Sn for some n . References for this are [Madsen, Thomas, & Wall 1976]

and [Davis & Milgram 1985]. There is also almost complete information about which
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n ’s are possible for a given group.

One More Example

Let us illustrate how one might build a simply-connected covering space of a given

space by gluing together simply-connected covering spaces of various simpler pieces

of the space.

Example 1.42. For integers m,n ≥ 2, let Xm,n be the quotient space of a cylinder

S1×I under the identifications (z,0) ∼ (e2πi/mz,0) and (z,1) ∼ (e2πi/nz,1) . Let

A ⊂ X and B ⊂ X be the quotients of S1×[0, 1/2] and S1×[1/2,1], so A and B are

the mapping cylinders of z, zm and z, zn , with A∩ B = S1 . The simplest case

is m = n = 2, when A and B are Möbius bands and X2,2 is the Klein bottle. The

complexes Xm,n appeared earlier in this chapter in connection with torus knots, in

Example 1.24.

The figure for Example 1.29 at the end of the preceding section

shows what A looks like in the typical case m = 3. We have π1(A) ≈ Z ,

and the universal cover Ã is homeomorphic to a product Cm×R where

Cm is the graph that is a cone on m points, as shown in the figure to

the right. The situation for B is similar, and B̃ is homeomorphic to

Cn×R . Now we attempt to build the universal cover X̃m,n from copies

of Ã and B̃ . Start with a copy of Ã . Its boundary, the outer edges of

its fins, consists of m copies of R . Along each of these m boundary

lines we attach a copy of B̃ . Each of these copies of B̃ has one of its boundary lines

attached to the initial copy of Ã , leaving n − 1 boundary lines free, and we attach a

new copy of Ã to each of these free boundary lines. Thus we now have m(n− 1)+ 1

copies of Ã . Each of the newly attached copies of Ã has m − 1 free boundary lines,

and to each of these lines we attach a new copy of B̃ . The process is now repeated ad

infinitim in the evident way. Let X̃m,n be the resulting space.

The product structures Ã = Cm×R and B̃ = Cn×R
give X̃m,n the structure of a product Tm,n×R where Tm,n
is an infinite graph constructed by an inductive scheme

just like the construction of X̃m,n . Thus Tm,n is the union

of a sequence of finite subgraphs, each obtained from the

preceding by attaching new copies of Cm or Cn . Each

of these finite subgraphs deformation retracts onto the

preceding one. The infinite concatenation of these defor-

mation retractions, with the kth graph deformation retracting to the previous one

during the time interval [1/2k,1/2k−1] , gives a deformation retraction of Tm,n onto

the initial stage Cm . Since Cm is contractible, this means Tm,n is contractible, hence

also X̃m,n , which is the product Tm,n×R . In particular, X̃m,n is simply-connected.
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The map that projects each copy of Ã in X̃m,n to A and

each copy of B̃ to B is a covering space. To define this map

precisely, choose a point x0 ∈ S1 , and then the image of the

line segment {x0}×I in Xm,n meets A in a line segment whose

preimage in Ã consists of an infinite number of line segments,

appearing in the earlier figure as the horizontal segments spi-

raling around the central vertical axis. The picture in B̃ is

similar, and when we glue together all the copies of Ã and B̃
to form X̃m,n , we do so in such a way that these horizontal segments always line up

exactly. This decomposes X̃m,n into infinitely many rectangles, each formed from a

rectangle in an Ã and a rectangle in a B̃ . The covering projection X̃m,n→Xm,n is the

quotient map that identifies all these rectangles.

The rectangles define a cell structure on X̃m,n lifting a cell structure on Xm,n with

two vertices, three edges, and one 2 cell. Suppose we orient and label the three edges

of Xm,n and lift these orientations and labels to the edges of X̃m,n . The symmetries of

X̃m,n preserving the orientations and labels of edges form a group Gm,n . The action

of this group on X̃m,n is a covering space action, and the quotient X̃m,n/Gm,n is just

Xm,n since for any two rectangles in X̃m,n there is an element of Gm,n taking one

rectangle to the other. By Theorem 1.34 the group Gm,n is therefore isomorphic to

π1(Xm,n) . From van Kampen’s theorem applied to the decomposition of Xm,n into

the two mapping cylinders we have the presentation
〈
a,b |||| amb−n

〉
for this group

Gm,n = π1(Xm,n) . The element a for example acts on X̃m,n as a ‘screw motion’ about

an axis that is a vertical line {va}×R with va a vertex of Tm,n , and b acts similarly

for an adjacent vertex vb .

Since the action of Gm,n on X̃m,n preserves the cell structure, it also preserves

the product structure Tm,n×R . This means that there are actions of Gm,n on Tm,n
and R such that the action on the product Xm,n = Tm,n×R is the diagonal action

g(x,y) = (g(x), g(y)) for g ∈ Gm,n . If we make the rectangles of unit height in the

R coordinate, then the element am = bn acts on R as unit translation, while a acts

by 1/m translation and b by 1/n translation. The translation actions of a and b on R

generate a group of translations of R that is infinite cyclic, generated by translation

by the reciprocal of the least common multiple of m and n .

The action of Gm,n on Tm,n has kernel consisting of the powers of the element

am = bn . This infinite cyclic subgroup is precisely the center of Gm,n , as we saw in

Example 1.24. There is an induced action of the quotient group Zm ∗ Zn on Tm,n ,

but this is not a free action since the elements a and b and all their conjugates fix

vertices of Tm,n . On the other hand, if we restrict the action of Gm,n on Tm,n to

the kernel K of the map Gm,n→Z given by the action of Gm,n on the R factor of

Xm,n , then we do obtain a free action of K on Tm,n . Since this action takes vertices

to vertices and edges to edges, it is a covering space action, so K is a free group, the
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fundamental group of the graph Tm,n/K . An exercise at the end of the section is to

determine Tm,n/K explicitly and compute the number of generators of K .

The Classification of Covering Spaces

Our objective now is to develop the necessary tools to classify all the different

covering spaces of a fixed path-connected space X . The main thrust of the classi-

fication will be the Galois correspondence between connected covering spaces of X
and subgroups of π1(X) , but when this is finished we will also describe a different

method of classification that includes disconnected covering spaces as well.

The Galois correspondence will be a classification up to isomorphism, where

this term has its most natural definition: An isomorphism between covering spaces

p1 : X̃1→X and p2 : X̃2→X is a homeomorphism f : X̃1→X̃2 such that p1 = p2f .

This condition means exactly that f preserves the covering space structures, taking

p−1
1 (x) to p−1

2 (x) for each x ∈ X . The inverse f−1 is then also an isomorphism, and

the composition of two isomorphisms is an isomorphism, so we have an equivalence

relation.

The correspondence between isomorphism classes of connected covering spaces

of X and subgroups of π1(X) will be given by the function Γ sending a covering space

p : (X̃, x̃0)→(X,x0) to the subgroup Γ(X̃, x̃0) = p∗
(
π1(X̃, x̃0)

)
of π1(X,x0) .

Let us make a few preliminary observations about the subgroups Γ(X̃, x̃0) .

Proposition 1.43. The map p∗ :π1(X̃, x̃0)→π1(X,x0) induced by a covering space

p : (X̃, x̃0)→(X,x0) is injective. The image subgroup Γ(X̃, x̃0) in π1(X,x0) consists

of the homotopy classes of loops in X based at x0 whose lifts to X̃ starting at x̃0 are

loops.

Proof: An element of the kernel of p∗ is represented by a loop γ̃0 : I→X̃ with a

homotopy γt : I→X of γ0 = pγ̃0 to the trivial loop γ1 . This homotopy lifts to a

homotopy of loops γ̃t starting with γ̃0 and ending with a constant loop since the

only lift of a constant loop is a constant loop. Hence [γ̃0] = 0 in π1(X̃, x̃0) and p∗ is

injective.

For the second statement of the proposition, loops at x0 lifting to loops at x̃0

certainly represent elements of the image of p∗ :π1(X̃, x̃0)→π1(X,x0) . Conversely,

a loop representing an element of the image of p∗ is homotopic to a loop with a lift

to a loop at x̃0 , so by lifting the homotopy we see that the original loop must itself

lift to a loop at x̃0 . tu

Proposition 1.44. The number of sheets of a covering space p : (X̃, x̃0)→(X,x0)
with X and X̃ path-connected equals the index of Γ(X̃, x̃0) in π1(X,x0) .

Proof: For a loop γ in X based at x0 , let γ̃ be its lift to X̃ starting at x̃0 . A product

η γ with [η] ∈ H = Γ(X̃, x̃0) has the lift η̃ γ̃ ending at the same point as γ̃ since η̃
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is a loop. Thus we may define a function Φ from cosets H[γ] to p−1(x0) by sending

H[γ] to γ̃(1) . The path-connectedness of X̃ implies that Φ is surjective since x̃0

can be joined to any point in p−1(x0) by a path γ̃ projecting to a loop γ at x0 . To

see that Φ is injective, observe that Φ(H[γ1]) = Φ(H[γ2]) implies that γ1γ2 lifts to

a loop in X̃ based at x̃0 , so [γ1][γ2]
−1 ∈ H and hence H[γ1] = H[γ2] . tu

Now we describe how the subgroup Γ(X̃, x̃0) depends on the choice of x̃0 .

Lemma 1.45. Given a covering space p : (X̃, x̃0)→(X,x0) , let γ be a loop in X at

x0 representing a class g ∈ π1(X,x0) and lifting to a path γ̃ starting at x̃0 and

ending at a point x̃1 ∈ p−1(x0) . Then Γ(X̃, x̃0) = gΓ(X̃, x̃1)g
−1 .

Thus any subgroup of π1(X,x0) conjugate to Γ(X̃, x̃0) corresponds to the same

covering space X̃ with a different choice of basepoint x̃0 in p−1(x0) . Conversely,

if X̃ is path-connected we can choose γ to be the projection of a path joining any

two choices of basepoint in p−1(x0) to deduce that the conjugacy class of Γ(X̃, x̃0)
is independent of the choice of x̃0 within p−1(x0) .

Proof: Represent an element of Γ(X̃, x̃1) by a loop η lifting to a loop η̃ at x̃1 . Then

γ̃η̃γ̃ is a loop at x̃0 lifting γηγ , so gΓ(X̃, x̃1)g
−1 ⊂ Γ(X̃, x̃0) . The opposite inclusion is

equivalent to g−1Γ(X̃, x̃0)g ⊂ Γ(X̃, x̃1) which holds by the same reasoning, replacing

γ with γ and interchanging x̃0 and x̃1 . tu

To proceed further with the classification of covering spaces we need two ba-

sic propositions on the existence and uniqueness of lifts of general maps. For the

existence question an answer is provided by the following lifting criterion:

Proposition 1.46. Suppose p : (X̃, x̃0)→(X,x0) is a covering space. Then a map

f : (Y ,y0)→(X,x0) whose domain Y is path-connected and locally path-connected

has a lift f̃ : (Y ,y0)→(X̃, x̃0) iff f∗
(
π1(Y ,y0)

) ⊂ p∗(π1(X̃, x̃0)
)
.

Proof: The ‘only if’ statement is obvious since f∗ = p∗f̃∗ . For the converse, let

y ∈ Y and let γ be a path in Y from y0 to y . The path fγ in

X starting at x0 has a unique lift f̃ γ starting at x̃0 . De-

fine f̃ (y) = f̃ γ(1) . To show this is well-defined, in-

dependent of the choice of γ , let γ′ be another

path from y0 to y . Then (fγ′) (fγ) is a

loop at x0 representing an element of

f∗
(
π1(Y ,y0)

) ⊂ p∗(π1(X̃, x̃0)
)
.

By Proposition 1.43 the loop γγ
y
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(fγ′) (fγ) lifts to a loop at

x̃0 . By the uniqueness of lifted paths, the first half of this lift is f̃ γ′ and the second
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half is f̃ γ traversed backwards, with the common midpoint f̃ γ(1) = f̃ γ′(1) . This

shows that f̃ is well-defined.

To see that f̃ is continuous, let U ⊂ X be an open neighborhood of f(y) having

a lift Ũ ⊂ X̃ containing f̃ (y) such that p : Ũ→U is a homeomorphism. Choose a

path-connected open neighborhood V of y with f(V) ⊂ U . For paths from y0 to

points y ′ ∈ V we can take a fixed path γ from y0 to y followed by paths η in

V from y to the points y ′ . Then the paths (fγ) (fη) in X have lifts (f̃γ) (f̃η)
where f̃ η = p−1fη and p−1 :U→Ũ is the inverse of p : Ũ→U . Thus f̃ (V) ⊂ Ũ and

f̃ |V = p−1f , hence f̃ is continuous at y . tu

An example showing the necessity of the local path-connectedness assumption

on Y is described in Exercise 7 at the end of this section.

Next we have the unique lifting property:

Proposition 1.47. Given a covering space p : X̃→X and a map f :Y→X with two

lifts f̃1, f̃2 :Y→X̃ that agree at one point of Y , then if Y is connected, these two lifts

must agree on all of Y .

Proof: For a point y ∈ Y , let U be an open neighborhood of f(y) in X for which

p−1(U) is a disjoint union of open sets Ũα each mapped homeomorphically to U
by p , and let Ũ1 and Ũ2 be the Ũα ’s containing f̃1(y) and f̃2(y) , respectively. By

continuity of f̃1 and f̃2 there is a neighborhood N of y mapped into Ũ1 by f̃1 and

into Ũ2 by f̃2 . If f̃1(y) ≠ f̃2(y) then Ũ1 ≠ Ũ2 , hence Ũ1 ∩ Ũ2 = ∅ and f̃1 ≠ f̃2

throughout the neighborhood N . On the other hand, if f̃1(y) = f̃2(y) then Ũ1 = Ũ2

so f̃1 = f̃2 on N since pf̃1 = pf̃2 and p is injective on Ũ1 = Ũ2 . Thus the set of

points where f̃1 and f̃2 agree is both open and closed in Y , so it must be all of Y if

Y is connected. tu

Here is the uniqueness half of the Galois correspondence:

Theorem 1.48. If X is path-connected and locally path-connected, then two path-

connected covering spaces p1 : X̃1→X and p2 : X̃2→X are isomorphic via an isomor-

phism f : X̃1→X̃2 taking a basepoint x̃1 ∈ p−1
1 (x0) to a basepoint x̃2 ∈ p−1

2 (x0) iffΓ(X̃1, x̃1) = Γ(X̃2, x̃2) . The covering spaces X̃1 and X̃2 are isomorphic without regard

to basepoints iff Γ(X̃1, x̃1) and Γ(X̃2, x̃2) are conjugate subgroups of π1(X,x0) .

Proof: If there is an isomorphism f : (X̃1, x̃1)→(X̃2, x̃2) , then from the two relations

p1 = p2f and p2 = p1f
−1 it follows that Γ(X̃1, x̃1) = Γ(X̃2, x̃2) . Conversely, sup-

pose that Γ(X̃1, x̃1) = Γ(X̃2, x̃2) . By the lifting criterion, we may lift p1 to a map

p̃1 : (X̃1, x̃1)→(X̃2, x̃2) with p2p̃1 = p1 . Similarly, we obtain p̃2 : (X̃2, x̃2)→(X̃1, x̃1)
with p1p̃2 = p2 . Then by the unique lifting property, p̃1p̃2 = 11 and p̃2p̃1 = 11 since

these composed lifts fix the basepoints. Thus p̃1 and p̃2 are inverse isomorphisms.

The last statement follows immediately using Lemma 1.45. tu
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It remains to discuss the question of whether there exist covering spaces of a given

path-connected, locally path-connected space X realizing all subgroups of π1(X,x0) .
There is a special case that is easily dealt with, that X is the orbit space X̃/G for a cov-

ering space action of a group G on a simply-connected space X̃ . From Theorem 1.34

we know that G is isomorphic to π1(X,x0) by the map sending g ∈ G to the image

in X̃/G of a path in X̃ from the basepoint x̃0 to g(x̃0) . A subgroup of π1(X,x0)
corresponds to a subgroup H of G , and the covering space X̃→X̃/G factors as the

composition of two maps X̃ q-----→ X̃/H p-----→ X̃/G , each of which is obviously a covering

space. We have π1(X̃/H, q(x̃0)) ≈ H , and in fact Γ(X̃/H, q(x̃0)) is the subgroup of

π1(X,x0) corresponding to H under the isomorphism G ≈ π1(X,x0) since a loop in

X at x0 lifts to a loop in X̃/H at q(x̃0) iff its lift to X̃ starting at x̃0 ends at a point

h(x̃0) for some h ∈ H . Thus we obtain all possible path-connected covering spaces

of X̃/G , up to isomorphism, as orbit spaces X̃/H for subgroups H ⊂ G .

Our strategy for general X will be to show that this special case is really the

general case. The easier part will be to show that if X has a simply-connected covering

space X̃ then there is a covering space action of π1(X,x0) on X̃ with orbit space just

X itself.

For an arbitrary covering space p : X̃→X one can consider the isomorphisms

from this covering space to itself. These are called deck transformations or covering

transformations. They form a group G(X̃) under composition. For example, for the

covering space R→S1 projecting a vertical helix onto a circle, the deck transforma-

tions are the vertical translations taking the helix onto itself, so G(X̃) ≈ Z in this

case.

Lemma 1.49. For a covering space p : X̃→X with X and X̃ path-connected and

locally path-connected, the action of G(X̃) on X̃ is a covering space action.

Proof: By local path-connectedness, each point in X has a path-connected open neigh-

borhood U such that p−1(U) is a disjoint union of copies of U projecting homeomor-

phically to U by p , so these are the path-components of p−1(U) . Any deck trans-

formation just permutes these path-components. The result now follows from the

fact that the action of G(X̃) is free, since a deck transformation of a path-connected

covering space is uniquely determined by where it sends a point, by the unique lifting

property. tu

Now let us specialize the lemma to the case that X̃ is simply-connected. By the

lifting criterion there exists a deck transformation taking the basepoint x̃0 to any

other point in p−1(x0) . This means that the orbit space X̃/G(X̃) is just X , or more

precisely that p induces a homeomorphism from X̃/G(X̃) onto X . in particular G(X̃)
is isomorphic to π1(X,x0) .

Thus we have shown:
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Proposition 1.50. If a path-connected, locally path-connected space X has a simply-

connected covering space, then every subgroup of π1(X,x0) is realized as Γ(X̃, x̃0)
for some covering space (X̃, x̃0)→(X,x0) . tu

A consequence of the preceding constructions is that a simply-connected covering

space of a path-connected, locally path-connected space X is a covering space of every

other path-connected covering space of X . This justifies calling a simply-connected

covering space of X a universal cover. It is unique up to isomorphism, so one can in

fact say the universal cover. More generally, there is a partial ordering on the various

path-connected covering spaces of X , according to which ones cover which others.

This corresponds to the partial ordering by inclusion of the corresponding subgroups

of π1(X) , or conjugacy classes of subgroups if basepoints are ignored.

There remains the question of when a space X has a simply-connected covering

space. A necessary condition is the following: Each point x ∈ X has a neighborhood

U such that the inclusion-induced map π1(U,x)→π1(X,x) is trivial. One says X is

semilocally simply-connected if this holds. To see the necessity of this condition,

suppose p : X̃→X is a covering space with X̃ simply-connected. Every point x ∈ X
has a neighborhood U having a lift Ũ ⊂ X̃ projecting homeomorphically to U by

p . Each loop in U lifts to a loop in Ũ , and the lifted loop is nullhomotopic in X̃
since π1(X̃) = 0. So, composing this nullhomotopy with p , the original loop in U is

nullhomotopic in X .

A locally simply-connected space is certainly semilocally simply-connected. For

example, CW complexes have the much stronger property of being locally contractible,

as we show in the Appendix. An example of a space that is not semilocally simply-

connected is the shrinking wedge of circles, the subspace X ⊂ R2 consisting of the

circles of radius 1/n centered at the point (1/n,0) for n = 1,2, ··· , introduced in Exam-

ple 1.25. On the other hand, the cone CX = (X×I)/(X×{0}) is semilocally simply-

connected since it is contractible, but it is not locally simply-connected.

Proposition 1.51. A space that is path-connected and locally path-connected has a

simply-connected covering covering space iff it is semilocally simply-connected.

Proof: It remains to prove the ‘if’ implication. To motivate the construction, suppose

p : (X̃, x̃0)→(X,x0) is a simply-connected covering space. Each point x̃ ∈ X̃ can then

be joined to x̃0 by a unique homotopy class of paths, by Proposition 1.6, so we can

view points of X̃ as homotopy classes of paths starting at x̃0 . The advantage of this

is that, by the homotopy lifting property, homotopy classes of paths in X̃ starting at

x̃0 are the same as homotopy classes of paths in X starting at x0 . This gives a way

of describing X̃ purely in terms of X .

Given a path-connected, locally path-connected, semilocally simply-connected

space X with a basepoint x0 ∈ X , we are therefore led to define

X̃ = { [γ] |||| γ is a path in X starting at x0

}
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where, as usual, [γ] denotes the homotopy class of γ with respect to homotopies

that fix the endpoints γ(0) and γ(1) . The function p : X̃→X sending [γ] to γ(1) is

then well-defined. Since X is path-connected, the endpoint γ(1) can be any point of

X , so p is surjective.

Before we define a topology on X̃ we make a few preliminary observations. Let

U be the collection of path-connected open sets U ⊂ X such that π1(U)→π1(X) is

trivial. Note that if the map π1(U)→π1(X) is trivial for one choice of basepoint in U ,

it is trivial for all choices of basepoint since U is path-connected. A path-connected

open subset V ⊂ U ∈ U is also in U since the composition π1(V)→π1(U)→π1(X)
will also be trivial. It follows that U is a basis for the topology on X if X is locally

path-connected and semilocally simply-connected.

Given a set U ∈ U and a path γ in X from x0 to a point in U , let

U[γ] =
{
[γ η] |||| η is a path in U with η(0) = γ(1) }

As the notation indicates, U[γ] depends only on the homotopy class [γ] . Observe

that p :U[γ]→U is surjective since U is path-connected and injective since differ-

ent choices of η joining γ(1) to a fixed x ∈ U are all homotopic in X , the map

π1(U)→π1(X) being trivial. Another property is

(∗)
U[γ] = U[γ′] if [γ′] ∈ U[γ] . For if γ′ = γ η then elements of U[γ′] have the

form [γ η µ] and hence lie in U[γ] , while elements of U[γ] have the form

[γ µ] = [γ η η µ] = [γ′ η µ] and hence lie in U[γ′] .

This can be used to show that the sets U[γ] form a basis for a topology on X̃ . For if

we are given two such sets U[γ] , V[γ′] and an element [γ′′] ∈ U[γ] ∩ V[γ′] , we have

U[γ] = U[γ′′] and V[γ′] = V[γ′′] by (∗) . So if W ∈ U is contained in U∩V and contains

γ′′(1) then W[γ′′] ⊂ U[γ′′] ∩ V[γ′′] and [γ′′] ∈ W[γ′′] .
The bijection p :U[γ]→U is a homeomorphism since it gives a bijection between

the subsets V[γ′] ⊂ U[γ] and the sets V ∈ U contained in U . Namely, in one direction

we have p(V[γ′]) = V and in the other direction we have p−1(V) ∩ U[γ] = V[γ′] for

any [γ′] ∈ U[γ] with endpoint in V , since V[γ′] ⊂ U[γ′] = U[γ] and V[γ′] maps onto V
by the bijection p .

The preceding paragraph implies that p : X̃→X is continuous. We can also de-

duce that this is a covering space since for fixed U ∈ U , the sets U[γ] for varying [γ]
partition p−1(U) because if [γ′′] ∈ U[γ] ∩U[γ′] then U[γ] = U[γ′′] = U[γ′] by (∗) .

It remains only to show that X̃ is simply-connected. For a point [γ] ∈ X̃ let γt
be the path in X obtained by restricting γ to the interval [0, t] . Then the function

t,[γt] is a path in X̃ lifting γ that starts at [x0] , the homotopy class of the constant

path at x0 , and ends at [γ] . Since [γ] was an arbitrary point in X̃ , this shows that X̃
is path-connected. To show that π1(X̃, [x0]) = 0 it suffices to show that the image of

this group under p∗ is trivial since p∗ is injective. Elements in the image of p∗ are

represented by loops γ at x0 that lift to loops in X̃ at [x0] . We have observed that
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the path t, [γt] lifts γ starting at [x0] , and for this lifted path to be a loop means

that [γ1] = [x0] . Since γ1 = γ , this says that [γ] = [x0] , so γ is nullhomotopic and

the image of p∗ is trivial. tu

A covering space p : X̃→X is called normal if for each x ∈ X and each pair of

points x̃, x̃′ in p−1(x) there is a deck transformation taking x̃ to x̃′. Intuitively, a

normal covering space is one with maximal symmetry. This can be seen in the covering

spaces of S1∨S1 shown in the table earlier in this section, where the normal covering

spaces are (1), (2), (5)–(8), and (11). Note that in (7) the group of deck transformations

is Z4 while in (8) it is Z2×Z2 .

Sometimes normal covering spaces are called regular covering spaces. The term

‘normal’ is motivated by the following result.

Proposition 1.52. Let p : (X̃, x̃0)→(X,x0) be a path-connected covering space of

the path-connected, locally path-connected space X , and let H be the subgroup

p∗
(
π1(X̃, x̃0)

) ⊂ π1(X,x0) . Then :

(a) This covering space is normal iff H is a normal subgroup of π1(X,x0) .
(b) G(X̃) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of

H in π1(X,x0) .
In particular, G(X̃) is isomorphic to π1(X,x0)/H if X̃ is a normal covering.

Proof: Recall Lemma 1.45, which says that for a loop γ in X at x0 representing a

class g ∈ π1(X,x0) and lifting to a path γ̃ starting at x̃0 and ending at a point x̃1 ∈
p−1(x0) , then Γ(X̃, x̃0) = gΓ(X̃, x̃1)g

−1 , or equivalently Γ(X̃, x̃1) = g−1Γ(X̃, x̃0)g .

Hence g is in the normalizer N(H) iff Γ(X̃, x̃0) = Γ(X̃, x̃1) . By the lifting criterion

this is equivalent to the existence of a deck transformation taking x̃0 to x̃1 . Hence

the covering space is normal iff N(H) = π1(X,x0) , that is, iff H is a normal subgroup

of π1(X,x0) .
Define ϕ :N(H)→G(X̃) sending g to the deck transformation τ taking x̃0 to x̃1 ,

in the notation above. To see that ϕ is a homomorphism, let g′ be another element

of N(H) corresponding to a deck transformation τ′ taking x̃0 to the basepoint x̃′1
at the end of the path γ̃′ in X̃ starting at x̃0 and lifting a loop γ′ representing g′ .
Then γ γ′ lifts to γ̃ (τ(γ̃′)) , a path that goes from x̃0 first to x̃1 = τ(x̃0) and

then to τ(x̃′1) = ττ′(x̃0) , so ττ′ is the deck transformation corresponding to gg′ ,
which says that ϕ(gg′) = ττ′ . Surjectivity of ϕ follows from the argument in the

preceding paragraph since for τ ∈ G(X̃) we can let g be the element of π1(X,x0)
represented by the projection of a path in X̃ from x̃0 to τ(x̃0) , and then ϕ(g) = τ .

The kernel of ϕ consists of those elements g ∈ π1(X,x0) represented by loops γ
whose lifts to X̃ starting at x̃0 are loops. Thus the kernel of ϕ is H , so ϕ induces

an isomorphism N(H)/H ≈ G(X̃) . tu
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Representing Covering Spaces by Permutations

We wish to describe now another way of classifying the different covering spaces

of a connected, locally path-connected, semilocally simply-connected space X , with-

out restricting just to connected covering spaces. To give the idea, con-

sider the 3 sheeted covering spaces of S1 . There are three of these,

X̃1 , X̃2 , and X̃3 , with the subscript indicating the number of compo-

nents. For each of these covering spaces p : X̃i→S1 the three different

lifts of a loop in S1 generating π1(S
1, x0) determine a permutation of

p−1(x0) sending the starting point of the lift to the ending point of the

lift. For X̃1 this is a cyclic permutation, for X̃2 it is a transposition of

two points fixing the third point, and for X̃3 it is the identity permu-

tation. These permutations obviously determine the covering spaces

uniquely, up to isomorphism. The same would be true for n sheeted

covering spaces of S1 for arbitrary n , even for n infinite.

The covering spaces of S1 ∨ S1 can be encoded using the same idea. Referring

back to the large table of examples near the beginning of this section, we see in the

covering space (1) that the loop a lifts to the identity permutation of the two vertices

and b lifts to the permutation that transposes the two vertices. In (2), both a and b
lift to transpositions of the two vertices. In (3) and (4), a and b lift to transpositions of

different pairs of the three vertices, while in (5) and (6) they lift to cyclic permutations

of the vertices. In (11) the vertices can be labeled by Z , with a lifting to the identity

permutation and b lifting to the shift n, n + 1. Indeed, one can see from these

examples that a covering space of S1∨ S1 is nothing more than an efficient graphical

representation of a pair of permutations of a given set.

This idea of lifting loops to permutations generalizes to arbitrary covering spaces.

For a covering space p : X̃→X , a path γ in X has a unique lift γ̃ starting at a given

point of p−1(γ(0)) , so we obtain a well-defined map Lγ :p−1(γ(0))→p−1(γ(1)) by

sending the starting point γ̃(0) of each lift γ̃ to its ending point γ̃(1) . It is evident

that Lγ is a bijection since Lγ is its inverse. For a composition of paths γη we have

Lγη = LηLγ , rather than LγLη , since composition of paths is written from left to

right while composition of functions is written from right to left. To compensate for

this, let us modify the definition by replacing Lγ by its inverse. Thus the new Lγ is

a bijection p−1(γ(1))→p−1(γ(0)) , and Lγη = LγLη . Since Lγ depends only on the

homotopy class of γ , this means that if we restrict attention to loops at a basepoint

x0 ∈ X , then the association γ, Lγ gives a homomorphism from π1(X,x0) to the

group of permutations of p−1(x0) . This is called the action of π1(X,x0) on the fiber

p−1(x0) .
Let us see how the covering space p : X̃→X can be reconstructed from the asso-

ciated action of π1(X,x0) on the fiber F = p−1(x0) , assuming that X is connected,

path-connected, and semilocally simply-connected, so it has a universal cover X̃0→X .



Covering Spaces Section 1.3 79

We can take the points of X̃0 to be homotopy classes of paths in X starting at x0 ,

as in the general construction of a universal cover. Define a map h : X̃0×F→X̃ send-

ing a pair ([γ], x̃0) to γ̃(1) where γ̃ is the lift of γ to X̃ starting at x̃0 . Then h is

continuous, and in fact a local homeomorphism, since a neighborhood of ([γ], x̃0) in

X̃0×F consists of the pairs ([γη], x̃0) with η a path in a suitable neighborhood of

γ(1) . It is obvious that h is surjective since X is path-connected. If h were injec-

tive as well, it would be a homeomorphism, which is unlikely since X̃ is probably not

homeomorphic to X̃0×F . Even if h is not injective, it will induce a homeomorphism

from some quotient space of X̃0×F onto X̃ . To see what this quotient space is,

suppose h([γ], x̃0) = h([γ′], x̃′0) . Then γ and γ′ are both

paths from x0 to the same endpoint, and from the figure

we see that x̃′0 = Lγ′γ(x̃0) . Letting λ be the loop γ′γ , this

γ

γ
x0

˜
˜

γ̃
x0
x̃0

′

′
γ ′

means that h([γ], x̃0) = h([λγ], Lλ(x̃0)) . Conversely, for

any loop λ we have h([γ], x̃0) = h([λγ], Lλ(x̃0)) . Thus h
induces a well-defined map to X̃ from the quotient space of

X̃0×F obtained by identifying ([γ], x̃0) with ([λγ], Lλ(x̃0))
for each [λ] ∈ π1(X,x0) . Let this quotient space be denoted X̃ρ where ρ is the ho-

momorphism from π1(X,x0) to the permutation group of F specified by the action.

Notice that the definition of X̃ρ makes sense whenever we are given an action

ρ of π1(X,x0) on a set F . There is a natural projection X̃ρ→X sending ([γ], x̃0)
to γ(1) , and this is a covering space since if U ⊂ X is an open set over which the

universal cover X̃0 is a product U×π1(X,x0) , then the identifications defining X̃ρ
simply collapse U×π1(X,x0)×F to U×F .

Returning to our given covering space X̃→X with associated action ρ , the map

X̃ρ→X̃ induced by h is a bijection and therefore a homeomorphism since h was a

local homeomorphism. Since this homeomorphism X̃ρ→X̃ takes each fiber of X̃ρ to

the corresponding fiber of X̃ , it is an isomorphism of covering spaces.

If two covering spaces p1 : X̃1→X and p2 : X̃2→X are isomorphic, one may ask

how the corresponding actions of π1(X,x0) on the fibers F1 and F2 over x0 are

related. An isomorphism h : X̃1→X̃2 restricts to a bijection F1→F2 , and evidently

Lγ(h(x̃0)) = h(Lγ(x̃0)) . Using the less cumbersome notation γx̃0 for Lγ(x̃0) , this

relation can be written more concisely as γh(x̃0) = h(γx̃0) . A bijection F1→F2 with

this property is what one would naturally call an isomorphism of sets with π1(X,x0)
action. Thus isomorphic covering spaces have isomorphic actions on fibers. The

converse is also true, and easy to prove. One just observes that for isomorphic actions

ρ1 and ρ2 , an isomorphism h :F1→F2 induces a map X̃ρ1→X̃ρ2
and h−1 induces a

similar map in the opposite direction, such that the compositions of these two maps,

in either order, are the identity.

This shows that n sheeted covering spaces of X are classified by equivalence

classes of homomorphisms π1(X,x0)→Σn , where Σn is the symmetric group on n
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symbols and the equivalence relation identifies a homomorphism ρ with each of its

conjugates h−1ρh by elements h ∈ Σn . The study of the various homomorphisms

from a given group to Σn is a very classical topic in group theory, so we see that this

algebraic question has a nice geometric interpretation.

Exercises

1. For a covering space p : X̃→X and a subspace A ⊂ X , let Ã = p−1(A) . Show that

the restriction p : Ã→A is a covering space.

2. Show that if p1 : X̃1→X1 and p2 : X̃2→X2 are covering spaces, so is their product

p1×p2 : X̃1×X̃2→X1×X2 .

3. Let p : X̃→X be a covering space with p−1(x) finite and nonempty for all x ∈ X .

Show that X̃ is compact Hausdorff iff X is compact Hausdorff.

4. Construct a simply-connected covering space of the space X ⊂ R3 that is the union

of a sphere and a diameter. Do the same when X is the union of a sphere and a circle

intersecting it in two points.

5. Let X be the subspace of R2 consisting of the four sides of the square [0,1]×[0,1]
together with the segments of the vertical lines x = 1/2, 1/3, 1/4, ··· inside the square.

Show that for every covering space X̃→X there is some neighborhood of the left

edge of X that lifts homeomorphically to X̃ . Deduce that X has no simply-connected

covering space.

6. Let X be the shrinking wedge of circles in Example 1.25, and let X̃ be its covering

space shown in the figure below.

Construct a two-sheeted covering space Y→X̃ such that the composition Y→X̃→X
of the two covering spaces is not a covering space. Note that a composition of two

covering spaces does have the unique path lifting property, however.

7. Let Y be the quasi-circle shown in the figure, a closed subspace

of R2 consisting of a portion of the graph of y = sin(1/x) , the

segment [−1,1] in the y axis, and an arc connecting these two

pieces. Collapsing the segment of Y in the y axis to a point

gives a quotient map f :Y→S1 . Show that f does not lift to

the covering space R→S1 , even though π1(Y) = 0. Thus local

path-connectedness of Y is a necessary hypothesis in the lifting criterion.

8. Let X̃ and Ỹ be simply-connected covering spaces of the path-connected, locally

path-connected spaces X and Y . Show that if X ' Y then X̃ ' Ỹ . [Exercise 10 in

Chapter 0 may be helpful.]
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9. Show that if a path-connected, locally path-connected space X has π1(X) finite,

then every map X→S1 is nullhomotopic. [Use the covering space R→S1 .]

10. Find all the connected 2 sheeted and 3 sheeted covering spaces of S1∨S1 , up to

isomorphism.

11. Construct finite graphs X1 and X2 having a common finite-sheeted covering space

X̃1 = X̃2 , but such that there is no space having both X1 and X2 as covering spaces.

12. Let a and b be the generators of π1(S
1 ∨ S1) corresponding to the two S1

summands. Draw a picture of the covering space of S1 ∨ S1 corresponding to the

normal subgroup generated by a2 , b2 , and (ab)4 , and prove that this covering space

is indeed the correct one.

13. Determine the covering space of S1 ∨ S1 corresponding to the subgroup of

π1(S
1 ∨ S1) generated by the cubes of all elements. The covering space is 27 sheeted

and can be drawn on a torus so that the complementary regions are nine triangles

with edges labeled aaa , nine triangles with edges labeled bbb , and nine hexagons

with edges labeled ababab . [For the analogous problem with sixth powers instead

of cubes, the resulting covering space would have 228325 sheets! And for kth powers

with k sufficiently large, the covering space would have infinitely many sheets. The

underlying group theory question here, whether the quotient of Z ∗ Z obtained by

factoring out all kth powers is finite, is known as Burnside’s problem. It can also be

asked for a free group on n generators.]

14. Find all the connected covering spaces of RP2 ∨RP2 , up to isomorphism.

15. Let p : X̃→X be a simply-connected covering space of X and let A ⊂ X be a

path-connected, locally path-connected subspace, with Ã ⊂ X̃ a path-component of

p−1(A) . Show that p : Ã→A is the covering space corresponding to the kernel of the

map π1(A)→π1(X) .

16. Given maps X→Y→Z such that both Y→Z and the composition X→Z are

covering spaces, show that X→Y is a covering space if Z is locally path-connected,

and show that this covering space is normal if X→Z is a normal covering space.

17. Given a group G and a normal subgroup N , show that there exists a normal

covering space X̃→X with π1(X) ≈ G , π1(X̃) ≈ N , and deck transformation group

G(X̃) ≈ G/N .

18. For a path-connected, locally path-connected, and semilocally simply-connected

space X , call a path-connected covering space X̃→X abelian if it is normal and has

abelian deck transformation group. Show that X has an abelian covering space that is

a covering space of every other abelian covering space of X , and that such a ‘universal’

abelian covering space is unique up to isomorphism. Describe this covering space

explicitly for X = S1 ∨ S1 and X = S1 ∨ S1 ∨ S1 .

19. Use the preceding problem to show that a closed orientable surface Mg of genus

g has a connected normal covering space with deck transformation group isomorphic
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to Zn (the product of n copies of Z ) iff n ≤ 2g . For n = 3 and g ≥ 3, describe such

a covering space explicitly as a subspace of R3 with translations of R3 as deck trans-

formations. Show that such a covering space in R3 exists iff there is an embedding

of Mg in the 3 torus T 3 = S1×S1×S1 such that the induced map π1(Mg)→π1(T
3)

is surjective.

20. Construct nonnormal covering spaces of the Klein bottle by a Klein bottle and by

a torus. [Look for nonnormal subgroups of the group of deck transformations of the

universal cover.]

21. Let X be the space obtained from a torus S1×S1 by attaching a Möbius band via a

homeomorphism from the boundary circle of the Möbius band to the circle S1×{x0}
in the torus. Compute π1(X) , describe the universal cover of X , and describe the

action of π1(X) on the universal cover. Do the same for the space Y obtained by

attaching a Möbius band to RP2 via a homeomorphism from its boundary circle to

the circle in RP2 formed by the 1 skeleton of the usual CW structure on RP2 .

22. Given covering space actions of groups G1 on X1 and G2 on X2 , show that the ac-

tion of G1×G2 on X1×X2 defined by (g1, g2)(x1, x2) = (g1(x1), g2(x2)) is a covering

space action, and that (X1×X2)/(G1×G2) is homeomorphic to X1/G1×X2/G2 .

23. Show that if a group G acts freely and properly discontinuously on a Hausdorff

space X , then the action is a covering space action. (Here ‘properly discontinuously’

means that each x ∈ X has a neighborhood U such that {g ∈ G | U ∩ g(U) ≠∅} is

finite.) In particular, a free action of a finite group on a Hausdorff space is a covering

space action.

24. Given a covering space action of a group G on a path-connected, locally path-

connected space X , then each subgroup H ⊂ G determines a composition of covering

spaces X→X/H→X/G . Show:

(a) Every path-connected covering space between X and X/G is isomorphic to X/H
for some subgroup H ⊂ G .

(b) Two such covering spaces X/H1 and X/H2 of X/G are isomorphic iff H1 and

H2 are conjugate subgroups of G .

(c) The covering space X/H→X/G is normal iff H is a normal subgroup of G , in

which case the group of deck transformations of this cover is G/H .

25. Let ϕ :R2→R2 be the linear transformation ϕ(x,y) = (2x,y/2) . This generates

an action of Z on X = R2 − {0} . Show this action is a covering space action and

compute π1(X/Z) . Show the orbit space X/Z is non-Hausdorff, and describe how it is

a union of four subspaces homeomorphic to S1×R , coming from the complementary

components of the x axis and the y axis.

26. For a covering space p : X̃→X with X connected, locally path-connected, and

semilocally simply-connected, show:
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(a) The components of X̃ are in one-to-one correspondence with the orbits of the

action of π1(X,x0) on the fiber p−1(x0) .
(b) Under the Galois correspondence between connected covering spaces of X and

subgroups of π1(X,x0) , the subgroup corresponding to the component of X̃
containing a given lift x̃0 of x0 is the stabilizer of x̃0 , the subgroup consisting

of elements whose action on the fiber leaves x̃0 fixed.

27. For a universal cover p : X̃→X we have two actions of π1(X,x0) on the fiber

p−1(x0) , namely the action given by lifting loops at x0 and the action given by re-

stricting deck transformations to the fiber. Are these two actions the same when

X = S1 ∨ S1 or X = S1×S1 ? Do the actions always agree when π1(X,x0) is abelian?

28. [This has become Theorem 1.34.]

29. Let Y be path-connected, locally path-connected, and simply-connected, and let

G1 and G2 be subgroups of Homeo(Y) defining covering space actions on Y . Show

that the orbit spaces Y/G1 and Y/G2 are homeomorphic iff G1 and G2 are conjugate

subgroups of Homeo(Y) .

30. Draw the Cayley graph of the group Z∗ Z2 =
〈
a,b |||| b2 〉 .

31. Show that the normal covering spaces of S1 ∨ S1 are precisely the graphs that

are Cayley graphs of groups with two generators. More generally, the normal cov-

ering spaces of the wedge sum of n circles are the Cayley graphs of groups with n
generators.

32. Consider covering spaces p : X̃→X with X̃ and X connected CW complexes,

the cells of X̃ projecting homeomorphically onto cells of X . Restricting p to the

1 skeleton then gives a covering space X̃1→X1 over the 1 skeleton of X . Show:

(a) Two such covering spaces X̃1→X and X̃2→X are isomorphic iff the restrictions

X̃1
1→X1 and X̃1

2→X1 are isomorphic.

(b) X̃→X is a normal covering space iff X̃1→X1 is normal.

(c) The groups of deck transformations of the coverings X̃→X and X̃1→X1 are

isomorphic, via the restriction map.

33. In Example 1.42 let d be the greatest common divisor of m and n , and let

m′ = m/d and n′ = n/d . Show that the graph Tm,n/K consists of m′ vertices

labeled a , n′ vertices labeled b , together with d edges joining each a vertex to

each b vertex. Deduce that the subgroup K ⊂ Gm,n is free on dm′n′ −m′ − n′ + 1

generators.


