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The main goal in this section is an algebraic formula for computing homology with

arbitrary coefficients in terms of homology with Z coefficients. The theory parallels

rather closely the universal coefficient theorem for cohomology in §3.1.

The first step is to formulate the definition of homology with coefficients in terms

of tensor products. The chain group Cn(X;G) as defined in §2.2 consists of the finite

formal sums
∑
i giσi with gi ∈ G and σi :∆n→X . This means that Cn(X;G) is a

direct sum of copies of G , with one copy for each singular n simplex in X . More gen-

erally, the relative chain group Cn(X,A;G) = Cn(X;G)/Cn(A;G) is also a direct sum

of copies of G , one for each singular n simplex in X not contained in A . From the

basic properties of tensor products listed in the discussion of the Künneth formula

in §3.2 it follows that Cn(X,A;G) is naturally isomorphic to Cn(X,A)⊗G , via the

correspondence
∑
i giσi֏

∑
iσi ⊗gi . Under this isomorphism the boundary map

Cn(X,A;G)→Cn−1(X,A;G) becomes the map ∂ ⊗11 :Cn(X,A)⊗G→Cn−1(X,A)⊗G

where ∂ :Cn(X,A)→Cn−1(X,A) is the usual boundary map for Z coefficients. Thus

we have the following algebraic problem:

Given a chain complex ··· -→Cn
∂n-----→Cn−1 -→··· of free abelian groups Cn ,

is it possible to compute the homology groups Hn(C ;G) of the associated

chain complex ··· -----→Cn⊗G
∂n⊗11
----------------------------→Cn−1⊗G -----→··· just in terms of G and

the homology groups Hn(C) of the original complex?

To approach this problem, the idea will be to compare the chain complex C with two

simpler subcomplexes, the subcomplexes consisting of the cycles and the boundaries

in C , and see what happens upon tensoring all three complexes with G .

Let Zn = Ker ∂n ⊂ Cn and Bn = Im ∂n+1 ⊂ Cn . The restrictions of ∂n to these

two subgroups are zero, so they can be regarded as subcomplexes Z and B of C

with trivial boundary maps. Thus we have a short exact sequence of chain complexes

consisting of the commutative diagrams

(i)

The rows in this diagram split since each Bn is free, being a subgroup of the free group

Cn . Thus Cn ≈ Zn⊕Bn−1 , but the chain complex C is not the direct sum of the chain

complexes Z and B since the latter have trivial boundary maps but the boundary

maps in C may be nontrivial. Now tensor with G to get a commutative diagram
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(ii)

The rows are exact since the rows in (i) split and tensor products satisfy (A⊕B)⊗G ≈

A⊗G⊕B⊗G , so the rows in (ii) are split exact sequences too. Thus we have a short

exact sequence of chain complexes 0→Z⊗G→C⊗G→B⊗G→0. Since the boundary

maps are trivial in Z⊗G and B⊗G , the associated long exact sequence of homology

groups has the form

(iii) ··· -→Bn⊗G -→Zn⊗G -→Hn(C ;G) -→Bn−1⊗G -→Zn−1⊗G -→···

The ‘boundary’ maps Bn⊗G→Zn⊗G in this sequence are simply the maps in ⊗11

where in :Bn→Zn is the inclusion. This is evident from the definition of the boundary

map in a long exact sequence of homology groups: In diagram (ii) one takes an element

of Bn−1⊗G , pulls it back via (∂n ⊗11)−1 to Cn⊗G , then applies ∂n ⊗11 to get into

Cn−1⊗G , then pulls back to Zn−1⊗G .

The long exact sequence (iii) can be broken up into short exact sequences

(iv) 0 -→Coker(in ⊗11) -→Hn(C ;G) -→Ker(in−1 ⊗11) -→0

where Coker(in ⊗11) = (Zn⊗G)/ Im(in ⊗11) . The next lemma shows this cokernel is

just Hn(C)⊗G .

Lemma 3A.1. If the sequence of abelian groups A
i
-----→B

j
-----→C -----→ 0 is exact, then

so is A⊗G
i⊗11
------------------→B⊗G

j⊗11
------------------→C⊗G -----→0 .

Proof: Certainly the compositions of two successive maps in the latter sequence are

zero. Also, j ⊗11 is clearly surjective since j is. To check exactness at B⊗G it suffices

to show that the map B⊗G/ Im(i⊗11)→C⊗G induced by j ⊗11 is an isomorphism,

which we do by constructing its inverse. Define a map ϕ :C×G→B⊗G/ Im(i⊗11) by

ϕ(c,g) = b⊗g where j(b) = c . This ϕ is well-defined since if j(b) = j(b′) = c

then b − b′ = i(a) for some a ∈ A by exactness, so b⊗g − b′ ⊗g = (b − b′)⊗g =

i(a)⊗g ∈ Im(i⊗ 11) . Since ϕ is a homomorphism in each variable separately, it

induces a homomorphism C⊗G→B⊗G/ Im(i⊗11) . This is clearly an inverse to the

map B⊗G/ Im(i⊗11)→C⊗G . ⊔⊓

It remains to understand Ker(in−1 ⊗11) , or equivalently Ker(in ⊗11) . The situation

is that tensoring the short exact sequence

(v) 0 --------→Bn
in------------→Zn --------→Hn(C) --------→0

with G produces a sequence which becomes exact only by insertion of the extra term

Ker(in ⊗11) :

(vi) 0 -→Ker(in ⊗11) -----→Bn⊗G
in⊗11
-------------------------→Zn⊗G -----→Hn(C)⊗G -→0
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What we will show is that Ker(in ⊗11) does not really depend on Bn and Zn but only

on their quotient Hn(C) , and of course G .

The sequence (v) is a free resolution of Hn(C) , where as in §3.1 a free resolution

of an abelian group H is an exact sequence

··· -----→F2

f2
------------→F1

f1
------------→F0

f0
------------→H -----→0

with each Fn free. Tensoring a free resolution of this form with a fixed group G

produces a chain complex

··· -----→F1⊗G
f1⊗11
-------------------------→ F0⊗G

f0⊗11
-------------------------→H⊗G -----→0

By the preceding lemma this is exact at F0⊗G and H⊗G , but to the left of these two

terms it may not be exact. For the moment let us write Hn(F⊗G) for the homology

group Ker(fn ⊗11)/ Im(fn+1 ⊗11) .

Lemma 3A.2. For any two free resolutions F and F ′ of H there are canonical iso-

morphisms Hn(F⊗G) ≈ Hn(F
′⊗G) for all n .

Proof: We will use Lemma 3.1(a). In the situation described there we have two free

resolutions F and F ′ with a chain map between them. If we tensor the two free

resolutions with G we obtain chain complexes F⊗G and F ′⊗G with the maps αn ⊗11

forming a chain map between them. Passing to homology, this chain map induces

homomorphisms α∗ :Hn(F⊗G)→Hn(F
′⊗G) which are independent of the choice of

αn ’s since if αn and α′n are chain homotopic via a chain homotopy λn then αn ⊗11

and α′n ⊗11 are chain homotopic via λn ⊗11.

For a composition H
α
-----→H′

β
-----→H′′ with free resolutions F , F ′ , and F ′′ of these

three groups also given, the induced homomorphisms satisfy (βα)∗ = β∗α∗ since

we can choose for the chain map F→F ′′ the composition of chain maps F→F ′→F ′′ .
In particular, if we take α to be an isomorphism, with β its inverse and F ′′ = F ,

then β∗α∗ = (βα)∗ = 11∗ = 11, and similarly with β and α reversed. So α∗ is an

isomorphism if α is an isomorphism. Specializing further, taking α to be the identity

but with two different free resolutions F and F ′ , we get a canonical isomorphism

11∗ :Hn(F⊗G)→Hn(F
′⊗G) . ⊔⊓

The group Hn(F⊗G) , which depends only on H and G , is denoted Torn(H,G) .

Since a free resolution 0→F1→F0→H→0 always exists, as noted in §3.1, it follows

that Torn(H,G) = 0 for n > 1. Usually Tor1(H,G) is written simply as Tor(H,G) . As

we shall see later, Tor(H,G) provides a measure of the common torsion of H and G ,

hence the name ‘Tor’.

Is there a group Tor0(H,G)? With the definition given above it would be zero since

Lemma 3A.1 implies that F1⊗G→F0⊗G→H⊗G→0 is exact. It is probably better

to modify the definition of Hn(F⊗G) to be the homology groups of the sequence
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···→F1⊗G→F0⊗G→0, omitting the term H⊗G which can be regarded as a kind

of augmentation. With this revised definition, Lemma 3A.1 then gives an isomorphism

Tor0(H,G) ≈ H⊗G .

We should remark that Tor(H,G) is a functor of both G and H : Homomorphisms

α :H→H′ and β :G→G′ induce homomorphisms α∗ : Tor(H,G)→Tor(H′, G) and

β∗ : Tor(H,G)→Tor(H,G′) , satisfying (αα′)∗ = α∗α
′
∗ , (ββ′)∗ = β∗β

′
∗ , and 11∗ = 11.

The induced map α∗ was constructed in the proof of Lemma 3A.2, while for β the

construction of β∗ is obvious.

Before going into calculations of Tor(H,G) let us finish analyzing the earlier exact

sequence (iv). Recall that we have a chain complex C of free abelian groups, with

homology groups denoted Hn(C) , and tensoring C with G gives another complex

C⊗G whose homology groups are denoted Hn(C ;G) . The following result is known

as the universal coefficient theorem for homology since it describes homology with

arbitrary coefficients in terms of homology with the ‘universal’ coefficient group Z .

Theorem 3A.3. If C is a chain complex of free abelian groups, then there are natural

short exact sequences

0 -→Hn(C)⊗G -→Hn(C ;G) -→Tor(Hn−1(C),G) -→0

for all n and all G , and these sequences split, though not naturally.

Naturality means that a chain map C→C′ induces a map between the correspond-

ing short exact sequences, with commuting squares.

Proof: This exact sequence is (iv) since we can identify Coker(in ⊗11) with Hn(C)⊗G

and Ker(in−1 ⊗11) with Tor(Hn−1(C),G) . Verifying naturality is a mental exercise in

definition-checking, left to the reader.

The splitting is obtained as follows. We observed earlier that the short exact se-

quence 0→Zn→Cn→Bn−1→0 splits, so there is a projection p :Cn→Zn restricting

to the identity on Zn . The map p gives an extension of the quotient map Zn→Hn(C)
to a homomorphism Cn→Hn(C) . Letting n vary, we then have a chain map C→H(C)
where the groups Hn(C) are regarded as a chain complex with trivial boundary maps,

so the chain map condition is automatic. Now tensor with G to get a chain map

C⊗G→H(C)⊗G . Taking homology groups, we then have induced homomorphisms

Hn(C ;G)→Hn(C)⊗G since the boundary maps in the chain complex H(C)⊗G are

trivial. The homomorphisms Hn(C ;G)→Hn(C)⊗G give the desired splitting since at

the level of chains they are the identity on cycles in C , by the definition of p . ⊔⊓

Corollary 3A.4. For each pair of spaces (X,A) there are split exact sequences

0 -→Hn(X,A)⊗G -→Hn(X,A;G) -→Tor(Hn−1(X,A),G) -→0

for all n , and these sequences are natural with respect to maps (X,A)→(Y , B) . ⊔⊓

The splitting is not natural, for if it were, a map X→Y that induced trivial

maps Hn(X)→Hn(Y ) and Hn−1(X)→Hn−1(Y ) would have to induce the trivial map
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Hn(X;G)→Hn(Y ;G) for all G , but in Example 2.51 we saw an instance where this

fails, namely the quotient map M(Zm, n)→S
n+1 with G = Zm .

The basic tools for computing Tor are given by:

Proposition 3A.5.

(1) Tor(A, B) ≈ Tor(B,A) .

(2) Tor(
⊕
iAi, B) ≈

⊕
iTor(Ai, B) .

(3) Tor(A, B) = 0 if A or B is free, or more generally torsionfree.

(4) Tor(A, B) ≈ Tor(T(A), B) where T(A) is the torsion subgroup of A .

(5) Tor(Zn, A) ≈ Ker(A
n
-----→A) .

(6) For each short exact sequence 0→B→C→D→0 there is a naturally associated

exact sequence

0→Tor(A, B)→Tor(A,C)→Tor(A,D)→A⊗B→A⊗C→A⊗D→0

Proof: Statement (2) is easy since one can choose as a free resolution of
⊕
iAi the

direct sum of free resolutions of the Ai ’s. Also easy is (5), which comes from tensoring

the free resolution 0→Z
n
-----→Z→Zn→0 with A .

For (3), if A is free, it has a free resolution with Fn = 0 for n ≥ 1, so Tor(A, B) = 0

for all B . On the other hand, if B is free, then tensoring a free resolution of A with

B preserves exactness, since tensoring a sequence with a direct sum of Z ’s produces

just a direct sum of copies of the given sequence. So Tor(A, B) = 0 in this case too.

The generalization to torsionfree A or B will be given below.

For (6), choose a free resolution 0→F1→F0→A→0 and tensor with the given

short exact sequence to get a commutative diagram

The rows are exact since tensoring with a free group preserves exactness. Extending

the three columns by zeros above and below, we then have a short exact sequence

of chain complexes whose associated long exact sequence of homology groups is the

desired six-term exact sequence.

To prove (1) we apply (6) to a free resolution 0→F1→F0→B→0. Since Tor(A, F1)

and Tor(A, F0) vanish by the part of (3) which we have proved, the six-term sequence

in (6) reduces to the first row of the following diagram:

The second row comes from the definition of Tor(B,A) . The vertical isomorphisms

come from the natural commutativity of tensor product. Since the squares commute,

there is induced a map Tor(A, B)→Tor(B,A) , which is an isomorphism by the five-

lemma.
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Now we can prove the statement (3) in the torsionfree case. For a free resolution

0 -→ F1

ϕ
-----→ F0 -→ A -→ 0 we wish to show that ϕ⊗11 :F1⊗B→F0⊗B is injective

if B is torsionfree. Suppose
∑
i xi ⊗bi lies in the kernel of ϕ⊗11. This means that∑

iϕ(xi)⊗bi can be reduced to 0 by a finite number of applications of the defining

relations for tensor products. Only a finite number of elements of B are involved in

this process. These lie in a finitely generated subgroup B0 ⊂ B , so
∑
i xi ⊗bi lies in

the kernel of ϕ⊗11 :F1⊗B0→F0⊗B0 . This kernel is zero since Tor(A, B0) = 0, as B0

is finitely generated and torsionfree, hence free.

Finally, we can obtain statement (4) by applying (6) to the short exact sequence

0→T(A)→A→A/T(A)→0 since A/T(A) is torsionfree. ⊔⊓

In particular, (5) gives Tor(Zm,Zn) ≈ Zq where q is the greatest common divisor

of m and n . Thus Tor(Zm,Zn) is isomorphic to Zm⊗Zn , though somewhat by acci-

dent. Combining this isomorphism with (2) and (3) we see that for finitely generated

A and B , Tor(A, B) is isomorphic to the tensor product of the torsion subgroups of

A and B , or roughly speaking, the common torsion of A and B . This is one reason

for the ‘Tor’ designation, further justification being (3) and (4).

Homology calculations are often simplified by taking coefficients in a field, usually

Q or Zp for p prime. In general this gives less information than taking Z coefficients,

but still some of the essential features are retained, as the following result indicates:

Corollary 3A.6. (a) Hn(X;Q) ≈ Hn(X;Z)⊗Q , so when Hn(X;Z) is finitely gen-

erated, the dimension of Hn(X;Q) as a vector space over Q equals the rank of

Hn(X;Z) .

(b) If Hn(X;Z) and Hn−1(X;Z) are finitely generated, then for p prime, Hn(X;Zp)

consists of

(i) a Zp summand for each Z summand of Hn(X;Z) ,

(ii) a Zp summand for each Zpk summand in Hn(X;Z) , k ≥ 1 ,

(iii) a Zp summand for each Zpk summand in Hn−1(X;Z) , k ≥ 1 . ⊔⊓

Even in the case of nonfinitely generated homology groups, field coefficients still

give good qualitative information:

Corollary 3A.7. (a) H̃n(X;Z) = 0 for all n iff H̃n(X;Q) = 0 and H̃n(X;Zp) = 0 for

all n and all primes p .

(b) A map f :X→Y induces isomorphisms on homology with Z coefficients iff it

induces isomorphisms on homology with Q and Zp coefficients for all primes p .

Proof: Statement (b) follows from (a) by passing to the mapping cone of f . The

universal coefficient theorem gives the ‘only if’ half of (a). For the ‘if’ implication it

suffices to show that if an abelian group A is such that A⊗Q = 0 and Tor(A,Zp) = 0
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for all primes p , then A = 0. For the short exact sequences 0→Z
p
-----→Z→Zp→0 and

0→Z→Q→Q/Z→0, the six-term exact sequences in (6) of the proposition become

0 -→Tor(A,Zp) -→A
p
-----→A -→A⊗Zp -→0

0 -→Tor(A,Q/Z) -→A -→A⊗Q -→A⊗Q/Z -→0

If Tor(A,Zp) = 0 for all p , then exactness of the first sequence implies that A
p
-----→A

is injective for all p , so A is torsionfree. Then Tor(A,Q/Z) = 0 by (3) or (4) of the

proposition, so the second sequence implies that A→A⊗Q is injective, hence A = 0

if A⊗Q = 0. ⊔⊓

The algebra by means of which the Tor functor is derived from tensor products

has a very natural generalization in which abelian groups are replaced by modules

over a fixed ring R with identity, using the definition of tensor product of R modules

given in §3.2. Free resolutions of R modules are defined in the same way as for abelian

groups, using free R modules, which are direct sums of copies of R . Lemmas 3A.1 and

3A.2 carry over to this context without change, and so one has functors TorRn(A, B) .

However, it need not be true that TorRn(A, B) = 0 for n > 1. The reason this was

true when R = Z was that subgroups of free groups are free, but submodules of free

R modules need not be free in general. If R is a principal ideal domain, submodules

of free R modules are free, so in this case the rest of the algebra, in particular the

universal coefficient theorem, goes through without change. When R is a field F , every

module is free and TorFn(A, B) = 0 for n > 0 via the free resolution 0→A→A→0.

Thus Hn(C⊗FG) ≈ Hn(C)⊗FG if F is a field.

Exercises

1. Use the universal coefficient theorem to show that if H∗(X;Z) is finitely generated,

so the Euler characteristic χ(X) =
∑
n(−1)n rankHn(X;Z) is defined, then for any

coefficient field F we have χ(X) =
∑
n(−1)n dimHn(X;F) .

2. Show that Tor(A,Q/Z) is isomorphic to the torsion subgroup of A . Deduce that

A is torsionfree iff Tor(A, B) = 0 for all B .

3. Show that if H̃n(X;Q) and H̃n(X;Zp) are zero for all n and all primes p , then

H̃n(X;Z) = 0 for all n , and hence H̃n(X;G) = 0 for all G and n .

4. Show that ⊗ and Tor commute with direct limits: (lim
--→Aα)

⊗B = lim
--→(Aα

⊗B) and

Tor(lim
--→Aα, B) =

lim
--→Tor(Aα, B) .

5. From the fact that Tor(A, B) = 0 if A is free, deduce that Tor(A, B) = 0 if A

is torsionfree by applying the previous problem to the directed system of finitely

generated subgroups Aα of A .

6. Show that Tor(A, B) is always a torsion group, and that Tor(A, B) contains an

element of order n iff both A and B contain elements of order n .
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Künneth formulas describe the homology or cohomology of a product space in

terms of the homology or cohomology of the factors. In nice cases these formulas take

the form H∗(X×Y ;R) ≈ H∗(X;R)⊗H∗(Y ;R) or H∗(X×Y ;R) ≈ H∗(X;R)⊗H∗(Y ;R)

for a coefficient ring R . For the case of cohomology, such a formula was given in

Theorem 3.15, with hypotheses of finite generation and freeness on the cohomology

of one factor. To obtain a completely general formula without these hypotheses it

turns out that homology is more natural than cohomology, and the main aim in this

section is to derive the general Künneth formula for homology. The new feature of

the general case is that an extra Tor term is needed to describe the full homology of

a product.

The Cross Product in Homology

A major component of the Künneth formula is a cross product map

Hi(X;R)×Hj(Y ;R)
×
--------------------→Hi+j(X×Y ;R)

There are two ways to define this. One is a direct definition for singular homology,

involving explicit simplicial formulas. More enlightening, however, is the definition in

terms of cellular homology. This necessitates assuming X and Y are CW complexes,

but this hypothesis can later be removed by the technique of CW approximation in

§4.1. We shall focus therefore on the cellular definition, leaving the simplicial defini-

tion to later in this section for those who are curious to see how it goes.

The key ingredient in the definition of the cellular cross product will be the fact

that the cellular boundary map satisfies d(ei×ej) = dei×ej + (−1)iei×dej . Implicit

in the right side of this formula is the convention of treating the symbol × as a

bilinear operation on cellular chains. With this convention we can then say more

generally that d(a×b) = da×b + (−1)ia×db whenever a is a cellular i chain and

b is a cellular j chain. From this formula it is obvious that the cross product of two

cycles is a cycle. Also, the product of a boundary and a cycle is a boundary since

da×b = d(a×b) if db = 0, and similarly a×db = (−1)id(a×b) if da = 0. Hence

there is an induced bilinear map Hi(X;R)×Hj(Y ;R)→Hi+j(X×Y ;R) , which is by

definition the cross product in cellular homology. Since it is bilinear, it could also

be viewed as a homomorphism Hi(X;R)⊗RHj(Y ;R)→Hi+j(X×Y ;R) . In either form,

this cross product turns out to be independent of the cell structures on X and Y .

Our task then is to express the boundary maps in the cellular chain complex

C∗(X×Y) for X×Y in terms of the boundary maps in the cellular chain complexes

C∗(X) and C∗(Y ) . For simplicity we consider homology with Z coefficients here,

but the same formula for arbitrary coefficients follows immediately from this special

case. With Z coefficients, the cellular chain group Ci(X) is free with basis the i cells

of X , but there is a sign ambiguity for the basis element corresponding to each cell ei ,
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namely the choice of a generator for the Z summand of Hi(X
i, Xi−1) corresponding

to ei . Only when i = 0 is this choice canonical. We refer to these choices as ‘choosing

orientations for the cells’. A choice of such orientations allows cellular i chains to be

written unambiguously as linear combinations of i cells.

The formula d(ei×ej) = dei×ej+(−1)iei×dej is not completely canonical since

it contains the sign (−1)i but not (−1)j . Evidently there is some distinction being

made between the two factors of ei×ej . Since the signs arise from orientations, we

need to make explicit how an orientation of cells ei and ej determines an orientation

of ei×ej . Via characteristic maps, orientations can be obtained from orientations of

the domain disks of the characteristic maps. It will be convenient to choose these

domains to be cubes since the product of two cubes is again a cube. Thus for a cell eiα
we take a characteristic map Φα : Ii→X where Ii is the product of i intervals [0,1] .

An orientation of Ii is a generator of Hi(I
i, ∂Ii) , and the image of this generator under

Φα∗ gives an orientation of eiα . We can identify Hi(I
i, ∂Ii) with Hi(I

i, Ii − {x}) for

any point x in the interior of Ii , and then an orientation is determined by a linear

embedding ∆i→Ii with x chosen in the interior of the image of this embedding.

The embedding is determined by its sequence of vertices v0, ··· , vi . The vectors

v1−v0, ··· , vi−v0 are linearly independent in Ii , thought of as the unit cube in Ri , so

an orientation in our sense is equivalent to an orientation in the sense of linear algebra,

that is, an equivalence class of ordered bases, two ordered bases being equivalent if

they differ by a linear transformation of positive determinant. (An ordered basis can

be continuously deformed to an orthonormal basis, by the Gram–Schmidt process,

and two orthonormal bases are related either by a rotation or a rotation followed by a

reflection, according to the sign of the determinant of the transformation taking one

to the other.)

With this in mind, we adopt the convention that an orientation of Ii×Ij = Ii+j is

obtained by choosing an ordered basis consisting of an ordered basis for Ii followed

by an ordered basis for Ij . Notice that reversing the orientation for either Ii or Ij

then reverses the orientation for Ii+j , so all that really matters is the order of the two

factors of Ii×Ij .

Proposition 3B.1. The boundary map in the cellular chain complex C∗(X×Y) is

determined by the boundary maps in the cellular chain complexes C∗(X) and C∗(Y )

via the formula d(ei×ej) = dei×ej + (−1)iei×dej .

Proof: Let us first consider the special case of the cube In . We give I the CW structure

with two vertices and one edge, so the ith copy of I has a 1 cell ei and 0 cells 0i and

1i , with dei = 1i−0i . The n cell in the product In is e1× ··· ×en , and we claim that

the boundary of this cell is given by the formula

(∗) d(e1× ··· ×en) =
∑

i

(−1)i+1e1× ··· ×dei× ··· ×en
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This formula is correct modulo the signs of the individual terms e1× ··· ×0i× ··· ×en
and e1× ··· ×1i× ··· ×en since these are exactly the (n − 1) cells in the boundary

sphere ∂In of In . To obtain the signs in (∗) , note that switching the two ends of an

I factor of In produces a reflection of ∂In , as does a transposition of two adjacent

I factors. Since reflections have degree −1, this implies that (∗) is correct up to an

overall sign. This final sign can be determined by looking at any term, say the term

01×e2× ··· ×en , which has a minus sign in (∗) . To check that this is right, consider

the n simplex [v0, ··· , vn] with v0 at the origin and vk the unit vector along the

kth coordinate axis for k > 0. This simplex defines the ‘positive’ orientation of In as

described earlier, and in the usual formula for its boundary the face [v0, v2, ··· , vn] ,

which defines the positive orientation for the face 01×e2× ··· ×en of In , has a minus

sign.

If we write In = Ii×Ij with i + j = n and we set ei = e1× ··· ×ei and ej =

ei+1× ··· ×en , then the formula (∗) becomes d(ei×ej) = dei×ej + (−1)iei×dej .

We will use naturality to reduce the general case of the boundary formula to this

special case. When dealing with cellular homology, the maps f :X→Y that induce

chain maps f∗ :C∗(X)→C∗(Y ) of the cellular chain complexes are the cellular maps,

taking Xn to Yn for all n , hence (Xn, Xn−1) to (Yn, Yn−1) . The naturality statement

we want is then:

Lemma 3B.2. For cellular maps f :X→Z and g :Y→W , the cellular chain maps

f∗ :C∗(X)→C∗(Z) , g∗ :C∗(Y )→C∗(W) , and (f×g)∗ :C∗(X×Y)→C∗(Z×W) are

related by the formula (f×g)∗ = f∗×g∗ .

Proof: The relation (f×g)∗ = f∗×g∗ means that if f∗(e
i
α) =

∑
γmαγe

i
γ and if

g∗(e
j
β) =

∑
δnβδe

j
δ , then (f×g)∗(e

i
α×e

j
β) =

∑
γδmαγnβδ(e

i
γ×e

j
δ) . The coefficient

mαγ is the degree of the composition fαγ :Si→Xi/Xi−1→Zi/Zi−1→Si where the

first and third maps are induced by characteristic maps for the cells eiα and eiγ , and the

middle map is induced by the cellular map f . With the natural choices of basepoints in

these quotient spaces, fαγ is basepoint-preserving. The nβδ ’s are obtained similarly

from maps gβδ :Sj→Sj . For f×g , the map (f×g)αβ,γδ :Si+j→Si+j whose degree

is the coefficient of eiγ×e
j
δ in (f×g)∗(e

i
α×e

j
β) is obtained from the product map

fαγ×gβδ :Si×Sj→Si×Sj by collapsing the (i+ j − 1) skeleton of Si×Sj to a point.

In other words, (f×g)αβ,γδ is the smash product map fαγ ∧ gβδ . What we need

to show is the formula deg(f ∧ g) = deg(f )deg(g) for basepoint-preserving maps

f :Si→Si and g :Sj→Sj .

Since f ∧ g is the composition of f ∧ 11 and 11 ∧ g , it suffices to show that

deg(f∧11) = deg(f ) and deg(11∧g) = deg(g) . We do this by relating smash products

to suspension. The smash product X∧S1 can be viewed as X×I/(X×∂I∪{x0}×I) , so

it is the reduced suspension ΣX , the quotient of the ordinary suspension SX obtained

by collapsing the segment {x0}×I to a point. If X is a CW complex with x0 a 0 cell,
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the quotient map SX→X∧S1 induces an isomorphism on homology since it collapses

a contractible subcomplex to a point. Taking X = Si , we

have the commutative diagram at the right, and from the

induced commutative diagram of homology groups Hi+1 we

deduce that Sf and f ∧ 11 have the same degree. Since

suspension preserves degree by Proposition 2.33, we conclude that deg(f ∧ 11) =

deg(f ) . The 11 in this formula is the identity map on S1 , and by iteration we obtain

the same result for 11 the identity map on Sj since Sj is the smash product of j

copies of S1 . This implies also that deg(11 ∧ g) = deg(g) since a permutation of

coordinates in Si+j does not affect the degree of maps Si+j→Si+j . ⊔⊓

Now to finish the proof of the proposition, let Φ : Ii→Xi and Ψ : Ij→Y j be char-

acteristic maps of cells eiα ⊂ X and e
j
β ⊂ Y . The restriction of Φ to ∂Ii is the at-

taching map of eiα . We may perform a preliminary homotopy of this attaching map

∂Ii→Xi−1 to make it cellular. There is no need to appeal to the cellular approxima-

tion theorem to do this since a direct argument is easy: First deform the attaching

map so that it sends all but one face of Ii to a point, which is possible since the union

of these faces is contractible, then do a further deformation so that the image point

of this union of faces is a 0 cell. A homotopy of the attaching map ∂Ii→Xi−1 does

not affect the cellular boundary deiα , since deiα is determined by the induced map

Hi−1(∂I
i)→Hi−1(X

i−1)→Hi−1(X
i−1, Xi−2) . So we may assume Φ is cellular, and like-

wise Ψ , hence also Φ×Ψ . The map of cellular chain complexes induced by a cellular

map between CW complexes is a chain map, commuting with the cellular boundary

maps.

If ei is the i cell of Ii and ej the j cell of Ij , then Φ∗(ei) = eiα , Ψ∗(ej) = ejβ ,

and (Φ×Ψ)∗(ei×ej) = eiα×e
j
β , hence

d(eiα×e
j
β) = d

(
(Φ×Ψ)∗(ei×ej)

)

= (Φ×Ψ)∗d(ei×ej) since (Φ×Ψ)∗ is a chain map

= (Φ×Ψ)∗(dei×ej + (−1)iei×dej) by the special case

= Φ∗(dei)×Ψ∗(ej)+ (−1)iΦ∗(ei)×Ψ∗(dej) by the lemma

= dΦ∗(ei)×Ψ∗(ej)+ (−1)iΦ∗(ei)×dΨ∗(ej) since Φ∗ and Ψ∗ are

chain maps

= deiα×e
j
β + (−1)ieiα×de

j
β

which completes the proof of the proposition. ⊔⊓

Example 3B.3. Consider X×Sk where we give Sk its usual CW structure with two

cells. The boundary formula in C∗(X×S
k) takes the form d(a×b) = da×b since

d = 0 in C∗(S
k) . So the chain complex C∗(X×S

k) is just the direct sum of two

copies of the chain complex C∗(X) , one of the copies having its dimension shifted
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upward by k . Hence Hn(X×S
k;Z) ≈ Hn(X;Z)⊕Hn−k(X;Z) for all n . In particular,

we see that all the homology classes in X×Sk are cross products of homology classes

in X and Sk .

Example 3B.4. More subtle things can happen when X and Y both have torsion in

their homology. To take the simplest case, let X be S1 with a cell e2 attached by a

map S1→S1 of degree m , so H1(X;Z) ≈ Zm and Hi(X;Z) = 0 for i > 1. Similarly,

let Y be obtained from S1 by attaching a 2 cell by a map of degree n . Thus X and

Y each have CW structures with three cells and so X×Y

has nine cells. These are indicated by the dots in the

diagram at the right, with X in the horizontal direction

and Y in the vertical direction. The arrows denote the

nonzero cellular boundary maps. For example the two

arrows leaving the dot in the upper right corner indi-

cate that ∂(e2×e2) =m(e1×e2)+n(e2×e1) . Obviously

H1(X×Y ;Z) is Zm⊕Zn . In dimension 2, Ker ∂ is generated by e1×e1 , and the image

of the boundary map from dimension 3 consists of the multiples (ℓm−kn)(e1×e1) .

These form a cyclic group generated by q(e1×e1) where q is the greatest common

divisor of m and n , so H2(X×Y ;Z) ≈ Zq . In dimension 3 the cycles are the multiples

of (m/q)(e1×e2)+ (n/q)(e2×e1) , and the smallest such multiple that is a boundary

is q[(m/q)(e1×e2)+ (n/q)(e2×e1)] =m(e1×e2)+n(e2×e1) , so H3(X×Y ;Z) ≈ Zq .

Since X and Y have no homology above dimension 1, this 3 dimensional homol-

ogy of X×Y cannot be realized by cross products. As the general theory will show,

H2(X×Y ;Z) is H1(X;Z)⊗H1(Y ;Z) and H3(X×Y ;Z) is Tor(H1

(
X;Z),H1(Y ;Z)

)
.

This example generalizes easily to higher dimensions, with X = Si ∪ ei+1 and

Y = Sj ∪ ej+1 , the attaching maps having degrees m and n , respectively. Essentially

the same calculation shows that X×Y has both Hi+j and Hi+j+1 isomorphic to Zq .

We should say a few words about why the cross product is independent of CW

structures. For this we will need a fact proved in the next chapter in Theorem 4.8, that

every map between CW complexes is homotopic to a cellular map. As we mentioned

earlier, a cellular map induces a chain map between cellular chain complexes. It is

easy to see from the equivalence between cellular and singular homology that the

map on cellular homology induced by a cellular map is the same as the map induced

on singular homology. Now suppose we have cellular maps f :X→Z and g :Y→W .

Then Lemma 3B.2 implies that we have a commutative diagram

Now take Z and W to be the same spaces as X and Y but with different CW structures,

and let f and g be cellular maps homotopic to the identity. The vertical maps in the
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diagram are then the identity, and commutativity of the diagram says that the cross

products defined using the different CW structures coincide.

Cross product is obviously bilinear, or in other words, distributive. It is not hard

to check that it is also associative. What about commutativity? If T :X×Y→Y×X
is transposition of the factors, then we can ask whether T∗(a×b) equals b×a . The

only effect transposing the factors has on the definition of cross product is in the

convention for orienting a product Ii×Ij by taking an ordered basis in the first factor

followed by an ordered basis in the second factor. Switching the two factors can be

achieved by moving each of the i coordinates of Ii past each of the coordinates of

Ij . This is a total of ij transpositions of adjacent coordinates, each realizable by a

reflection, so a sign of (−1)ij is introduced. Thus the correct formula is T∗(a×b) =

(−1)ijb×a for a ∈ Hi(X) and b ∈ Hj(Y ) .

The Algebraic Künneth Formula

By adding together the various cross products we obtain a map

⊕
i

(
Hi(X;Z)⊗Hn−i(Y ;Z)

)
---------→Hn(X×Y ;Z)

and it is natural to ask whether this is an isomorphism. Example 3B.4 above shows

that this is not always the case, though it is true in Example 3B.3. Our main goal

in what follows is to show that the map is always injective, and that its cokernel is⊕
iTor

(
Hi(X;Z),Hn−i−1(Y ;Z)

)
. More generally, we consider other coefficients besides

Z and show in particular that with field coefficients the map is an isomorphism.

For CW complexes X and Y , the relationship between the cellular chain com-

plexes C∗(X) , C∗(Y ) , and C∗(X×Y) can be expressed nicely in terms of tensor prod-

ucts. Since the n cells of X×Y are the products of i cells of X with (n− i) cells of Y ,

we have Cn(X×Y) ≈
⊕
i

(
Ci(X)⊗Cn−i(Y )

)
, with ei×ej corresponding to ei ⊗ ej . Un-

der this identification the boundary formula of Proposition 3B.1 becomes d(ei ⊗ ej) =

dei ⊗ ej + (−1)iei ⊗dej . Our task now is purely algebraic, to compute the homology

of the chain complex C∗(X×Y) from the homology of C∗(X) and C∗(Y ) .

Suppose we are given chain complexes C and C′ of abelian groups Cn and C′n ,

or more generally R modules over a commutative ring R . The tensor product chain

complex C⊗RC
′ is then defined by (C⊗RC

′)n =
⊕
i(Ci⊗RC

′
n−i) , with boundary maps

given by ∂(c ⊗c′) = ∂c ⊗c′ + (−1)ic ⊗ ∂c′ for c ∈ Ci and c′ ∈ C′n−i . The sign (−1)i

guarantees that ∂2 = 0 in C⊗RC
′ , since

∂2(c ⊗c′) = ∂
(
∂c ⊗ c′ + (−1)ic ⊗∂c′

)

= ∂2c ⊗c′ + (−1)i−1∂c ⊗ ∂c′ + (−1)i∂c ⊗ ∂c′ + c ⊗∂2c′ = 0

From the boundary formula ∂(c ⊗ c′) = ∂c ⊗ c′+(−1)ic ⊗ ∂c′ it follows that the tensor

product of cycles is a cycle, and the tensor product of a cycle and a boundary, in either

order, is a boundary, just as for the cross product defined earlier. So there is induced a

natural map on homology groups Hi(C)⊗RHn−i(C
′)→Hn(C⊗RC

′) . Summing over i
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then gives a map
⊕
i

(
Hi(C)⊗RHn−i(C

′)
)
→Hn(C⊗RC

′) . This figures in the following

algebraic version of the Künneth formula:

Theorem 3B.5. If R is a principal ideal domain and the R modules Ci are free, then

for each n there is a natural short exact sequence

0→
⊕
i

(
Hi(C)⊗RHn−i(C

′)
)
→Hn(C ⊗RC

′)→
⊕
iTorR

(
Hi(C),Hn−i−1(C

′)
)
→0

and this sequence splits.

This is a generalization of the universal coefficient theorem for homology, which

is the case that R = Z and C′ consists of just the coefficient group G in dimension

zero. The proof will also be a natural generalization of the proof of the universal

coefficient theorem.

Proof: First we do the special case that the boundary maps in C are all zero, so

Hi(C) = Ci . In this case ∂(c ⊗c′) = (−1)ic ⊗ ∂c′ and the chain complex C⊗RC
′ is

simply the direct sum of the complexes Ci⊗RC
′ , each of which is a direct sum of copies

of C′ since Ci is free. Hence Hn(Ci⊗RC
′) ≈ Ci⊗RHn−i(C

′) = Hi(C)⊗RHn−i(C
′) .

Summing over i yields an isomorphism Hn(C⊗RC
′) ≈

⊕
i

(
Hi(C)⊗RHn−i(C

′)
)
, which

is the statement of the theorem since there are no Tor terms, Hi(C) = Ci being free.

In the general case, let Zi ⊂ Ci and Bi ⊂ Ci denote kernel and image of the

boundary homomorphisms for C . These give subchain complexes Z and B of C

with trivial boundary maps. We have a short exact sequence of chain complexes

0→Z→C→B→0 made up of the short exact sequences 0→Zi→Ci
∂
-----→ Bi−1→0

each of which splits since Bi−1 is free, being a submodule of Ci−1 which is free by

assumption. Because of the splitting, when we tensor 0→Z→C→B→0 with C′

we obtain another short exact sequence of chain complexes, and hence a long exact

sequence in homology

··· -→Hn(Z⊗RC
′) -→Hn(C⊗RC

′) -→Hn−1(B⊗RC
′) -→Hn−1(Z⊗RC

′) -→···

where we have Hn−1(B⊗RC
′) instead of the expected Hn(B⊗RC

′) since ∂ :C→B de-

creases dimension by one. Checking definitions, one sees that the ‘boundary’ map

Hn−1(B⊗RC
′)→Hn−1(Z⊗RC

′) in the preceding long exact sequence is just the map

induced by the natural map B⊗RC
′→Z⊗RC

′ coming from the inclusion B ⊂ Z .

Since Z and B are chain complexes with trivial boundary maps, the special case

at the beginning of the proof converts the preceding exact sequence into

···
in-----→
⊕
i

(
Zi⊗RHn−i(C

′)
)
-→Hn(C⊗RC

′) -→
⊕
i

(
Bi⊗RHn−i−1(C

′)
) in−1------------→

⊕
i

(
Zi⊗RHn−i−1(C

′)
)
-→···

So we have short exact sequences

0 -→Coker in -→Hn(C ⊗RC
′) -→Ker in−1 -→0
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where Coker in =
⊕
i

(
Zi⊗RHn−i(C

′)
)
/ Im in , and this equals

⊕
i

(
Hi(C)⊗RHn−i(C

′)
)

by Lemma 3A.1. It remains to identify Ker in−1 with
⊕
iTorR

(
Hi(C),Hn−i−1(C

′)
)
.

By the definition of Tor, tensoring the free resolution 0→Bi→Zi→Hi(C)→0

with Hn−i(C
′) yields an exact sequence

0 -→TorR
(
Hi(C),Hn−i(C

′)
)
-→Bi⊗RHn−i(C

′) -→Zi⊗RHn−i(C
′) -→

Hi(C)⊗RHn−i(C
′) -→0

Hence, summing over i , Ker in =
⊕
iTorR

(
Hi(C),Hn−i(C

′)
)
.

Naturality should be obvious, and we leave it for the reader to fill in the details.

We will show that the short exact sequence in the statement of the theorem splits

assuming that both C and C′ are free. This suffices for our applications. For the

extra argument needed to show splitting when only C is assumed to be free, see the

exposition in [Hilton & Stammbach 1970].

The splitting is via a homomorphism Hn(C⊗RC
′)→

⊕
i

(
Hi(C)⊗RHn−i(C

′)
)

con-

structed in the following way. As already noted, the sequence 0→Zi→Ci→Bi−1→0

splits, so the quotient maps Zi→Hi(C) extend to homomorphisms Ci→Hi(C) . Sim-

ilarly we obtain C′j→Hj(C
′) if C′ is free. Viewing the sequences of homology groups

Hi(C) and Hj(C
′) as chain complexes H(C) and H(C′) with trivial boundary maps,

we thus have chain maps C→H(C) and C′→H(C′) , whose tensor product is a chain

map C⊗RC
′→H(C)⊗RH(C

′) . The induced map on homology for this last chain map

is the desired splitting map since the chain complex H(C)⊗RH(C
′) equals its own

homology, the boundary maps being trivial. ⊔⊓

The Topological Künneth Formula

Now we can apply the preceding algebra to obtain the topological statement we

are looking for:

Theorem 3B.6. If X and Y are CW complexes and R is a principal ideal domain,

then there are natural short exact sequences

0 -→
⊕
i

(
Hi(X;R)⊗RHn−i(Y ;R)

)
-→Hn(X×Y ;R) -→

⊕
iTorR

(
Hi(X;R),Hn−i−1(Y ;R)

)
-→0

and these sequences split.

Naturality means that maps X→X′ and Y→Y ′ induce a map from the short

exact sequence for X×Y to the corresponding short exact sequence for X′×Y ′ , with

commuting squares. The splitting is not natural, however, as an exercise at the end

of this section demonstrates.

Proof: When dealing with products of CW complexes there is always the bothersome

fact that the compactly generated CW topology may not be the same as the product

topology. However, in the present context this is not a real problem. Since the two
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topologies have the same compact sets, they have the same singular simplices and

hence the same singular homology groups.

Let C = C∗(X;R) and C′ = C∗(Y ;R) , the cellular chain complexes with coeffi-

cients in R . Then C⊗RC
′ = C∗(X×Y ;R) by Proposition 3B.1, so the algebraic Künneth

formula gives the desired short exact sequences. Their naturality follows from natu-

rality in the algebraic Künneth formula, since we can homotope arbitrary maps X→X′

and Y→Y ′ to be cellular by Theorem 4.8, assuring that they induce chain maps of

cellular chain complexes. ⊔⊓

With field coefficients the Künneth formula simplifies because the Tor terms are

always zero over a field:

Corollary 3B.7. If F is a field and X and Y are CW complexes, then the cross product

map h :
⊕
i

(
Hi(X;F)⊗FHn−i(Y ;F)

)
-→Hn(X×Y ;F) is an isomorphism for all n . ⊔⊓

There is also a relative version of the Künneth formula for CW pairs (X,A) and

(Y , B) . This is a split short exact sequence

0 -→
⊕
i

(
Hi(X,A;R)⊗RHn−i(Y , B;R)

)
-→Hn(X×Y ,A×Y ∪X×B;R) -→
⊕
iTorR

(
Hi(X,A;R),Hn−i−1(Y , B;R)

)
-→0

for R a principal ideal domain. This too follows from the algebraic Künneth formula

since the isomorphism of cellular chain complexes C∗(X×Y) ≈ C∗(X)⊗C∗(Y ) passes

down to a quotient isomorphism

C∗(X×Y)/C∗(A×Y ∪X×B) ≈ C∗(X)/C∗(A)⊗C∗(Y )/C∗(B)

since bases for these three relative cellular chain complexes correspond bijectively

with the cells of (X −A)×(Y − B) , X −A , and Y − B , respectively.

As a special case, suppose A and B are basepoints x0 ∈ X and y0 ∈ Y . Then

the subcomplex A×Y ∪ X×B can be identified with the wedge sum X ∨ Y and the

quotient X×Y/X ∨ Y is the smash product X ∧ Y . Thus we have a reduced Künneth

formula

0 -→
⊕
i

(
H̃i(X;R)⊗R H̃n−i(Y ;R)

)
-→H̃n(X ∧ Y ;R) -→

⊕
iTorR

(
H̃i(X;R), H̃n−i−1(Y ;R)

)
-→0

If we take Y = Sk for example, then X ∧ Sk is the k fold reduced suspension of X ,

and we obtain isomorphisms H̃n(X;R) ≈ H̃n+k(X ∧ S
k;R) .

The Künneth formula and the universal coefficient theorem can be combined to

give a more concise formula Hn(X×Y ;R) ≈
⊕
iHi

(
X;Hn−i(Y ;R)

)
. The naturality of

this isomorphism is somewhat problematic, however, since it uses the splittings in

the Künneth formula and the universal coefficient theorem. With a little more algebra

the formula can be shown to hold more generally for an arbitrary coefficient group G

in place of R ; see [Hilton & Wylie 1967], p. 227.
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There is an analogous formula H̃n(X ∧ Y ;R) ≈
⊕
i H̃i

(
X; H̃n−i(Y ;R)

)
. As a spe-

cial case, when Y is a Moore space M(G,k) we obtain isomorphisms H̃n(X;G) ≈

H̃n+k(X ∧M(G,k);Z) . Again naturality is an issue, but in this case there is a natural

isomorphism obtainable by applying Theorem 4.59 in §4.3, after verifying that the

functors hn(X) = H̃n+k(X ∧M(G,k);Z) define a reduced homology theory, which is

not hard. The isomorphism H̃n(X;G) ≈ H̃n+k(X∧M(G,k);Z) says that homology with

arbitrary coefficients can be obtained from homology with Z coefficients by a topolog-

ical construction as well as by the algebra of tensor products. For general homology

theories this formula can be used as a definition of homology with coefficients.

One might wonder about a cohomology version of the Künneth formula. Tak-

ing coefficients in a field F and using the natural isomorphism Hom(A⊗B,C) ≈

Hom
(
A,Hom(B,C)

)
, the Künneth formula for homology and the universal coefficient

theorem give isomorphisms

Hn(X×Y ;F) ≈ HomF (Hn(X×Y ;F), F) ≈
⊕
iHomF(Hi(X;F)⊗Hn−i(Y ;F), F)

≈
⊕
iHomF

(
Hi(X;F),HomF(Hn−i(Y ;F), F)

)

≈
⊕
iHomF

(
Hi(X;F),Hn−i(Y ;F)

)

≈
⊕
iH
i(X;Hn−i(Y ;F)

)

More generally, there are isomorphisms Hn(X×Y ;G) ≈
⊕
iH

i(X;Hn−i(Y ;G)
)

for any

coefficient group G ; see [Hilton & Wylie 1967], p. 227. However, in practice it usu-

ally suffices to apply the Künneth formula for homology and the universal coefficient

theorem for cohomology separately. Also, Theorem 3.15 shows that with stronger

hypotheses one can draw stronger conclusions using cup products.

The Simplicial Cross Product

Let us sketch how the cross product Hm(X;R)⊗Hn(Y ;R)→Hm+n(X×Y ;R) can

be defined directly in terms of singular homology. What one wants is a cross prod-

uct at the level of singular chains, Cm(X;R)⊗Cn(Y ;R)→Cm+n(X×Y ;R) . If we are

given singular simplices f :∆m→X and g :∆n→Y , then we have the product map

f×g :∆m×∆n→X×Y , and the idea is to subdivide ∆m×∆n into simplices of dimen-

sion m+n and then take the sum of the restrictions of f×g to these simplices, with

appropriate signs.

In the special cases that m or n is 1 we have already seen how to subdivide

∆m×∆n into simplices when we constructed prism operators in §2.1. The general-

ization to ∆m×∆n is not completely obvious, however. Label the vertices of ∆m as

v0, v1, ··· , vm and the vertices of ∆n as w0,w1, ··· ,wn . Think of the pairs (i, j) with

0 ≤ i ≤ m and 0 ≤ j ≤ n as the vertices of an m×n rectangular grid in R
2 . Let σ

be a path formed by a sequence of m + n horizontal and vertical edges in this grid

starting at (0,0) and ending at (m,n) , always moving either to the right or upward.

To such a path σ we associate a linear map ℓσ :∆m+n→∆m×∆n sending the kth

vertex of ∆m+n to (vik ,wjk) where (ik, jk) is the kth vertex of the edgepath σ . Then
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we define a simplicial cross product

Cm(X;R)⊗Cn(Y ;R)
×
--------------→Cm+n(X×Y ;R)

by the formula

f×g =
∑
σ

(−1)|σ |(f×g)ℓσ

where |σ | is the number of squares in the grid lying below the path σ . Note that

the symbol ‘× ’ means different things on the two sides of the equation. From this

definition it is a calculation to show that ∂(f×g) = ∂f×g+(−1)mf×∂g . This implies

that the cross product of two cycles is a cycle, and the cross product of a cycle and a

boundary is a boundary, so there is an induced cross product in singular homology.

One can see that the images of the maps ℓσ give a simplicial structure on ∆m×∆n
in the following way. We can view ∆m as the subspace of Rm defined by the in-

equalities 0 ≤ x1 ≤ ··· ≤ xm ≤ 1, with the vertex vi as the point having coordi-

nates m − i zeros followed by i ones. Similarly we have ∆n ⊂ Rn with coordinates

0 ≤ y1 ≤ ··· ≤ yn ≤ 1. The product ∆m×∆n then consists of (m + n) tuples

(x1, ··· , xm, y1, ··· , yn) satisfying both sets of inequalities. The combined inequal-

ities 0 ≤ x1 ≤ ··· ≤ xm ≤ y1 ≤ ··· ≤ yn ≤ 1 define a simplex ∆m+n in ∆m×∆n ,

and every other point of ∆m×∆n satisfies a similar set of inequalities obtained from

0 ≤ x1 ≤ ··· ≤ xm ≤ y1 ≤ ··· ≤ yn ≤ 1 by a permutation of the variables ‘shuffling’

the yj ’s into the xi ’s. Each such shuffle corresponds to an edgepath σ consisting

of a rightward edge for each xi and an upward edge for each yj in the shuffled se-

quence. Thus we have ∆m×∆n expressed as the union of simplices ∆m+nσ indexed

by the edgepaths σ . One can check that these simplices fit together nicely to form

a ∆ complex structure on ∆m×∆n , which is also a simplicial complex structure. See

[Eilenberg & Steenrod 1952], p. 68. In fact this construction is sufficiently natural to

make the product of any two ∆ complexes into a ∆ complex.

The Cohomology Cross Product

In §3.2 we defined a cross product

Hk(X;R)×Hℓ(Y ;R)
×
--------------→Hk+ℓ(X×Y ;R)

in terms of the cup product. Let us now describe the alternative approach in which

the cross product is defined directly via cellular cohomology, and then cup product

is defined in terms of this cross product.

The cellular definition of cohomology cross product is very much like the defini-

tion in homology. Given CW complexes X and Y , define a cross product of cellular

cochains ϕ ∈ Ck(X;R) and ψ ∈ Cℓ(Y ;R) by setting

(ϕ×ψ)(ekα×e
ℓ
β) = ϕ(e

k
α)ψ(e

ℓ
β)

and letting ϕ×ψ take the value 0 on (k+ℓ) cells of X×Y which are not the product

of a k cell of X with an ℓ cell of Y . Another way of saying this is to use the convention
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that a cellular cochain in Ck(X;R) takes the value 0 on cells of dimension different

from k , and then we can let (ϕ×ψ)(emα ×e
n
β) =ϕ(e

m
α )ψ(e

n
β ) for all m and n .

The cellular coboundary formula δ(ϕ×ψ) = δϕ×ψ + (−1)kϕ×δψ for cellular

cochains ϕ ∈ Ck(X;R) and ψ ∈ Cℓ(Y ;R) follows easily from the corresponding

boundary formula in Proposition 3B.1, namely

δ(ϕ×ψ)(emα ×e
n
β) = (ϕ×ψ)

(
∂(emα ×e

n
β )
)

= (ϕ×ψ)(∂emα ×e
n
β + (−1)memα ×∂e

n
β)

= δϕ(emα )ψ(e
n
β )+ (−1)mϕ(emα )δψ(e

n
β )

= (δϕ×ψ+ (−1)kϕ×δψ)(emα ×e
n
β)

where the coefficient (−1)m in the next-to-last line can be replaced by (−1)k since

ϕ(emα ) = 0 unless k = m . From the formula δ(ϕ×ψ) = δϕ×ψ + (−1)kϕ×δψ

it follows just as for homology and for cup product that there is an induced cross

product in cellular cohomology.

To show this agrees with the earlier definition, we can first reduce to the case that

X has trivial (k− 1) skeleton and Y has trivial (ℓ− 1) skeleton via the commutative

diagram

The left-hand vertical map is surjective, so by commutativity, if the two definitions

of cross product agree in the upper row, they agree in the lower row. Next, assuming

Xk−1 and Y ℓ−1 are trivial, consider the commutative diagram

The vertical maps here are injective, Xk×Y ℓ being the (k+ ℓ) skeleton of X×Y , so

it suffices to see that the two definitions agree in the lower row. We have Xk =
∨
αS

k
α

and Y ℓ =
∨
βS

ℓ
β , so by restriction to these wedge summands the question is reduced

finally to the case of a product Skα×S
ℓ
β . In this case, taking R = Z , we showed in

Theorem 3.15 that the cross product in question is the map Z×Z→Z sending (1,1)

to ±1, with the original definition of cross product. The same is obviously true using

the cellular cross product. So for R = Z the two cross products agree up to sign, and

it follows that this is also true for arbitrary R . We leave it to the reader to sort out

the matter of signs.

To relate cross product to cup product we use the diagonal map ∆ :X→X×X ,

x֏ (x,x) . If we are given a definition of cross product, we can define cup product

as the composition

Hk(X;R)×Hℓ(X;R)
×
--------------→Hk+ℓ(X×X;R)

∆∗
--------------------→Hk+ℓ(X;R)
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This agrees with the original definition of cup product since we have ∆∗(a×b) =
∆∗(p∗1 (a) ` p∗2 (b)

)
= ∆∗(p∗1 (a)

)
` ∆∗(p∗2 (b)

)
= a ` b , as both compositions p1∆

and p2∆ are the identity map of X .

Unfortunately, the definition of cellular cross product cannot be combined with

∆ to give a definition of cup product at the level of cellular cochains. This is because

∆ is not a cellular map, so it does not induce a map of cellular cochains. It is possible

to homotope ∆ to a cellular map by Theorem 4.8, but this involves arbitrary choices.

For example, the diagonal of a square can be pushed across either adjacent triangle. In

particular cases one might hope to understand the geometry well enough to compute

an explicit cellular approximation to the diagonal map, but usually other techniques

for computing cup products are preferable.

The cohomology cross product satisfies the same commutativity relation as for

homology, namely T∗(a×b) = (−1)kℓb×a for T :X×Y→Y×X the transposition

map, a ∈ Hk(Y ;R) , and b ∈ Hℓ(X;R) . The proof is the same as for homology.

Taking X = Y and noting that T∆ = ∆ , we obtain a new proof of the commutativity

property of cup product.

Exercises

1. Compute the groups Hi(RPm×RPn;G) and Hi(RPm×RPn;G) for G = Z and Z2

via the cellular chain and cochain complexes. [See Example 3B.4.]

2. Let C and C′ be chain complexes, and let I be the chain complex consisting of

Z in dimension 1 and Z×Z in dimension 0, with the boundary map taking a gener-

ator e in dimension 1 to the difference v1 − v0 of generators vi of the two Z ’s in

dimension 0. Show that a chain map f : I⊗C→C′ is precisely the same as a chain

homotopy between the two chain maps fi :C→C
′ , c֏f(vi ⊗c) , i = 0,1. [The chain

homotopy is h(c) = f(e⊗ c) .]

3. Show that the splitting in the topological Künneth formula cannot be natural by con-

sidering the map f×11 :M(Zm, n)×M(Zm, n)→S
n+1×M(Zm, n) where f collapses

the n skeleton of M(Zm, n) = S
n ∪ en+1 to a point.

4. Show that the cross product of fundamental classes for closed R orientable mani-

folds M and N is a fundamental class for M×N .

5. Show that slant products

Hn(X×Y ;R)×Hj(Y ;R) -→Hn−j(X;R), (ei×ej ,ϕ)֏ϕ(ej)ei

Hn(X×Y ;R)×Hj(Y ;R) -→Hn−j(X;R), (ϕ, ej)֏
(
ei֏ϕ(ei×ej)

)

can be defined via the indicated cellular formulas. [These ‘products’ are in some ways

more like division than multiplication, and this is reflected in the common notation

a/b for them, or a\b when the order of the factors is reversed. The first of the two

slant products is related to cap product in the same way that the cohomology cross

product is related to cup product.]
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Of the three axioms for a group, it would seem that the least subtle is the existence

of an identity element. However, we shall see in this section that when topology is

added to the picture, the identity axiom becomes much more potent. To give a name

to the objects we will be considering, define a space X to be an H–space, ‘H’ standing

for ‘Hopf’, if there is a continuous multiplication map µ :X×X→X and an ‘identity’

element e ∈ X such that the two maps X→X given by x֏µ(x, e) and x֏µ(e,x)

are homotopic to the identity through maps (X, e)→(X, e) . In particular, this implies

that µ(e, e) = e .

In terms of generality, this definition represents something of a middle ground.

One could weaken the definition by dropping the condition that the homotopies pre-

serve the basepoint e , or one could strengthen it by requiring that e be a strict identity,

without any homotopies. An exercise at the end of the section is to show the three

possible definitions are equivalent if X is a CW complex. An advantage of allowing

homotopies in the definition is that a space homotopy equivalent in the basepointed

sense to an H–space is again an H–space. Imposing basepoint conditions is fairly

standard in homotopy theory, and is usually not a serious restriction.

The most classical examples of H–spaces are topological groups, spaces X with

a group structure such that both the multiplication map X×X→X and the inversion

map X→X , x֏ x−1 , are continuous. For example, the group GLn(R) of invertible

n×n matrices with real entries is a topological group when topologized as a subspace

of the n2 dimensional vector space Mn(R) of all n×n matrices over R . It is an open

subspace since the invertible matrices are those with nonzero determinant, and the

determinant function Mn(R)→R is continuous. Matrix multiplication is certainly

continuous, being defined by simple algebraic formulas, and it is not hard to see that

matrix inversion is also continuous if one thinks for example of the classical adjoint

formula for the inverse matrix.

Likewise GLn(C) is a topological group, as is the quaternionic analog GLn(H) ,

though in the latter case one needs a somewhat different justification since deter-

minants of quaternionic matrices do not have the good properties one would like.

Since these groups GLn over R , C , and H are open subsets of Euclidean spaces, they

are examples of Lie groups, which can be defined as topological groups which are also

manifolds. The GLn groups are noncompact, being open subsets of Euclidean spaces,

but they have the homotopy types of compact Lie groups O(n) , U(n) , and Sp(n) .

This is explained in §3.D for GLn(R) , and the other two cases are similar.

Among the simplest H–spaces from a topological viewpoint are the unit spheres

S1 in C , S3 in the quaternions H , and S7 in the octonions O . These are H–spaces

since the multiplications in these division algebras are continuous, being defined by
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polynomial formulas, and are norm-preserving, |ab| = |a||b| , hence restrict to multi-

plications on the unit spheres, and the identity element of the division algebra lies in

the unit sphere in each case. Both S1 and S3 are Lie groups since the multiplications

in C and H are associative and inverses exist since aa = |a|2 = 1 if |a| = 1. How-

ever, S7 is not a group since multiplication of octonions is not associative. Of course

S0 = {±1} is also a topological group, trivially. A famous theorem of J. F. Adams as-

serts that S0 , S1 , S3 , and S7 are the only spheres that are H–spaces; see §4.B for a

fuller discussion.

Let us describe now some associative H–spaces where inverses fail to exist. Multi-

plication of polynomials provides an H–space structure on CP∞ in the following way.

A nonzero polynomial a0 + a1z + ··· + anz
n with coefficients ai ∈ C corresponds

to a point (a0, ··· , an,0, ···) ∈ C
∞ − {0} . Multiplication of two such polynomials

determines a multiplication C∞−{0}×C∞−{0}→C
∞−{0} which is associative, com-

mutative, and has an identity element (1,0, ···) . Since C is commutative we can

factor out by scalar multiplication by nonzero constants and get an induced product

CP∞×CP∞→CP∞ with the same properties. Thus CP∞ is an associative, commutative

H–space with a strict identity. Instead of factoring out by all nonzero scalars, we could

factor out only by scalars of the form ρe2πik/q with ρ an arbitrary positive real, k an

arbitrary integer, and q a fixed positive integer. The quotient of C∞ − {0} under this

identification, an infinite-dimensional lens space L∞ with π1(L
∞) ≈ Zq , is therefore

also an associative, commutative H–space. This includes RP∞ in particular.

The spaces J(X) defined in §3.2 are also H–spaces, with the multiplication given

by (x1, ··· , xm)(y1, ··· , yn) = (x1, ··· , xm, y1, ··· , yn) , which is associative and has

an identity element (e) where e is the basepoint of X . One could describe J(X)

as the free associative H–space generated by X . There is also a commutative ana-

log of J(X) called the infinite symmetric product SP(X) defined in the following

way. Let SPn(X) be the quotient space of the n fold product Xn obtained by iden-

tifying all n tuples (x1, ··· , xn) that differ only by a permutation of their coordi-

nates. The inclusion Xn֓Xn+1 , (x1, ··· , xn)֏(x1, ··· , xn, e) induces an inclusion

SPn(X)֓SPn+1(X) , and SP(X) is defined to be the union of this increasing sequence

of SPn(X) ’s, with the weak topology. Alternatively, SP(X) is the quotient of J(X)

obtained by identifying points that differ only by permutation of coordinates. The

H–space structure on J(X) induces an H–space structure on SP(X) which is commu-

tative in addition to being associative and having a strict identity. The spaces SP(X)

are studied in more detail in §4.K.

The goal of this section will be to describe the extra structure which the multi-

plication in an H–space gives to its homology and cohomology. This is of particular

interest since many of the most important spaces in algebraic topology turn out to be

H–spaces.
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Hopf Algebras

Let us look at cohomology first. Choosing a commutative ring R as coefficient

ring, we can regard the cohomology ring H∗(X;R) of a space X as an algebra over R

rather than merely a ring. Suppose X is an H–space satisfying two conditions:

(1) X is path-connected, hence H0(X;R) ≈ R .

(2) Hn(X;R) is a finitely generated free R module for each n , so the cross product

H∗(X;R)⊗RH
∗(X;R)→H∗(X×X;R) is an isomorphism.

The multiplication µ :X×X→X induces a map µ∗ :H∗(X;R)→H∗(X×X;R) , and

when we combine this with the cross product isomorphism in (2) we get a map

H∗(X;R)
∆
--------------→H∗(X;R)⊗RH

∗(X;R)

which is an algebra homomorphism since both µ∗ and the cross product isomorphism

are algebra homomorphisms. The key property of ∆ turns out to be that for any

α ∈ Hn(X;R) , n > 0, we have

∆(α) = α⊗1+ 1⊗α+
∑
i
α′i ⊗α

′′
i where |α′i| > 0 and |α′′i | > 0

To verify this, let i :X→X×X be the inclusion x֏ (x, e) for e the identity element

of X , and consider the commutative diagram

The map P is defined by commutativity, and by looking at the lower right triangle we

see that P(α⊗1) = α and P(α⊗β) = 0 if |β| > 0. The H–space property says that

µi ≃ 11, so P∆ = 11. This implies that the component of ∆(α) in Hn(X;R)⊗RH
0(X;R)

is α⊗1. A similar argument shows the component in H0(X;R)⊗RH
n(X;R) is 1⊗α .

We can summarize this situation by saying that H∗(X;R) is a Hopf algebra, that

is, a graded algebra A =
⊕
n≥0A

n over a commutative base ring R , satisfying the

following two conditions:

(1) There is an identity element 1 ∈ A0 such that the map R→A0 , r֏ r · 1, is an

isomorphism. In this case one says A is connected .

(2) There is a diagonal or coproduct ∆ :A→A⊗A , a homomorphism of graded al-

gebras satisfying ∆(α) = α⊗1+ 1⊗α+
∑
iα
′
i ⊗α

′′
i where |α′i| > 0 and |α′′i | > 0,

for all α with |α| > 0.

Here and in what follows we take ⊗ to mean ⊗R . The multiplication in A⊗A is given

by the standard formula (α⊗β)(γ ⊗δ) = (−1)|β||γ|(αγ ⊗βδ) . For a general Hopf

algebra the multiplication is not assumed to be either associative or commutative (in

the graded sense), though in the example of H∗(X;R) for X an H–space the algebra

structure is of course associative and commutative.
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Example 3C.1. One of the simplest Hopf algebras is a polynomial ring R[α] . The

coproduct ∆(α) must equal α⊗1 + 1⊗α since the only elements of R[α] of lower

dimension than α are the elements of R in dimension zero, so the terms α′i and α′′i
in the coproduct formula ∆(α) = α⊗1+1⊗α+

∑
iα
′
i ⊗α

′′
i must be zero. The require-

ment that ∆ be an algebra homomorphism then determines ∆ completely. To de-

scribe ∆ explicitly we distinguish two cases. If the dimension of α is even or if 2 = 0

in R , then the multiplication in R[α]⊗R[α] is strictly commutative and ∆(αn) =
(α⊗1 + 1⊗α)n =

∑
i

(
n
i

)
αi ⊗αn−i . In the opposite case that α is odd-dimensional,

then ∆(α2) = (α⊗1 + 1⊗α)2 = α2
⊗1 + 1⊗α2 since (α⊗1)(1⊗α) = α⊗α and

(1⊗α)(α⊗1) = −α⊗α if α has odd dimension. Thus if we set β = α2 , then β

is even-dimensional and we have ∆(α2n) = ∆(βn) = (β⊗1+1⊗β)n =
∑
i

(
n
i

)
βi ⊗βn−i

and ∆(α2n+1) = ∆(αβn) = ∆(α)∆(βn) =∑i
(
n
i

)
αβi ⊗βn−i +

∑
i

(
n
i

)
βi ⊗αβn−i .

Example 3C.2. The exterior algebra ΛR[α] on an odd-dimensional generator α is a

Hopf algebra, with ∆(α) = α⊗1+1⊗α . To verify that ∆ is an algebra homomorphism

we must check that ∆(α2) = ∆(α)2 , or in other words, since α2 = 0, we need to see

that ∆(α)2 = 0. As in the preceding example we have ∆(α)2 = (α⊗1 + 1⊗α)2 =

α2
⊗1+1⊗α2 , so ∆(α)2 is indeed 0. Note that if α were even-dimensional we would

instead have ∆(α)2 = α2
⊗1 + 2α⊗α + 1⊗α2 , which would be 0 in ΛR[α]⊗ΛR[α]

only if 2 = 0 in R .

An element α of a Hopf algebra is called primitive if ∆(α) = α⊗1+1⊗α . As the

preceding examples illustrate, if a Hopf algebra is generated as an algebra by primitive

elements, then the coproduct ∆ is uniquely determined by the product. This happens

in a number of interesting special cases, but certainly not in general, as we shall see.

The existence of the coproduct in a Hopf algebra turns out to restrict the multi-

plicative structure considerably. Here is an important example illustrating this:

Example 3C.3. Suppose that the truncated polynomial algebra F[α]/(αn) over a field

F is a Hopf algebra. Then α is primitive, just as it is in F[α] , so if we assume either

that α is even-dimensional or that F has characteristic 2, then the relation αn = 0

yields an equation

0 = ∆(αn) = αn ⊗1+ 1⊗αn +
∑

0<i<n

(
n
i

)
αi ⊗αn−i =

∑

0<i<n

(
n
i

)
αi ⊗αn−i

which implies that
(
n
i

)
= 0 in F for each i in the range 0 < i < n . This is impossible

if F has characteristic 0, and if the characteristic of F is p > 0 then it happens only

when n is a power of p . For p = 2 this was shown in the proof of Theorem 3.21, and

the argument given there works just as well for odd primes. Conversely, it is easy to

check that if F has characteristic p then F[α]/(αp
i

) is a Hopf algebra, assuming still

that α is even-dimensional if p is odd.

The characteristic 0 case of this result implies that CPn is not an H–space for

finite n , in contrast with CP∞ which is an H–space as we saw earlier. Similarly, taking
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F = Z2 , we deduce that RPn can be an H–space only if n+ 1 is a power of 2. Indeed,

RP1 = S1/±1, RP3 = S3/±1, and RP7 = S7/±1 have quotient H–space structures from

S1 , S3 and S7 since −1 commutes with all elements of S1 , S3 , or S7 . However, these

are the only cases when RPn is an H–space since, by an exercise at the end of this

section, the universal cover of an H–space is an H–space, and S1 , S3 , and S7 are the

only spheres that are H–spaces, by the theorem of Adams mentioned earlier.

The tensor product A⊗B of Hopf algebras A and B is again a Hopf algebra, with

coproduct the composition A⊗B
∆⊗∆
----------------------------→ (A⊗A)⊗(B⊗B)→(A⊗B)⊗(A⊗B) where

the second map interchanging the middle two factors includes the usual sign in graded

commutativity. Thus the preceding examples yield many other Hopf algebras, tensor

products of polynomial, truncated polynomial, and exterior algebras on any number

of generators. The following theorem of Hopf is a partial converse:

Theorem 3C.4. If A is a commutative, associative Hopf algebra over a field F of

characteristic 0 , and An is finite-dimensional over F for each n , then A is isomor-

phic as an algebra to the tensor product of an exterior algebra on odd-dimensional

generators and a polynomial algebra on even-dimensional generators.

There is an analogous theorem of Borel when F is a finite field of characteris-

tic p . In this case A is again isomorphic to a tensor product of single-generator Hopf

algebras, of one of the following types:

F[α] , with α even-dimensional if p ≠ 2.

ΛF [α] with α odd-dimensional.

F[α]/(αp
i

) , with α even-dimensional if p ≠ 2.

For a proof see [Borel 1953] or [Kane 1988].

Proof of 3C.4: Since An is finitely generated over F for each n , we may choose algebra

generators x1, x2, ··· for A with |xi| ≤ |xi+1| for all i . Let An be the subalgebra

generated by x1, ··· , xn . This is a Hopf subalgebra of A , that is, ∆(An) ⊂ An⊗An ,

since ∆(xi) involves only xi and terms of smaller dimension. We may assume xn
does not lie in An−1 . Since A is associative and commutative, there is a natural

surjection An−1⊗F[xn]→An if |xn| is even, or An−1⊗ΛF[xn]→An if |xn| is odd.

By induction on n it will suffice to prove these surjections are injective. Thus in the

two cases we must rule out nontrivial relations
∑
iαix

i
n = 0 and α0 + α1xn = 0,

respectively, with coefficients αi ∈ An−1 .

Let I be the ideal in An generated by x2
n and the positive-dimensional elements of

An−1 , so I consists of the polynomials
∑
iαix

i
n with coefficients αi ∈ An−1 , the first

two coefficients α0 and α1 having trivial components in A0 . Note that xn 6∈ I since

elements of I having dimension |xn| must lie in An−1 . Consider the composition

An
∆
-----------------→An⊗An

q
--------------→An⊗(An/I)
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with q the natural quotient map. By the definition of I , this composition q∆ sends

α ∈ An−1 to α⊗1 and xn to xn ⊗1+ 1⊗xn where xn is the image of xn in An/I .

In case |xn| is even, applying q∆ to a nontrivial relation
∑
iαix

i
n = 0 gives

0 =
∑
i(αi ⊗1)(xn ⊗1+ 1⊗xn)

i =
(∑

iαix
i
n

)
⊗1+

∑
i iαix

i−1
n ⊗xn

Since
∑
iαix

i
n = 0, this implies that

∑
i iαix

i−1
n ⊗xn is zero in the tensor product

An⊗(An/I) , hence
∑
i iαix

i−1
n = 0 since xn 6∈ I implies xn ≠ 0. The relation∑

i iαix
i−1
n = 0 has lower degree than the original relation, and is not the trivial rela-

tion since F has characteristic 0, αi ≠ 0 implying iαi ≠ 0 if i > 0. Since we could

assume the original relation had minimum degree, we have reached a contradiction.

The case |xn| odd is similar. Applying q∆ to a relation α0 + α1xn = 0 gives

0 = α0 ⊗1+(α1 ⊗1)(xn ⊗1+1⊗xn) = (α0+α1xn)⊗1+α1 ⊗xn . Since α0+α1xn = 0,

we get α1 ⊗xn = 0, which implies α1 = 0 and hence α0 = 0. ⊔⊓

The structure of Hopf algebras over Z is much more complicated than over a

field. Here is an example that is still fairly simple.

Example 3C.5: Divided Polynomial Algebras. We showed in Proposition 3.22 that the

H–space J(Sn) for n even has H∗(J(Sn);Z) a divided polynomial algebra, the algebra

ΓZ[α] with additive generators αi in dimension ni and multiplication given by αk1 =

k!αk , hence αiαj =
(
i+j
i

)
αi+j . The coproduct in ΓZ[α] is uniquely determined by

the multiplicative structure since ∆(αk1) = (α1 ⊗1+1⊗α1)
k =

∑
i

(
k
i

)
αi1 ⊗α

k−i
1 , which

implies that ∆(αk1/k!) =
∑
i(α

i
1/i!)⊗ (α

k−i
1 /(k− i)!) , that is, ∆(αk) =

∑
iαi ⊗αk−i . So

in this case the coproduct has a simpler description than the product.

It is interesting to see what happens to the divided polynomial algebra ΓZ[α]
when we change to field coefficients. Clearly ΓQ[α] is the same as Q[α] . In contrast

with this, ΓZp[α] , with multiplication defined by αiαj =
(
i+j
i

)
αi+j , happens to be

isomorphic as an algebra to the infinite tensor product
⊗
i≥0 Zp[αpi]/(α

p
pi) , as we

will show in a moment. However, as Hopf algebras these two objects are different

since αpi is primitive in
⊗
i≥0 Zp[αpi]/(α

p
pi) but not in ΓZp[α] when i > 0, since the

coproduct in ΓZp[α] is given by ∆(αk) =
∑
iαi ⊗αk−i .

Now let us show that there is an algebra isomorphism

ΓZp[α] ≈
⊗
i≥0 Zp[αpi]/(α

p
pi)

Since ΓZp[α] = ΓZ[α]⊗Zp , this is equivalent to:

(∗) The element α
n0

1 α
n1
p ···α

nk
pk in ΓZ[α] is divisible by p iff ni ≥ p for some i .

The product α
n0

1 α
n1
p ···α

nk
pk equals mαn for n = n0 + n1p + ··· + nkp

k and some

integer m . The question is whether p divides m . We will show:

(∗∗) αnαpk is divisible by p iff nk = p − 1, assuming that ni < p for each i .



H–Spaces and Hopf Algebras Section 3.C 287

This implies (∗) by an inductive argument in which we build up the product in (∗)

by repeated multiplication on the right by terms αpi .

To prove (∗∗) we recall that αnαpk =
(
n+pk

n

)
αn+pk . The mod p value of this

binomial coefficient can be computed using Lemma 3C.6 below. Assuming that ni < p

for each i and that nk+1 < p , the p adic representations of n+pk and n differ only

in the coefficient of pk , so mod p we have
(
n+pk

n

)
=
(
nk+1
nk

)
= nk+1. This conclusion

also holds if nk+1 = p , when the p adic representations of n+pk and n differ also

in the coefficient of pk+1 . The statement (∗∗) then follows.

Lemma 3C.6. If p is a prime, then
(
n
k

)
≡
∏
i

(
ni
ki

)
mod p where n =

∑
inip

i and

k =
∑
i kip

i with 0 ≤ ni < p and 0 ≤ ki < p are the p adic representations of n

and k .

Here the convention is that
(
n
k

)
= 0 if n < k , and

(
n
0

)
= 1 for all n ≥ 0.

Proof: In Zp[x] there is an identity (1+ x)p = 1+ xp since p clearly divides
(
p
k

)
=

p!/k!(p − k)! for 0 < k < p . By induction it follows that (1 + x)p
i

= 1+ xp
i

. Hence

if n =
∑
inip

i is the p adic representation of n then:

(1+ x)n = (1+ x)n0(1+ xp)n1(1+ xp
2

)n2 ···

=
[
1+

(
n0

1

)
x +

(
n0

2

)
x2 + ··· +

(
n0

p−1

)
xp−1

]

×
[
1+

(
n1

1

)
xp +

(
n1

2

)
x2p + ··· +

(
n1

p−1

)
x(p−1)p

]

×
[
1+

(
n2

1

)
xp

2

+
(
n2

2

)
x2p2

+ ··· +
(
n2

p−1

)
x(p−1)p2

]
× ···

When this is multiplied out, one sees that no terms combine, and the coefficient of xk

is just
∏
i

(
ni
ki

)
where k =

∑
i kip

i is the p adic representation of k . ⊔⊓

Pontryagin Product

Another special feature of H–spaces is that their homology groups have a prod-

uct operation, called the Pontryagin product. For an H–space X with multiplication

µ :X×X→X , this is the composition

H∗(X;R)⊗H∗(X;R)
×
--------------→H∗(X×X;R)

µ∗--------------→H∗(X;R)

where the first map is the cross product defined in §3.B. Thus the Pontryagin product

consists of bilinear maps Hi(X;R)×Hj(X;R)→Hi+j(X;R) . Unlike cup product, the

Pontryagin product is not in general associative unless the multiplication µ is associa-

tive or at least associative up to homotopy, in the sense that the maps X×X×X→X ,

(x,y, z)֏ µ(x,µ(y, z)) and (x,y, z)֏ µ(µ(x,y), z) are homotopic. Fortunately

most H–spaces one meets in practice satisfy this associativity property. Nor is the

Pontryagin product generally commutative, even in the graded sense, unless µ is

commutative or homotopy-commutative, which is relatively rare for H–spaces. We

will give examples shortly where the Pontryagin product is not commutative.
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In case X is a CW complex and µ is a cellular map the Pontryagin product can be

computed using cellular homology via the cellular chain map

Ci(X;R)×Cj(X;R)
×
--------------→Ci+j(X×X;R)

µ∗
--------------→Ci+j(X;R)

where the cross product map sends generators corresponding to cells ei and ej to

the generator corresponding to the product cell ei×ej , and then µ∗ is applied to this

product cell.

Example 3C.7. Let us compute the Pontryagin product for J(Sn) . Here there is one

cell ein for each i ≥ 0, and µ takes the product cell ein×ejn homeomorphically onto

the cell e(i+j)n . This means that H∗(J(S
n);Z) is simply the polynomial ring Z[x]

on an n dimensional generator x . This holds for n odd as well as for n even, so

the Pontryagin product need not satisfy the same general commutativity relation as

cup product. In this example the Pontryagin product structure is simpler than the cup

product structure, though for some H–spaces it is the other way round. In applications

it is often convenient to have the choice of which product structure to use.

This calculation immediately generalizes to J(X) where X is any connected CW

complex whose cellular boundary maps are all trivial. The cellular boundary maps in

the product Xm of m copies of X are then trivial by induction on m using Propo-

sition 3B.1, and therefore the cellular boundary maps in J(X) are all trivial since the

quotient map Xm→Jm(X) is cellular and each cell of Jm(X) is the homeomorphic

image of a cell of Xm . Thus H∗(J(X);Z) is free with additive basis the products

en1× ··· ×enk of positive-dimensional cells of X , and the multiplicative structure

is that of polynomials in noncommuting variables corresponding to the positive-

dimensional cells of X .

Another way to describe H∗(J(X);Z) in this example is as the tensor algebra

TH̃∗(X;Z) , where for a graded R module M that is trivial in dimension zero, like

the reduced homology of a path-connected space, the tensor algebra TM is the direct

sum of the n fold tensor products of M with itself for all n ≥ 1, together with a copy

of R in dimension zero, with the obvious multiplication coming from tensor product

and scalar multiplication.

Generalizing the preceding example, we have:

Proposition 3C.8. If X is a connected CW complex with H∗(X;R) a free R module,

then H∗(J(X);R) is isomorphic to the tensor algebra TH̃∗(X;R) .

This can be paraphrased as saying that the homology of the free H–space gener-

ated by a space with free homology is the free algebra generated by the homology of

the space.

Proof: With coefficients in R , let ϕ :TH̃∗(X)→H∗
(
J(X)

)
be the homomorphism

whose restriction to the n fold tensor product H̃∗(X)
⊗n is the composition

H̃∗(X)
⊗n֓H∗(X)

⊗n ×
-----→H∗(X

n) -→H∗
(
Jn(X)

)
-→H∗

(
J(X)

)
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where the next-to-last map is induced by the quotient map Xn→Jn(X) . It is clear that

ϕ is a ring homomorphism since the product in J(X) is induced from the natural

map Xm×Xn→Xm+n . To show that ϕ is an isomorphism, consider the following

commutative diagram of short exact sequences:

In the upper row, TmH̃∗(X) denotes the direct sum of the products H̃∗(X)
⊗k for

k ≤ m , so this row is exact. The second row is the homology exact sequence for

the pair
(
Jn(X), Jn−1(X)

)
, with quotient Jn(X)/Jn−1(X) the n fold smash product

X∧n . This long exact sequence breaks up into short exact sequences as indicated, by

commutativity of the right-hand square and the fact that the right-hand vertical map

is an isomorphism by the Künneth formula, using the hypothesis that H∗(X) is free

over the given coefficient ring. By induction on n and the five-lemma we deduce from

the diagram that ϕ :TnH̃∗(X)→H∗
(
Jn(X)

)
is an isomorphism for all n . Letting n

go to ∞ , this implies that ϕ :TH̃∗(X)→H∗
(
J(X)

)
is an isomorphism since in any

given dimension TnH̃∗(X) is independent of n when n is sufficiently large, and the

same is true of H∗
(
Jn(X)

)
by the second row of the diagram. ⊔⊓

Dual Hopf Algebras

There is a close connection between the Pontryagin product in homology and

the Hopf algebra structure on cohomology. Suppose that X is an H–space such that,

with coefficients in a field R , the vector spaces Hn(X;R) are finite-dimensional for

all n . Alternatively, we could take R = Z and assume Hn(X;Z) is finitely gener-

ated and free for all n . In either case we have Hn(X;R) = HomR(Hn(X;R),R) , and

as a consequence the Pontryagin product H∗(X;R)⊗H∗(X;R)→H∗(X;R) and the

coproduct ∆ :H∗(X;R)→H∗(X;R)⊗H∗(X;R) are dual to each other, both being in-

duced by the H–space product µ :X×X→X . Therefore the coproduct in cohomol-

ogy determines the Pontryagin product in homology, and vice versa. Specifically,

the component ∆ij :Hi+j(X;R)→Hi(X;R)⊗Hj(X;R) of ∆ is dual to the product

Hi(X;R)⊗Hj(X;R)→Hi+j(X;R) .

Example 3C.9. Consider J(Sn) with n even, so H∗(J(Sn);Z) is the divided poly-

nomial algebra ΓZ[α] . In Example 3C.5 we derived the coproduct formula ∆(αk) =∑
iαi ⊗αk−i . Thus ∆ij takes αi+j to αi ⊗αj , so if xi is the generator of Hin(J(S

n);Z)

dual to αi , then xixj = xi+j . This says that H∗(J(S
n);Z) is the polynomial ring Z[x] .

We showed this in Example 3C.7 using the cell structure of J(Sn) , but the present

proof deduces it purely algebraically from the cup product structure.

Now we wish to show that the relation between H∗(X;R) and H∗(X;R) is per-

fectly symmetric: They are dual Hopf algebras. This is a purely algebraic fact:
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Proposition 3C.10. Let A be a Hopf algebra over R that is a finitely generated

free R module in each dimension. Then the product π :A⊗A→A and coproduct

∆ :A→A⊗A have duals π∗ :A∗→A∗⊗A∗ and ∆∗ :A∗⊗A∗→A∗ that give A∗ the

structure of a Hopf algebra.

Proof: This will be apparent if we reinterpret the Hopf algebra structure on A for-

mally as a pair of graded R module homomorphisms π :A⊗A→A and ∆ :A→A⊗A
together with an element 1 ∈ A0 satisfying:

(1) The two compositions A
iℓ-----→A⊗A

π
-----→A and A

ir-----→A⊗A
π
-----→A are the identity,

where iℓ(a) = a⊗1 and ir (a) = 1⊗a . This says that 1 is a two-sided identity

for the multiplication in A .

(2) The two compositions A
∆
-----→A⊗A

pℓ-----→A and A
∆
-----→A⊗A

pr
-----→A are the identity,

where pℓ(a⊗1) = a = pr (1⊗a) , pℓ(a⊗b) = 0 if |b| > 0, and pr (a⊗b) = 0 if

|a| > 0. This is just the coproduct formula ∆(a) = a⊗1+ 1⊗a+
∑
i a
′
i ⊗a

′′
i .

(3) The diagram at the right commutes, with

τ(a⊗b⊗ c ⊗d) = (−1)|b||c|a⊗ c ⊗b⊗d .

This is the condition that ∆ is an alge-

bra homomorphism since if we follow

an element a⊗b across the top of the diagram we get ∆(ab) , while the lower

route gives first ∆(a)⊗∆(b) = (∑i a′i ⊗a′′i
)
⊗
(∑

j b
′
j ⊗b

′′
j

)
, then after applying τ

and π ⊗π this becomes
∑
i,j(−1)|a

′′
i ||b

′
j|a′ib

′
j ⊗a

′′
i b
′′
j =

(∑
i a
′
i ⊗a

′′
i

)(∑
j b
′
j ⊗b

′′
j

)
,

which is ∆(a)∆(b) .
Condition (1) for A dualizes to (2) for A∗ , and similarly (2) for A dualizes to (1) for

A∗ . Condition (3) for A dualizes to (3) for A∗ . ⊔⊓

Example 3C.11. Let us compute the dual of a polynomial algebra R[x] . Suppose

first that x has even dimension. Then ∆(xn) = (x ⊗1 + 1⊗x)n =
∑
i

(
n
i

)
xi ⊗xn−i ,

so if αi is dual to xi , the term
(
n
i

)
xi ⊗xn−i in ∆(xn) gives the product relation

αiαn−i =
(
n
i

)
αn . This is the rule for multiplication in a divided polynomial algebra,

so the dual of R[x] is ΓR[α] if the dimension of x is even. This also holds if 2 = 0

in R , since the even-dimensionality of x was used only to deduce that R[x]⊗R[x]

is strictly commutative.

In case x is odd-dimensional, then as we saw in Example 3C.1, if we set y = x2 ,

we have ∆(yn) = (y ⊗1 + 1⊗y)n =
∑
i

(
n
i

)
y i ⊗yn−i and ∆(xyn) = ∆(x)∆(yn) =

∑
i

(
n
i

)
xy i ⊗yn−i+

∑
i

(
n
i

)
y i ⊗xyn−i . These formulas for ∆ say that the dual of R[x]

is ΛR[α]⊗ΓR[β] where α is dual to x and β is dual to y .

This algebra allows us to deduce the cup product structure on H∗(J(Sn);R) from

the geometric calculation H∗(J(S
n);R) ≈ R[x] in Example 3C.7. As another applica-

tion, recall from earlier in this section that RP∞ and CP∞ are H–spaces, so from their
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cup product structures we can conclude that the Pontryagin rings H∗(RP∞;Z2) and

H∗(CP∞;Z) are divided polynomial algebras.

In these examples the Hopf algebra is generated as an algebra by primitive ele-

ments, so the product determines the coproduct and hence the dual algebra. This is

not true in general, however. For example, we have seen that the Hopf algebra ΓZp[α]
is isomorphic as an algebra to

⊗
i≥0 Zp[αpi]/(α

p
pi) , but if we regard the latter tensor

product as the tensor product of the Hopf algebras Zp[αpi]/(α
p
pi) then the elements

αpi are primitive, though they are not primitive in ΓZp[α] for i > 0. In fact, the Hopf

algebra
⊗
i≥0 Zp[αpi]/(α

p
pi) is its own dual, according to one of the exercises below,

but the dual of ΓZp[α] is Zp[α] .

Exercises

1. Suppose that X is a CW complex with basepoint e ∈ X a 0 cell. Show that X is an

H–space if there is a map µ :X×X→X such that the maps X→X , x֏ µ(x, e) and

x֏µ(e,x) , are homotopic to the identity. [Sometimes this is taken as the definition

of an H–space, rather than the more restrictive condition in the definition we have

given.] With the same hypotheses, show also that µ can be homotoped so that e is a

strict two-sided identity.

2. Show that a retract of an H–space is an H–space if it contains the identity element.

3. Show that in a homotopy-associative H–space whose set of path-components is a

group with respect to the multiplication induced by the H–space structure, all the path-

components must be homotopy equivalent. [Homotopy-associative means associative

up to homotopy.]

4. Show that an H–space or topological group structure on a path-connected, locally

path-connected space can be lifted to such a structure on its universal cover. [For

the group SO(n) considered in the next section, the universal cover for n > 2 is a

2 sheeted cover, a group called Spin(n) .]

5. Show that if (X, e) is an H–space then π1(X, e) is abelian. [Compare the usual

composition f g of loops with the product µ
(
f(t), g(t)

)
coming from the H–space

multiplication µ .]

6. Show that Sn is an H–space iff the attaching map of the 2n cell of J2(S
n) is

homotopically trivial.

7. What are the primitive elements of the Hopf algebra Zp[x] for p prime?

8. Show that the tensor product of two Hopf algebras is a Hopf algebra.

9. Apply the theorems of Hopf and Borel to show that for an H–space X that is a

connected finite CW complex with H̃∗(X;Z) ≠ 0, the Euler characteristic χ(X) is 0.

10. Let X be a path-connected H–space with H∗(X;R) free and finitely generated

in each dimension. For maps f ,g :X→X , the product fg :X→X is defined by

(fg)(x) = f(x)g(x) , using the H–space product.
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(a) Show that (fg)∗(α) = f∗(α)+ g∗(α) for primitive elements α ∈ H∗(X;R) .

(b) Deduce that the kth power map x֏ xk induces the map α֏ kα on primitive

elements α . In particular the quaternionic kth power map S3→S3 has degree k .

(c) Show that every polynomial anx
nbn + ··· + a1xb1 + a0 of nonzero degree with

coefficients in H has a root in H . [See Theorem 1.8.]

11. If Tn is the n dimensional torus, the product of n circles, show that the Pontrya-

gin ring H∗(T
n;Z) is the exterior algebra ΛZ[x1, ··· , xn] with |xi| = 1.

12. Compute the Pontryagin product structure in H∗(L;Zp) where L is an infinite-

dimensional lens space S∞/Zp , for p an odd prime, using the coproduct in H∗(L;Zp) .

13. Verify that the Hopf algebras ΛR[α] and Zp[α]/(α
p) are self-dual.

14. Show that the coproduct in the Hopf algebra H∗(X;R) dual to H∗(X;R) is induced

by the diagonal map X→X×X , x֏ (x,x) .

15. Suppose that X is a path-connected H–space such that H∗(X;Z) is free and finitely

generated in each dimension, and H∗(X;Q) is a polynomial ring Q[α] . Show that the

Pontryagin ring H∗(X;Z) is commutative and associative, with a structure uniquely

determined by the ring H∗(X;Z) .

16. Classify algebraically the Hopf algebras A over Z such that An is free for each n

and A⊗Q ≈ Q[α] . In particular, determine which Hopf algebras A⊗Zp arise from

such A ’s.

After the general discussion of homological and cohomological properties of

H–spaces in the preceding section, we turn now to a family of quite interesting and

subtle examples, the orthogonal groups O(n) . We will compute their homology and

cohomology by constructing very nice CW structures on them, and the results illus-

trate the general structure theorems of the last section quite well. After dealing with

the orthogonal groups we then describe the straightforward generalization to Stiefel

manifolds, which are also fairly basic objects in algebraic and geometric topology.

The orthogonal group O(n) can be defined as the group of isometries of Rn

fixing the origin. Equivalently, this is the group of n×n matrices A with entries in

R such that AAt = I , where At is the transpose of A . From this viewpoint, O(n) is

topologized as a subspace of Rn
2

, with coordinates the n2 entries of an n×n matrix.

Since the columns of a matrix in O(n) are unit vectors, O(n) can also be regarded

as a subspace of the product of n copies of Sn−1 . It is a closed subspace since the

conditions that columns be orthogonal are defined by polynomial equations. Hence
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O(n) is compact. The map O(n)×O(n)→O(n) given by matrix multiplication is

continuous since it is defined by polynomials. The inversion map A֏ A−1 = At is

clearly continuous, so O(n) is a topological group, and in particular an H–space.

The determinant map O(n)→{±1} is a surjective homomorphism, so its kernel

SO(n) , the ‘special orthogonal group’, is a subgroup of index two. The two cosets

SO(n) and O(n)− SO(n) are homeomorphic to each other since for fixed B ∈ O(n)

of determinant −1, the maps A֏AB and A֏AB−1 are inverse homeomorphisms

between these two cosets. The subgroup SO(n) is a union of components of O(n)

since the image of the map O(n)→{±1} is discrete. In fact, SO(n) is path-connected

since by linear algebra, each A ∈ SO(n) is a rotation, a composition of rotations in

a family of orthogonal 2 dimensional subspaces of Rn , with the identity map on the

subspace orthogonal to all these planes, and such a rotation can obviously be joined

to the identity by a path of rotations of the same planes through decreasing angles.

Another reason why SO(n) is connected is that it has a CW structure with a single

0 cell, as we show in Proposition 3D.1. An exercise at the end of the section is to

show that a topological group with a finite-dimensional CW structure is an orientable

manifold, so SO(n) is a closed orientable manifold. From the CW structure it follows

that its dimension is n(n− 1)/2. These facts can also be proved using fiber bundles.

The group O(n) is a subgroup of GLn(R) , the ‘general linear group’ of all invert-

ible n×n matrices with entries in R , discussed near the beginning of §3.C. The Gram–

Schmidt orthogonalization process applied to the columns of matrices in GLn(R) pro-

vides a retraction r :GLn(R)→O(n) , continuity of r being evident from the explicit

formulas for the Gram–Schmidt process. By inserting appropriate scalar factors into

these formulas it is easy to see that O(n) is in fact a deformation retract of GLn(R) .

Using a bit more linear algebra, namely the polar decomposition, it is possible to show

that GLn(R) is actually homeomorphic to O(n)×Rk for k = n(n+ 1)/2.

The topological structure of SO(n) for small values of n can be described in

terms of more familiar spaces:

SO(1) is a point.

SO(2) , the rotations of R2 , is both homeomorphic and isomorphic as a group to

S1 , thought of as the unit complex numbers.

SO(3) is homeomorphic to RP3 . To see this, let ϕ :D3→SO(3) send a nonzero

vector x to the rotation through angle |x|π about the axis formed by the line

through the origin in the direction of x . An orientation convention such as the

‘right-hand rule’ is needed to make this unambiguous. By continuity, ϕ then

sends 0 to the identity. Antipodal points of S2 = ∂D3 are sent to the same

rotation through angle π , so ϕ induces a map ϕ :RP3→SO(3) , regarding RP3

as D3 with antipodal boundary points identified. The map ϕ is clearly injective

since the axis of a nontrivial rotation is uniquely determined as its fixed point

set, and ϕ is surjective since by easy linear algebra each nonidentity element
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of SO(3) is a rotation about some axis. It follows that ϕ is a homeomorphism

RP3 ≈ SO(3) .

SO(4) is homeomorphic to S3×SO(3) . Identifying R4 with the quaternions H

and S3 with the group of unit quaternions, the quaternion multiplication v֏vw

for fixed w ∈ S3 defines an isometry ρw ∈ O(4) since |vw| = |v||w| = |v|

if |w| = 1. Points of O(4) are 4 tuples (v1, ··· , v4) of orthonormal vectors

vi ∈ H = R
4 , and we view O(3) as the subspace with v1 = 1. A homeomorphism

S3×O(3)→O(4) is defined by sending
(
v, (1, v2, v3, v4)

)
to (v,v2v,v3v,v4v) =

ρv(1, v2, v3, v4) , with inverse (v,v2, v3, v4)֏
(
v, (1, v2v

−1, v3v
−1, v4v

−1)
)
=(

v,ρv−1(v,v2, v3, v4)
)
. Restricting to identity components, we obtain a homeo-

morphism S3×SO(3) ≈ SO(4) . This is not a group isomorphism, however. It

can be shown, though we will not digress to do so here, that the homomorphism

ψ :S3×S3→SO(4) sending a pair (u,v) of unit quaternions to the isometry

w֏ uwv−1 of H is surjective with kernel Z2 = {±(1,1)} , and that ψ is a

covering space projection, representing S3×S3 as a 2 sheeted cover of SO(4) ,

the universal cover. Restricting ψ to the diagonal S3 = {(u,u)} ⊂ S3×S3 gives

the universal cover S3→SO(3) , so SO(3) is isomorphic to the quotient group of

S3 by the normal subgroup {±1} .

Using octonions one can construct in the same way a homeomorphism SO(8) ≈

S7×SO(7) . But in all other cases SO(n) is only a ‘twisted product’ of SO(n − 1)

and Sn−1 ; see Example 4.55 and the discussion following Corollary 4D.3.

Cell Structure

Our first task is to construct a CW structure on SO(n) . This will come with a very

nice cellular map ρ :RPn−1×RPn−2× ··· ×RP1→SO(n) . To simplify notation we will

write P i for RPi .

To each nonzero vector v ∈ R
n we can associate the reflection r(v) ∈ O(n)

across the hyperplane consisting of all vectors orthogonal to v . Since r(v) is a re-

flection, it has determinant −1, so to get an element of SO(n) we consider the com-

position ρ(v) = r(v)r(e1) where e1 is the first standard basis vector (1,0, ··· ,0) .

Since ρ(v) depends only on the line spanned by v , ρ defines a map Pn−1→SO(n) .
This map is injective since it is the composition of v֏r(v) , which is obviously an in-

jection of Pn−1 into O(n)−SO(n) , with the homeomorphism O(n)−SO(n)→SO(n)
given by right-multiplication by r(e1) . Since ρ is injective and Pn−1 is compact Haus-

dorff, we may think of ρ as embedding Pn−1 as a subspace of SO(n) .

More generally, for a sequence I = (i1, ··· , im) with each ij < n , we define a

map ρ :P I = P i1× ··· ×P im→SO(n) by letting ρ(v1, ··· , vm) be the composition

ρ(v1) ···ρ(vm) . If ϕi :Di→P i is the standard characteristic map for the i cell of

P i , restricting to the 2 sheeted covering projection ∂Di→P i−1 , then the product

ϕI :DI→P I of the appropriate ϕij ’s is a characteristic map for the top-dimensional
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cell of P I . We will be especially interested in the sequences I = (i1, ··· , im) satisfying

n > i1 > ··· > im > 0. These sequences will be called admissible, as will the sequence

consisting of a single 0.

Proposition 3D.1. The maps ρϕI :DI→SO(n) , for I ranging over all admissible

sequences, are the characteristic maps of a CW structure on SO(n) for which the

map ρ :Pn−1×Pn−2× ··· ×P1→SO(n) is cellular.

In particular, there is a single 0 cell e0 = {11} , so SO(n) is path-connected. The

other cells eI = ei1 ··· eim are products, via the group operation in SO(n) , of the cells

ei ⊂ Pn−1 ⊂ SO(n) .

Proof: According to Proposition A.2 in the Appendix, there are three things to show

in order to obtain the CW structure:

(1) For each decreasing sequence I , ρϕI is a homeomorphism from the interior of

DI onto its image.

(2) The resulting image cells eI are all disjoint and cover SO(n) .

(3) For each eI , ρϕI(∂DI) is contained in a union of cells of lower dimension than eI .

To begin the verification of these properties, define p :SO(n)→Sn−1 by evaluation

at the vector en = (0, ··· ,0,1) , p(α) = α(en) . Isometries in Pn−2 ⊂ Pn−1 ⊂ SO(n)

fix en , so p(Pn−2) = {en} . We claim that p is a homeo-

morphism from Pn−1−Pn−2 onto Sn−1−{en} . This can be

seen as follows. Thinking of a point in Pn−1 as a vector v ,

the map p takes this to ρ(v)(en) = r(v)r(e1)(en) , which

equals r(v)(en) since en is in the hyperplane orthogonal to

e1 . From the picture at the right it is then clear that p simply

stretches the lower half of each meridian circle in Sn−1 onto

the whole meridian circle, doubling the angle up from the south pole, so Pn−1−Pn−2 ,

represented by vectors whose last coordinate is negative, is taken homeomorphically

onto Sn−1 − {en} .

The next statement is that the map

h :
(
Pn−1×SO(n− 1), Pn−2×SO(n− 1)

)
→
(
SO(n), SO(n− 1)

)
, h(v,α) = ρ(v)α

is a homeomorphism from (Pn−1−Pn−2)×SO(n−1) onto SO(n)−SO(n−1) . Here

we view SO(n − 1) as the subgroup of SO(n) fixing the vector en . To construct

an inverse to this homeomorphism, let β ∈ SO(n) − SO(n − 1) be given. Then

β(en) ≠ en so by the preceding paragraph there is a unique vβ ∈ P
n−1 − Pn−2 with

ρ(vβ)(en) = β(en) , and vβ depends continuously on β since β(en) does. The com-

position αβ = ρ(vβ)
−1β then fixes en , hence lies in SO(n− 1) . Since ρ(vβ)αβ = β ,

the map β֏ (vβ, αβ) is an inverse to h on SO(n)− SO(n− 1) .

Statements (1) and (2) can now be proved by induction on n . The map ρ takes

Pn−2 to SO(n− 1) , so we may assume inductively that the maps ρϕI for I ranging



296 Chapter 3 Cohomology

over admissible sequences with first term i1 < n−1 are the characteristic maps for a

CW structure on SO(n−1) , with cells the corresponding products eI . The admissible

sequences I with i1 = n− 1 then give disjoint cells eI covering SO(n)− SO(n− 1)

by what was shown in the previous paragraph. So (1) and (2) hold for SO(n) .

To prove (3) it suffices to show there is an inclusion P iP i ⊂ P iP i−1 in SO(n)

since for an admissible sequence I , the map ρ :P I→SO(n) takes the boundary of

the top-dimensional cell of P I to the image of products P J with J obtained from

I by decreasing one term ij by 1, yielding a sequence which is admissible except

perhaps for having two successive terms equal. As a preliminary to showing that

P iP i ⊂ P iP i−1 , observe that for α ∈ O(n) we have r
(
α(v)

)
= αr(v)α−1 . Hence

ρ(v)ρ(w) = r(v)r(e1)r(w)r(e1) = r(v)r(w
′) where w′ = r(e1)w . Thus to show

P iP i ⊂ P iP i−1 it suffices to find for each pair v,w ∈ Ri+1 a pair x ∈ Ri+1 , y ∈ Ri

with r(v)r(w) = r(x)r(y) .

Let V ⊂ Ri+1 be a 2 dimensional subspace containing v and w . Since V ∩Ri is

at least 1 dimensional, we can choose a unit vector y ∈ V ∩Ri . Let α ∈ O(i+1) take

V to R2 and y to e1 . Then the conjugate αr(v)r(w)α−1 = r
(
α(v)

)
r
(
α(w)

)
lies in

SO(2) , hence has the form ρ(z) = r(z)r(e1) for some z ∈ R2 by statement (2) for

n = 2. Therefore

r(v)r(w) = α−1r(z)r(e1)α = r
(
α−1(z)

)
r
(
α−1(e1)

)
= r(x)r(y)

for x = α−1(z) ∈ Ri+1 and y ∈ Ri .

It remains to show that the map ρ :Pn−1×Pn−2× ··· ×P1→SO(n) is cellular.

This follows from the inclusions P iP i ⊂ P iP i−1 derived above, together with another

family of inclusions P iP j ⊂ P jP i for i < j . To prove the latter we have the formulas

ρ(v)ρ(w) = r(v)r(w′) where w′ = r(e1)w, as earlier

= r(v)r(w′)r(v)r(v)

= r
(
r(v)w′

)
r(v) from r

(
α(v)

)
= αr(v)α−1

= r
(
r(v)r(e1)w

)
r(v) = r

(
ρ(v)w

)
r(v)

= ρ
(
ρ(v)w

)
ρ(v ′) where v ′ = r(e1)v, hence v = r(e1)v

′

In particular, taking v ∈ Ri+1 and w ∈ Rj+1 with i < j , we have ρ(v)w ∈ Rj+1 , and

the product ρ(v)ρ(w) ∈ P iP j equals the product ρ
(
ρ(v)w

)
ρ(v ′) ∈ P jP i . ⊔⊓

Mod 2 Homology and Cohomology

Each cell of SO(n) is the homeomorphic image of a cell in Pn−1×Pn−2× ··· ×P1 ,

so the cellular chain map induced by ρ :Pn−1×Pn−2× ··· ×P1→SO(n) is surjective.

It follows that with Z2 coefficients the cellular boundary maps for SO(n) are all trivial

since this is true in P i and hence in Pn−1×Pn−2× ··· ×P1 by Proposition 3B.1. Thus

H∗(SO(n);Z2) has a Z2 summand for each cell of SO(n) . One can rephrase this
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as saying that there are isomorphisms Hi(SO(n);Z2) ≈ Hi(S
n−1×Sn−2× ··· ×S1;Z2)

for all i since this product of spheres also has cells in one-to-one correspondence

with admissible sequences. The full structure of the Z2 homology and cohomology

rings is given by:

Theorem 3D.2. (a) H∗(SO(n);Z2) ≈
⊗
i odd Z2[βi]/(β

pi
i ) where |βi| = i and pi is

the smallest power of 2 such that |β
pi
i | ≥ n .

(b) The Pontryagin ring H∗(SO(n);Z2) is the exterior algebra ΛZ2
[e1, ··· , en−1] .

Here ei denotes the cellular homology class of the cell ei ⊂ Pn−1 ⊂ SO(n) , and

βi is the dual class to ei , represented by the cellular cochain assigning the value 1 to

the cell ei and 0 to all other i cells.

Proof: As we noted above, ρ induces a surjection on cellular chains. Since the cellular

boundary maps with Z2 coefficients are trivial for both Pn−1× ··· ×P1 and SO(n) ,

it follows that ρ∗ is surjective on H∗(−;Z2) and ρ∗ is injective on H∗(−;Z2) . We

know that H∗(Pn−1× ··· ×P1;Z2) is the polynomial ring Z2[α1, ··· , αn−1] truncated

by the relations αi+1
i = 0. For βi ∈ H

i(SO(n);Z2) the dual class to ei , we have

ρ∗(βi) =
∑
j α

i
j , the class assigning 1 to each i cell in a factor P j of Pn−1× ··· ×P1

and 0 to all other i cells, which are products of lower-dimensional cells and hence

map to cells in SO(n) disjoint from ei .

First we will show that the monomials βI = βi1 ···βim corresponding to admissi-

ble sequences I are linearly independent in H∗(SO(n);Z2) , hence are a vector space

basis. Since ρ∗ is injective, we may identify each βi with its image
∑
j α

i
j in the trun-

cated polynomial ring Z2[α1, ··· , αn−1]/(α
2
1, ··· , α

n
n−1) . Suppose we have a linear

relation
∑
I bIβI = 0 with bI ∈ Z2 and I ranging over the admissible sequences. Since

each βI is a product of distinct βi ’s, we can write the relation in the form xβ1+y = 0

where neither x nor y has β1 as a factor. Since α1 occurs only in the term β1 of

xβ1 + y , where it has exponent 1, we have xβ1 + y = xα1 + z where neither x nor

z involves α1 . The relation xα1 + z = 0 in Z2[α1, ··· , αn−1]/(α
2
1, ··· , α

n
n−1) then

implies x = 0. Thus we may assume the original relation does not involve β1 . Now

we repeat the argument for β2 . Write the relation in the form xβ2 + y = 0 where

neither x nor y involves β2 or β1 . The variable α2 now occurs only in the term β2

of xβ2 + y , where it has exponent 2, so we have xβ2 + y = xα
2
2 + z where x and

z do not involve α1 or α2 . Then xα2
2 + z = 0 implies x = 0 and we have a relation

involving neither β1 nor β2 . Continuing inductively, we eventually deduce that all

coefficients bI in the original relation
∑
I bIβI = 0 must be zero.

Observe now that β2
i = β2i if 2i < n and β2

i = 0 if 2i ≥ n , since
(∑

j α
i
j

)2
=∑

j α
2i
j . The quotient Q of the algebra Z2[β1, β2, ···] by the relations β2

i = β2i and

βj = 0 for j ≥ n then maps onto H∗(SO(n);Z2) . This map Q→H∗(SO(n);Z2)

is also injective since the relations defining Q allow every element of Q to be rep-

resented as a linear combination of admissible monomials βI , and the admissible
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monomials are linearly independent in H∗(SO(n);Z2) . The algebra Q can also be

described as the tensor product in statement (a) of the theorem since the relations

β2
i = β2i allow admissible monomials to be written uniquely as monomials in powers

of the βi ’s with i odd, and the relation βj = 0 for j ≥ n becomes βipi = β
pi
i = 0

where j = ipi with i odd and pi a power of 2. For a given i , this relation holds iff

ipi ≥ n , or in other words, iff |β
pi
i | ≥ n . This finishes the proof of (a).

For part (b), note first that the group multiplication SO(n)×SO(n)→SO(n) is

cellular in view of the inclusions P iP i ⊂ P iP i−1 and P iP j ⊂ P jP i for i < j . So

we can compute Pontryagin products at the cellular level. We know that there is at

least an additive isomorphism H∗(SO(n);Z2) ≈ ΛZ2
[e1, ··· , en−1] since the products

eI = ei1 ··· eim with I admissible form a basis for H∗(SO(n);Z2) . The inclusion

P iP i ⊂ P iP i−1 then implies that the Pontryagin product (ei)2 is 0. It remains only to

see the commutativity relation eiej = ejei . The inclusion P iP j ⊂ P jP i for i < j was

obtained from the formula ρ(v)ρ(w) = ρ(ρ(v)w)ρ(v ′) for v ∈ Ri+1 , w ∈ Rj+1 ,

and v ′ = r(e1)v . The map f :P i×P j→P j×P i , f(v,w) = (ρ(v)w,v ′) , is a homeo-

morphism since it is the composition of homeomorphisms (v,w)֏ (v, ρ(v)w)֏
(v ′, ρ(v)w)֏ (ρ(v)w,v ′) . The first of these maps takes ei×ej homeomorphically

onto itself since ρ(v)(ej) = ej if i < j . Obviously the second map also takes ei×ej

homeomorphically onto itself, while the third map simply transposes the two fac-

tors. Thus f restricts to a homeomorphism from ei×ej onto ej×ei , and therefore

eiej = ejei in H∗(SO(n);Z2) . ⊔⊓

The cup product and Pontryagin product structures in this theorem may seem at

first glance to be unrelated, but in fact the relationship is fairly direct. As we saw in the

previous section, the dual of a polynomial algebra Z2[x] is a divided polynomial al-

gebra ΓZ2
[α] , and with Z2 coefficients the latter is an exterior algebra ΛZ2

[α0, α1, ···]

where |αi| = 2i|x| . If we truncate the polynomial algebra by a relation x2n = 0,

then this just eliminates the generators αi for i ≥ n . In view of this, if it were the

case that the generators βi for the algebra H∗(SO(n);Z2) happened to be primitive,

then H∗(SO(n);Z2) would be isomorphic as a Hopf algebra to the tensor product of

the single-generator Hopf algebras Z2[βi]/(β
pi
i ) , i = 1,3, ··· , hence the dual algebra

H∗(SO(n);Z2) would be the tensor product of the corresponding truncated divided

polynomial algebras, in other words an exterior algebra as just explained. This is in

fact the structure of H∗(SO(n);Z2) , so since the Pontryagin product in H∗(SO(n);Z2)

determines the coproduct in H∗(SO(n);Z2) uniquely, it follows that the βi ’s must

indeed be primitive.

It is not difficult to give a direct argument that each βi is primitive. The coprod-

uct ∆ :H∗(SO(n);Z2)→H
∗(SO(n);Z2)⊗H

∗(SO(n);Z2) is induced by the group mul-

tiplication µ :SO(n)×SO(n)→SO(n) . We need to show that the value of ∆(βi) on

eI ⊗ eJ , which we denote 〈∆(βi), eI ⊗ eJ〉 , is the same as the value 〈βi ⊗1+1⊗βi, e
I
⊗ eJ〉
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for all cells eI and eJ whose dimensions add up to i . Since ∆ = µ∗ , we have

〈∆(βi), eI ⊗ eJ〉 = 〈βi, µ∗(eI ⊗eJ)〉 . Because µ is the multiplication map, µ(eI×eJ)

is contained in P IP J , and if we use the relations P jP j ⊂ P jP j−1 and P jPk ⊂ PkP j for

j < k to rearrange the factors P j of P IP J so that their dimensions are in decreasing

order, then the only way we will end up with a term P i is if we start with P IP J equal

to P iP0 or P0P i . Thus 〈βi, µ∗(e
I
⊗ eJ)〉 = 0 unless eI ⊗eJ equals ei ⊗ e0 or e0

⊗ ei .

Hence ∆(βi) contains no other terms besides βi ⊗1+ 1⊗βi , and βi is primitive.

Integer Homology and Cohomology

With Z coefficients the homology and cohomology of SO(n) turns out to be a

good bit more complicated than with Z2 coefficients. One can see a little of this

complexity already for small values of n , where the homeomorphisms SO(3) ≈ RP3

and SO(4) ≈ S3×RP3 would allow one to compute the additive structure as a direct

sum of a certain number of Z ’s and Z2 ’s. For larger values of n the additive structure

is qualitatively the same:

Proposition 3D.3. H∗(SO(n);Z) is a direct sum of Z ’s and Z2 ’s.

Proof: We compute the cellular chain complex of SO(n) , showing that it splits as a

tensor product of simpler complexes. For a cell ei ⊂ Pn−1 ⊂ SO(n) the cellular bound-

ary dei is 2ei−1 for even i > 0 and 0 for odd i . To compute the cellular boundary of

a cell ei1 ··· eim we can pull it back to a cell ei1× ··· ×eim of Pn−1× ··· ×P1 whose

cellular boundary, by Proposition 3B.1, is
∑
j(−1)σjei1× ··· ×deij× ··· ×eim where

σj = i1+···+ ij−1 . Hence d(ei1 ··· eim) =
∑
j(−1)σjei1 ···deij ··· eim , where it is un-

derstood that ei1 ···deij ··· eim is zero if ij = ij+1 + 1 since P ij−1P ij−1 ⊂ P ij−1P ij−2 ,

in a lower-dimensional skeleton.

To split the cellular chain complex C∗
(
SO(n)

)
as a tensor product of smaller

chain complexes, let C2i be the subcomplex of C∗
(
SO(n)

)
with basis the cells e0 ,

e2i , e2i−1 , and e2ie2i−1 . This is a subcomplex since de2i−1 = 0, de2i = 2e2i−1 ,

and, in P2i×P2i−1 , d(e2i×e2i−1) = de2i×e2i−1 + e2i×de2i−1 = 2e2i−1×e2i−1 , hence

d(e2ie2i−1) = 0 since P2i−1P2i−1 ⊂ P2i−1P2i−2 . The claim is that there are chain

complex isomorphisms

C∗
(
SO(2k+ 1)

)
≈ C2⊗C4⊗···⊗C2k

C∗
(
SO(2k+ 2)

)
≈ C2⊗C4⊗···⊗C2k⊗C2k+1

where C2k+1 has basis e0 and e2k+1 . Certainly these isomorphisms hold for the chain

groups themselves, so it is only a matter of checking that the boundary maps agree.

For the case of C∗
(
SO(2k+ 1)

)
this can be seen by induction on k , as the reader can

easily verify. Then the case of C∗
(
SO(2k+ 2)

)
reduces to the first case by a similar

argument.

Since H∗(C
2i) consists of Z ’s in dimensions 0 and 4i−1 and a Z2 in dimension

2i − 1, while H∗(C
2k+1) consists of Z ’s in dimensions 0 and 2k + 1, we conclude
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from the algebraic Künneth formula that H∗(SO(n);Z) is a direct sum of Z ’s and

Z2 ’s. ⊔⊓

Note that the calculation shows that SO(2k) and SO(2k − 1)×S2k−1 have iso-

morphic homology groups in all dimensions.

In view of the preceding proposition, one can get rather complete information

about H∗(SO(n);Z) by considering the natural maps to H∗(SO(n);Z2) and to the

quotient of H∗(SO(n);Z) by its torsion subgroup. Let us denote this quotient by

Hfree∗ (SO(n);Z) . The same strategy applies equally well to cohomology, and the uni-

versal coefficient theorem gives an isomorphism H∗free(SO(n);Z) ≈ H
free
∗ (SO(n);Z) .

The proof of the proposition shows that the additive structure of Hfree∗ (SO(n);Z)

is fairly simple:

Hfree∗ (SO(2k+ 1);Z) ≈ H∗(S
3×S7× ··· ×S4k−1)

Hfree∗ (SO(2k+ 2);Z) ≈ H∗(S
3×S7× ··· ×S4k−1×S2k+1)

The multiplicative structure is also as simple as it could be:

Proposition 3D.4. The Pontryagin ring Hfree∗ (SO(n);Z) is an exterior algebra,

Hfree∗ (SO(2k+ 1);Z) ≈ ΛZ[a3, a7, ··· , a4k−1] where |ai| = i

Hfree∗ (SO(2k+ 2);Z) ≈ ΛZ[a3, a7, ··· , a4k−1, a
′
2k+1]

The generators ai and a′2k+1 are primitive, so the dual Hopf algebra H∗free(SO(n);Z)

is an exterior algebra on the dual generators αi and α′2k+1 .

Proof: As in the case of Z2 coefficients we can work at the level of cellular chains

since the multiplication in SO(n) is cellular. Consider first the case n = 2k + 1.

Let Ei be the cycle e2ie2i−1 generating a Z summand of H∗(SO(n);Z) . By what we

have shown above, the products Ei1 ···Eim with i1 > ··· > im form an additive

basis for Hfree∗ (SO(n);Z) , so we need only verify that the multiplication is as in

an exterior algebra on the classes Ei . The map f in the proof of Theorem 3D.2

gives a homeomorphism ei×ej ≈ ej×ei if i < j , and this homeomorphism has local

degree (−1)ij+1 since it is the composition (v,w)֏ (v, ρ(v)w)֏ (v ′, ρ(v)w)֏
(ρ(v)w,v ′) of homeomorphisms with local degrees +1,−1, and (−1)ij . Applying

this four times to commute EiEj = e2ie2i−1e2je2j−1 to EjEi = e2je2j−1e2ie2i−1 , three

of the four applications give a sign of −1 and the fourth gives a +1, so we conclude

that EiEj = −EjEi if i < j . When i = j we have (Ei)2 = 0 since e2ie2i−1e2ie2i−1 =

e2ie2ie2i−1e2i−1 , which lies in a lower-dimensional skeleton because of the relation

P2iP2i ⊂ P2iP2i−1 .

Thus we have shown that H∗(SO(2k + 1);Z) contains ΛZ[E1, ··· , Ek] as a sub-

algebra. The same reasoning shows that H∗(SO(2k+ 2);Z) contains the subalgebra

ΛZ[E1, ··· , Ek, e2k+1] . These exterior subalgebras account for all the nontorsion in

H∗(SO(n);Z) , so the product structure in Hfree∗ (SO(n);Z) is as stated.
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Now we show that the generators Ei and e2k+1 are primitive in Hfree∗ (SO(n);Z) .

Looking at the formula for the boundary maps in the cellular chain complex of SO(n) ,

we see that this chain complex is the direct sum of the subcomplexes C(m) with

basis the m fold products ei1 ··· eim with i1 > ··· > im > 0. We allow m = 0 here,

with C(0) having basis the 0 cell of SO(n) . The direct sum C(0)⊕ ··· ⊕C(m) is

the cellular chain complex of the subcomplex of SO(n) consisting of cells that are

products of m or fewer cells ei . In particular, taking m = 2 we have a subcomplex

X ⊂ SO(n) whose homology, mod torsion, consists of the Z in dimension zero and

the Z ’s generated by the cells Ei , together with the cell e2k+1 when n = 2k+ 2. The

inclusion X֓ SO(n) induces a commutative diagram

where the lower ∆ is the coproduct in Hfree∗ (SO(n);Z) and the upper ∆ is its ana-

log for X , coming from the diagonal map X→X×X and the Künneth formula. The

classes Ei in the lower left group pull back to elements we label Ẽi in the upper left

group. Since these have odd dimension and Hfree∗ (X;Z) vanishes in even positive

dimensions, the images ∆(Ẽi) can have no components a⊗b with both a and b

positive-dimensional. The same is therefore true for ∆(Ei) by commutativity of the

diagram, so the classes Ei are primitive. This argument also works for e2k+1 when

n = 2k+ 2.

Since the exterior algebra generators of Hfree∗ (SO(n);Z) are primitive, this al-

gebra splits as a Hopf algebra into a tensor product of single-generator exterior al-

gebras ΛZ[ai] (and ΛZ[a′2k+1] ). The dual Hopf algebra H∗free(SO(n);Z) therefore

splits as the tensor product of the dual exterior algebras ΛZ[αi] (and ΛZ[α′2k+1] ),

hence H∗free(SO(n);Z) is also an exterior algebra. ⊔⊓

The exact ring structure of H∗(SO(n);Z) can be deduced from these results

via Bockstein homomorphisms, as we show in Example 3E.7, though the process is

somewhat laborious and the answer not very neat.

Stiefel Manifolds

Consider the Stiefel manifold Vn,k , whose points are the orthonormal k frames

in Rn , that is, orthonormal k tuples of vectors. Thus Vn,k is a subset of the product of

k copies of Sn−1 , and it is given the subspace topology. As special cases, Vn,n = O(n)

and Vn,1 = S
n−1 . Also, Vn,2 can be identified with the space of unit tangent vectors to

Sn−1 since a vector v at the point x ∈ Sn−1 is tangent to Sn−1 iff it is orthogonal to

x . We can also identify Vn,n−1 with SO(n) since there is a unique way of extending

an orthonormal (n− 1) frame to a positively oriented orthonormal n frame.
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There is a natural projection p :O(n)→Vn,k sending α ∈ O(n) to the k frame

consisting of the last k columns of α , which are the images under α of the last k

standard basis vectors in Rn . This projection is onto, and the preimages of points are

precisely the cosets αO(n−k) , where we embed O(n−k) in O(n) as the orthogonal

transformations of the first n−k coordinates of Rn . Thus Vn,k can be viewed as the

space O(n)/O(n− k) of such cosets, with the quotient topology from O(n) . This is

the same as the previously defined topology on Vn,k since the projection O(n)→Vn,k
is a surjection of compact Hausdorff spaces.

When k < n the projection p :SO(n)→Vn,k is surjective, and Vn,k can also be

viewed as the coset space SO(n)/SO(n−k) . We can use this to induce a CW structure

on Vn,k from the CW structure on SO(n) . The cells are the sets of cosets of the form

eISO(n− k) = ei1 ··· eimSO(n− k) for n > i1 > ··· > im ≥ n− k , together with the

coset SO(n− k) itself as a 0 cell of Vn,k . These sets of cosets are unions of cells of

SO(n) since SO(n−k) consists of the cells eJ = ej1 ··· ejℓ with n−k > j1 > ··· > jℓ .

This implies that Vn,k is the disjoint union of its cells, and the boundary of each cell

is contained in cells of lower dimension, so we do have a CW structure.

Since the projection SO(n)→Vn,k is a cellular map, the structure of the cellular

chain complex of Vn,k can easily be deduced from that of SO(n) . For example, the

cellular chain complex of V2k+1,2 is just the complex C2k defined earlier, while for

V2k,2 the cellular boundary maps are all trivial. Hence the nonzero homology groups

of Vn,2 are

Hi(V2k+1,2;Z) =

{
Z for i = 0, 4k− 1

Z2 for i = 2k− 1

Hi(V2k,2;Z) = Z for i = 0, 2k− 2, 2k− 1, 4k− 3

Thus SO(n) has the same homology and cohomology groups as the product space

V3,2×V5,2× ··· ×V2k+1,2 when n = 2k+1, or as V3,2×V5,2× ··· ×V2k+1,2×S
2k+1 when

n = 2k+ 2. However, our calculations show that SO(n) is distinguished from these

products by its cup product structure with Z2 coefficients, at least when n ≥ 5, since

β4
1 is nonzero in H4(SO(n);Z2) if n ≥ 5, while for the product spaces the nontrivial

element of H1(−;Z2) must lie in the factor V3,2 , and H4(V3,2;Z2) = 0. When n = 4

we have SO(4) homeomorphic to SO(3)×S3 = V3,2×S
3 as we noted at the beginning

of this section. Also SO(3) = V3,2 and SO(2) = S1 .

Exercises

1. Show that a topological group with a finite-dimensional CW structure is an ori-

entable manifold. [Consider the homeomorphisms x֏ gx or x֏ xg for fixed g

and varying x in the group.]

2. Using the CW structure on SO(n) , show that π1SO(n) ≈ Z2 for n ≥ 3. Find a

loop representing a generator, and describe how twice this loop is nullhomotopic.

3. Compute the Pontryagin ring structure in H∗(SO(5);Z) .
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Homology and cohomology with coefficients in a field, particularly Zp with p

prime, often have more structure and are easier to compute than with Z coefficients.

Of course, passing from Z to Zp coefficients can involve a certain loss of information,

a blurring of finer distinctions. For example, a Zpn in integer homology becomes

a pair of Zp ’s in Zp homology or cohomology, so the exponent n is lost with Zp

coefficients. In this section we introduce Bockstein homomorphisms, which in many

interesting cases allow one to recover Z coefficient information from Zp coefficients.

Bockstein homomorphisms also provide a small piece of extra internal structure to

Zp homology or cohomology itself, which can be quite useful.

We will concentrate on cohomology in order to have cup products available,

but the basic constructions work equally well for homology. If we take a short ex-

act sequence 0→G→H→K→0 of abelian groups and apply the covariant functor

Hom(Cn(X),−) , we obtain

0 -→Cn(X;G) -→Cn(X;H) -→Cn(X;K) -→0

which is exact since Cn(X) is free. Letting n vary, we have a short exact sequence of

chain complexes, so there is an associated long exact sequence

··· -→Hn(X;G) -→Hn(X;H) -→Hn(X;K) -→Hn+1(X;G) -→···

whose ‘boundary’ map Hn(X;K)→Hn+1(X;G) is called a Bockstein homomorphism.

We shall be interested primarily in the Bockstein β :Hn(X;Zm)→H
n+1(X;Zm) as-

sociated to the coefficient sequence 0→Zm
m
-----→Zm2 -→Zm→0, especially when m is

prime, but for the moment we do not need this assumption. Closely related to β is the

Bockstein β̃ :Hn(X;Zm)→H
n+1(X;Z) associated to 0→Z

m
-----→Z -→Zm→0. From the

natural map of the latter short exact sequence onto the former one, we obtain the re-

lationship β = ρβ̃ where ρ :H∗(X;Z)→H∗(X;Zm) is the homomorphism induced by

the map Z→Zm reducing coefficients mod m . Thus we have a commutative triangle

in the following diagram, whose upper row is the exact sequence containing β̃ .

Example 3E.1. Let X be a K(Zm,1) , for example RP∞ when m = 2 or an infinite-

dimensional lens space with fundamental group Zm for arbitrary m . From the ho-

mology calculations in Examples 2.42 and 2.43 together with the universal coefficient

theorem or cellular cohomology we have Hn(X;Zm) ≈ Zm for all n . Let us show that

β :Hn(X;Zm)→H
n+1(X;Zm) is an isomorphism for n odd and zero for n even. If

n is odd the vertical map ρ in the diagram above is surjective for X = K(Zm,1) , as
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is β̃ since the map m is trivial, so β is surjective, hence an isomorphism. On the

other hand, when n is even the first map ρ in the diagram is surjective, so β̃ = 0 by

exactness, hence β = 0.

A useful fact about β is that it satisfies the derivation property

(∗) β(a` b) = β(a)` b + (−1)|a|a` β(b)

which comes from the corresponding formula for ordinary coboundary. Namely, let

ϕ and ψ be Zm cocycles representing a and b , and let ϕ̃ and ψ̃ be lifts of these to

Zm2 cochains. Concretely, one can view ϕ and ψ as functions on singular simplices

with values in {0,1, ··· ,m − 1} , and then ϕ̃ and ψ̃ can be taken to be the same

functions, but with {0,1, ··· ,m − 1} regarded as a subset of Zm2 . Then δϕ̃ = mη

and δψ̃ = mµ for Zm cocycles η and µ representing β(a) and β(b) . Taking cup

products, ϕ̃` ψ̃ is a Zm2 cochain lifting the Zm cocycle ϕ`ψ , and

δ(ϕ̃` ψ̃) = δϕ̃` ψ̃± ϕ̃` δψ̃ =mη` ψ̃± ϕ̃`mµ =m
(
η`ψ±ϕ` µ

)

where the sign ± is (−1)|a| . Hence η`ψ+ (−1)|a|ϕ`µ represents β(a`b) , giving

the formula (∗) .

Example 3E.2: Cup Products in Lens Spaces. The cup product structure for lens

spaces was computed in Example 3.41 via Poincaré duality, but using Bocksteins we

can deduce it from the cup product structure in CP∞ , which was computed in Theo-

rem 3.19 without Poincaré duality. Consider first the infinite-dimensional lens space

L = S∞/Zm where Zm acts on the unit sphere S∞ in C∞ by scalar multiplication, so

the action is generated by the rotation v֏ e2πi/mv . The quotient map S∞→CP∞

factors through L , so we have a projection L→CP∞ . Looking at the cell structure

on L described in Example 2.43, we see that each even-dimensional cell of L projects

homeomorphically onto the corresponding cell of CP∞ . Namely, the 2n cell of L

is the homeomorphic image of the 2n cell in S2n+1 ⊂ C
n+1 formed by the points

cosθ(z1, ··· , zn,0) + sinθ(0, ··· ,0,1) with
∑
i |zi|

2 = 1 and 0 < θ ≤ π/2, and the

same is true for the 2n cell of CP∞ . From cellular cohomology it then follows that the

map L→CP∞ induces isomorphisms on even-dimensional cohomology with Zm co-

efficients. Since H∗(CP∞;Zm) is a polynomial ring, we deduce that if y ∈ H2(L;Zm)

is a generator, then yk generates H2k(L;Zm) for all k .

By Example 3E.1 there is a generator x ∈ H1(L;Zm) with β(x) = y . The prod-

uct formula (∗) gives β(xyk) = β(x)yk − xβ(yk) = yk+1 . Thus β takes xyk

to a generator, hence xyk must be a generator of H2k+1(L;Zm) . This completely

determines the cup product structure in H∗(L;Zm) if m is odd since the commu-

tativity property of cup product implies that x2 = 0 in this case. The result is that

H∗(L;Zm) ≈ ΛZm[x]⊗Zm[y] for odd m . When m is even this statement needs to

be modified slightly by inserting the relation that x2 is the unique element of order
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2 in H2(L;Zm) ≈ Zm , as we showed in Example 3.9 by an explicit calculation in the

2 skeleton of L .

The cup product structure in finite-dimensional lens spaces follows from this

since a finite-dimensional lens space embeds as a skeleton in an infinite-dimensional

lens space, and the homotopy type of an infinite-dimensional lens space is determined

by its fundamental group since it is a K(π,1) . It follows that the cup product struc-

ture on a lens space S2n+1/Zm with Zm coefficients is obtained from the preceding

calculation by truncating via the relation yn+1 = 0.

The relation β = ρβ̃ implies that β2 = ρβ̃ρβ̃ = 0 since β̃ρ = 0 in the long exact

sequence containing β̃ . Because β2 = 0, the groups Hn(X;Zm) form a chain complex

with the Bockstein homomorphisms β as the ‘boundary’ maps. We can then form the

associated Bockstein cohomology groups Kerβ/ Imβ , which we denote BHn(X;Zm) in

dimension n . The most interesting case is when m is a prime p , so we shall assume

this from now on.

Proposition 3E.3. If Hn(X;Z) is finitely generated for all n , then the Bockstein co-

homology groups BHn(X;Zp) are determined by the following rules :

(a) Each Z summand of Hn(X;Z) contributes a Zp summand to BHn(X;Zp) .

(b) Each Zpk summand of Hn(X;Z) with k > 1 contributes Zp summands to both

BHn−1(X;Zp) and BHn(X;Zp) .

(c) A Zp summand of Hn(X;Z) gives Zp summands of Hn−1(X;Zp) and Hn(X;Zp)

with β an isomorphism between these two summands, hence there is no contri-

bution to BH∗(X;Zp) .

Proof: We will use the algebraic notion of minimal chain complexes. Suppose that C

is a chain complex of free abelian groups for which the homology groups Hn(C) are

finitely generated for each n . Choose a splitting of each Hn(C) as a direct sum of

cyclic groups. There are countably many of these cyclic groups, so we can list them

as G1, G2, ··· . For each Gi choose a generator gi and define a corresponding chain

complex M(gi) by the following prescription. If gi has infinite order in Gi ⊂ Hni(C) ,

let M(gi) consist of just a Z in dimension ni , with generator zi . On the other hand, if

gi has finite order k in Hni(C) , let M(gi) consist of Z ’s in dimensions ni and ni+1,

generated by xi and yi respectively, with ∂yi = kxi . Let M be the direct sum of the

chain complexes M(gi) . Define a chain map σ :M→C by sending zi and xi to cycles

ζi and ξi representing the corresponding homology classes gi , and yi to a chain ηi
with ∂ηi = kξi . The chain map σ induces an isomorphism on homology, hence also

on cohomology with any coefficients, by Corollary 3.4. The dual cochain complex

M∗ obtained by applying Hom(−,Z) splits as the direct sum of the dual complexes

M∗(gi) . So in cohomology with Z coefficients the dual basis element z∗i generates

a Z summand in dimension ni , while y∗i generates a Zk summand in dimension

ni + 1 since δx∗i = ky
∗
i . With Zp coefficients, p prime, z∗i gives a Zp summand of
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Hni(M ;Zp) , while x∗i and y∗i give Zp summands of Hni(M ;Zp) and Hni+1(M ;Zp) if

p divides k and otherwise they give nothing.

The map σ induces an isomorphism between the associated Bockstein long exact

sequences of cohomology groups, with commuting squares, so we can use M∗ to

compute β and β̃ , and we can do the calculation separately on each summand M∗(gi) .

Obviously β and β̃ are zero on y∗i and z∗i . When p divides k we have the class

x∗i ∈ H
ni(M ;Zp) , and from the definition of Bockstein homomorphisms it follows

that β̃(x∗i ) = (k/p)y
∗
i ∈ H

ni+1(M ;Z) and β(x∗i ) = (k/p)y
∗
i ∈ H

ni+1(M ;Zp) . The

latter element is nonzero iff k is not divisible by p2 . ⊔⊓

Corollary 3E.4. In the situation of the preceding proposition, H∗(X;Z) contains no

elements of order p2 iff the dimension of BHn(X;Zp) as a vector space over Zp equals

the rank of Hn(X;Z) for all n . In this case ρ :H∗(X;Z)→H∗(X;Zp) is injective on

the p torsion, and the image of this p torsion under ρ is equal to Imβ .

Proof: The first statement is evident from the proposition. The injectivity of ρ on

p torsion is in fact equivalent to there being no elements of order p2 . The equality

Imρ = Imβ follows from the fact that Imβ = ρ(Im β̃) = ρ(Kerm) in the commutative

diagram near the beginning of this section, and the fact that for m = p the kernel of

m is exactly the p torsion when there are no elements of order p2 . ⊔⊓

Example 3E.5. Let us use Bocksteins to compute H∗(RP∞×RP∞;Z) . This could in-

stead be done by first computing the homology via the general Künneth formula, then

applying the universal coefficient theorem, but with Bocksteins we will only need the

simpler Künneth formula for field coefficients in Theorem 3.15. The cup product

structure in H∗(RP∞×RP∞;Z) will also be easy to determine via Bocksteins.

For p an odd prime we have H̃∗(RP∞;Zp) = 0, hence H̃∗(RP∞×RP∞;Zp) = 0 by

Theorem 3.15. The universal coefficient theorem then implies that H̃∗(RP∞×RP∞;Z)

consists entirely of elements of order a power of 2. From Example 3E.1 we know that

Bockstein homomorphisms in H∗(RP∞;Z2) ≈ Z2[x] are given by β(x2k−1) = x2k and

β(x2k) = 0. In H∗(RP∞×RP∞;Z2) ≈ Z2[x,y] we can then compute β via the product

formula β(xmyn) = (βxm)yn + xm(βyn) . The

answer can be represented graphically by the fig-

ure to the right. Here the dot, diamond, or circle

in the (m,n) position represents the monomial

xmyn and line segments indicate nontrivial Bock-

steins. For example, the lower left square records

the formulas β(xy) = x2y + xy2 , β(x2y) =

x2y2 = β(xy2) , and β(x2y2) = 0. Thus in this

square we see that Kerβ = Imβ , with generators

the ‘diagonal’ sum x2y + xy2 and x2y2 . The
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same thing happens in all the other squares, so it is apparent that Kerβ = Imβ ex-

cept for the zero-dimensional class ‘1’. By the preceding corollary this says that all

nontrivial elements of H̃∗(RP∞×RP∞;Z) have order 2. Furthermore, Imβ consists

of the subring Z2[x
2, y2] , indicated by the circles in the figure, together with the

multiples of x2y + xy2 by elements of Z2[x
2, y2] . It follows that there is a ring

isomorphism

H∗(RP∞×RP∞;Z) ≈ Z[λ, µ, ν]/(2λ,2µ,2ν, ν2+ λ2µ + λµ2)

where ρ(λ) = x2 , ρ(µ) = y2 , ρ(ν) = x2y+xy2 , and the relation ν2+λ2µ+λµ2 = 0

holds since (x2y + xy2)2 = x4y2 + x2y4 .

This calculation illustrates the general principle that cup product structures with

Z coefficients tend to be considerably more complicated than with field coefficients.

One can see even more striking evidence of this by computing H∗(RP∞×RP∞×RP∞;Z)

by the same technique.

Example 3E.6. Let us construct finite CW complexes X1 , X2, and Y such that the

rings H∗(X1;Z) and H∗(X2;Z) are isomorphic but H∗(X1×Y ;Z) and H∗(X2×Y ;Z)

are isomorphic only as groups, not as rings. According to Theorem 3.15 this can

happen only if all three of X1 , X2 , and Y have torsion in their Z cohomology. The

space X1 is obtained from S2×S2 by attaching a 3 cell e3 to the second S2 factor

by a map of degree 2. Thus X1 has a CW structure with cells e0 , e2
1 , e2

2 , e3 , e4 with

e3 attached to the 2 sphere e0 ∪ e
2
2 . The space X2 is obtained from S2 ∨ S2 ∨ S4 by

attaching a 3 cell to the second S2 summand by a map of degree 2, so it has a CW

structure with the same collection of five cells, the only difference being that in X2

the 4 cell is attached trivially. For the space Y we choose a Moore space M(Z2,2) ,

with cells labeled f 0 , f 2 , f 3 , the 3 cell being attached by a map of degree 2.

From cellular cohomology we see that both H∗(X1;Z) and H∗(X2;Z) consist of

Z ’s in dimensions 0, 2, and 4, and a Z2 in dimension 3. In both cases all cup products

of positive-dimensional classes are zero since for dimension reasons the only possible

nontrivial product is the square of the 2 dimensional class, but this is zero as one sees

by restricting to the subcomplex S2×S2 or S2 ∨ S2 ∨ S4 . For the space Y we have

H∗(Y ;Z) consisting of a Z in dimension 0 and a Z2 in dimension 3, so the cup

product structure here is trivial as well.

With Z2 coefficients the cellular cochain complexes for Xi , Y , and Xi×Y are

all trivial, so we can identify the cells with a basis for Z2 cohomology. In Xi and Y

the only nontrivial Z2 Bocksteins are β(e2
2) = e

3 and β(f 2) = f 3 . The Bocksteins

in Xi×Y can then be computed using the product formula for β , which applies to

cross product as well as cup product since cross product is defined in terms of cup

product. The results are shown in the following table, where an arrow denotes a

nontrivial Bockstein.
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The two arrows from e2
2×f

2 mean that β(e2
2×f

2) = e3×f 2 + e2
2×f

3 . It is evident

that BH∗(Xi×Y ;Z2) consists of Z2 ’s in dimensions 0, 2, and 4, so Proposition 3E.3

implies that the nontorsion in H∗(Xi×Y ;Z) consists of Z ’s in these dimensions. Fur-

thermore, by Corollary 3E.4 the 2 torsion in H∗(Xi×Y ;Z) corresponds to the image

of β and consists of Z2×Z2 ’s in dimensions 3 and 5 together with Z2 ’s in dimensions

6 and 7. In particular, there is a Z2 corresponding to e3×f 2+e2
2×f

3 in dimension 5.

There is no p torsion for odd primes p since H∗(Xi×Y ;Zp) ≈ H
∗(Xi;Zp)⊗H

∗(Y ;Zp)

is nonzero only in even dimensions.

We can see now that with Z coefficients, the cup product H2×H5→H7 is nontriv-

ial for X1×Y but trivial for X2×Y . For in H∗(Xi×Y ;Z2) we have, using the relation

(a×b)` (c×d) = (a` c)×(b`d) which follows immediately from the definition of

cross product,

(1) e2
1×f

0
` e2

1×f
3 = (e2

1 ` e2
1)×(f

0
` f 3) = 0 since e2

1 ` e2
1 = 0

(2) e2
1×f

0
` (e3×f 2 + e2

2×f
3) = (e2

1 ` e3)×(f 0
` f 2) + (e2

1 ` e2
2)×(f

0
` f 3) =

(e2
1 ` e2

2)×f
3 since e2

1 ` e3 = 0

and in H7(Xi×Y ;Z2) ≈ H
7(Xi×Y ;Z) we have (e2

1 ` e2
2)×f

3 = e4×f 3
≠ 0 for i = 1

but (e2
1 ` e2

2)×f
3 = 0×f 3 = 0 for i = 2.

Thus the cohomology ring of a product space is not always determined by the

cohomology rings of the factors.

Example 3E.7. Bockstein homomorphisms can be used to get a more complete pic-

ture of the structure of H∗(SO(n);Z) than we obtained in the preceding section.

Continuing the notation employed there, we know from the calculation for RP∞ in

Example 3E.1 that β
(∑

j α
2i−1
j

)
=
∑
j α

2i
j and β

(∑
j α

2i
j

)
= 0, hence β(β2i−1) = β2i

and β(β2i) = 0. Taking the case n = 5 as an example, we have H∗(SO(5);Z2) ≈

Z2[β1, β3]/(β
8
1, β

2
3) . The upper part of the table at the top of the next page shows

the nontrivial Bocksteins. Once again two arrows from an element mean ‘sum’, for

example β(β1β3) = β(β1)β3 + β1β(β3) = β2β3 + β1β4 = β
2
1β3 + β

5
1 . This Bockstein

data allows us to calculate Hi(SO(5);Z) modulo odd torsion, with the results indi-

cated in the remainder of the table, where the vertical arrows denote the map ρ . As

we showed in Proposition 3D.3, there is no odd torsion, so this in fact gives the full

calculation of Hi(SO(5);Z) .
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It is interesting that the generator y ∈ H3(SO(5);Z) ≈ Z has y2 nontrivial,

since this implies that the ring structures of H∗(SO(5);Z) and H∗(RP7×S3;Z) are

not isomorphic, even though the cohomology groups and the Z2 cohomology rings of

these two spaces are the same. An exercise at the end of the section is to show that

in fact SO(5) is not homotopy equivalent to the product of any two CW complexes

with nontrivial cohomology.

A natural way to describe H∗(SO(5);Z) would be as a quotient of a free graded

commutative associative algebra F[x,y, z] over Z with |x| = 2, |y| = 3, and |z| = 7.

Elements of F[x,y, z] are representable as polynomials p(x,y, z) , subject only to the

relations imposed by commutativity. In particular, since y and z are odd-dimensional

we have yz = −zy , and y2 and z2 are nonzero elements of order 2 in F[x,y, z] .

Any monomial containing y2 or z2 as a factor also has order 2. In these terms, the

calculation of H∗(SO(5);Z) can be written

H∗(SO(5);Z) ≈ F[x,y, z]/(2x,x4, y4, z2, xz,x3 −y2)

The next figure shows the nontrivial Bocksteins for H∗(SO(7);Z2) . Here the num-

bers across the top indicate dimension, stopping with 21, the dimension of SO(7) .

The labels on the dots refer to the basis of products of distinct βi ’s. For example, the

dot labeled 135 is β1β3β5 .

The left-right symmetry of the figure displays Poincaré duality quite graphically. Note

that the corresponding diagram for SO(5) , drawn in a slightly different way from
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the preceding figure, occurs in the upper left corner as the subdiagram with labels 1

through 4. This subdiagram has the symmetry of Poincaré duality as well.

From the diagram one can with some effort work out the cup product structure

in H∗(SO(7);Z) , but the answer is rather complicated, just as the diagram is:

F[x,y, z, v,w]/(2x,2v,x4, y4, z2, v2,w2,xz,vz,vw,y2w,x3y2v,

y2z − x3v,xw − y2v − x3v)

where x , y , z , v , w have dimensions 2, 3, 7, 7, 11, respectively. It is curious that

the relation x3 = y2 in H∗(SO(5);Z) no longer holds in H∗(SO(7);Z) .

Exercises

1. Show that H∗(K(Zm,1);Zk) is isomorphic as a ring to H∗(K(Zm,1);Zm)⊗Zk if k

divides m . In particular, if m/k is even, this is ΛZk[x]⊗Zk[y] .
2. In this problem we will derive one half of the classification of lens spaces up

to homotopy equivalence, by showing that if Lm(ℓ1, ··· , ℓn) ≃ Lm(ℓ
′
1, ··· , ℓ

′
n) then

ℓ1 ··· ℓn ≡ ±ℓ
′
1 ··· ℓ

′
nk
n mod m for some integer k . The converse is Exercise 29

for §4.2.

(a) Let L = Lm(ℓ1, ··· , ℓn) and let Z∗m be the multiplicative group of invertible ele-

ments of Zm . Define t ∈ Z∗m by the equation xyn−1 = tz where x is a generator

of H1(L;Zm) , y = β(x) , and z ∈ H2n−1(L;Zm) is the image of a generator of

H2n−1(L;Z) . Show that the image τ(L) of t in the quotient group Z
∗
m/±(Z

∗
m)

n

depends only on the homotopy type of L .

(b) Given nonzero integers k1, ··· , kn , define a map f̃ :S2n−1→S2n−1 sending the

unit vector (r1e
iθ1 , ··· , rne

iθn) in Cn to (r1e
ik1θ1 , ··· , rne

iknθn) . Show:

(i) f̃ has degree k1 ···kn .

(ii) f̃ induces a quotient map f :L→L′ for L′ = Lm(ℓ
′
1, ··· , ℓ

′
n) provided that

kjℓj ≡ ℓ
′
j mod m for each j .

(iii) f induces an isomorphism on π1 , hence on H1(−;Zm) .

(iv) f has degree k1 ···kn , i.e., f∗ is multiplication by k1 ···kn on H2n−1(−;Z) .

(c) Using the f in (b), show that τ(L) = k1 ···knτ(L
′) .

(d) Deduce that if Lm(ℓ1, ··· , ℓn) ≃ Lm(ℓ
′
1, ··· , ℓ

′
n) , then ℓ1 ··· ℓn ≡ ±ℓ

′
1 ··· ℓ

′
nk
n

modm for some integer k .

3. Let X be the smash product of k copies of a Moore space M(Zp, n) with p

prime. Compute the Bockstein homomorphisms in H∗(X;Zp) and use this to de-

scribe H∗(X;Z) .

4. Using the cup product structure in H∗(SO(5);Z) , show that SO(5) is not homotopy

equivalent to the product of any two CW complexes with nontrivial cohomology.
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It often happens that one has a CW complex X expressed as a union of an in-

creasing sequence of subcomplexes X0 ⊂ X1 ⊂ X2 ⊂ ··· . For example, Xi could be

the i skeleton of X , or the Xi ’s could be finite complexes whose union is X . In situa-

tions of this sort, Proposition 3.33 says that Hn(X;G) is the direct limit lim
--→Hn(Xi;G) .

Our goal in this section is to show this holds more generally for any homology the-

ory, and to derive the corresponding formula for cohomology theories, which is a bit

more complicated even for ordinary cohomology with Z coefficients. For ordinary

homology and cohomology the results apply somewhat more generally than just to

CW complexes, since if a space X is the union of an increasing sequence of subspaces

Xi with the property that each compact set in X is contained in some Xi , then the

singular complex of X is the union of the singular complexes of the Xi ’s, and so this

gives a reduction to the CW case.

Passing to limits can often result in nonfinitely generated homology and cohomol-

ogy groups. At the end of this section we describe some of the rather subtle behavior

of Ext for nonfinitely generated groups.

Direct and Inverse Limits

As a special case of the general definition in §3.3, the direct limit lim
--→Gi of a

sequence of homomorphisms of abelian groups G1
α1---------→G2

α2---------→G3 ----→ ··· is defined

to be the quotient of the direct sum
⊕
iGi by the subgroup consisting of elements of

the form (g1, g2 −α1(g1), g3 −α2(g2), ···) . It is easy to see from this definition that

every element of lim
--→Gi is represented by an element gi ∈ Gi for some i , and two

such representatives gi ∈ Gi and gj ∈ Gj define the same element of lim
--→Gi iff they

have the same image in some Gk under the appropriate composition of αℓ ’s. If all

the αi ’s are injective and are viewed as inclusions of subgroups, lim
--→Gi is just

⋃
iGi .

Example 3F.1. For a prime p , consider the sequence Z
p
-----→ Z

p
-----→ Z -→ ··· with all

maps multiplication by p . Then lim
--→Gi can be identified with the subgroup Z[1/p]

of Q consisting of rational numbers with denominator a power of p . More generally,

we can realize any subgroup of Q as the direct limit of a sequence Z -→Z -→Z -→···
with an appropriate choice of maps. For example, if the nth map is multiplication by

n , then the direct limit is Q itself.

Example 3F.2. The sequence of injections Zp
p
-----→Zp2

p
-----→Zp3 -→ ··· , with p prime,

has direct limit a group we denote Zp∞ . This is isomorphic to Z[1/p]/Z , the subgroup

of Q/Z represented by fractions with denominator a power of p . In fact Q/Z is

isomorphic to the direct sum of the subgroups Z[1/p]/Z ≈ Zp∞ for all primes p . It is

not hard to determine all the subgroups of Q/Z and see that each one can be realized

as a direct limit of finite cyclic groups with injective maps between them. Conversely,

every such direct limit is isomorphic to a subgroup of Q/Z .
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We can realize these algebraic examples topologically by the following construc-

tion. The mapping telescope of a sequence of maps X0

f0
---------→ X1

f1
---------→ X2 ----→ ···

is the union of the mapping cylinders Mfi with the copies of Xi in Mfi and Mfi−1

identified for all i . Thus the mapping tele-

scope is the quotient space of the disjoint

union
∐
i (Xi×[i, i+1]) in which each point

(xi, i + 1) ∈ Xi×[i, i + 1] is identified with

(fi(xi), i + 1) ∈ Xi+1×[i+ 1, i+ 2] . In the

mapping telescope T , let Ti be the union of

the first i mapping cylinders. This deformation retracts onto Xi by deformation re-

tracting each mapping cylinder onto its right end in turn. If the maps fi are cellular,

each mapping cylinder is a CW complex and the telescope T is the increasing union

of the subcomplexes Ti ≃ Xi . Then Proposition 3.33, or Theorem 3F.8 below, implies

that Hn(T ;G) ≈ lim
--→Hn(Xi;G) .

Example 3F.3. Suppose each fi is a map Sn→Sn of degree p for a fixed prime p .

Then Hn(T) is the direct limit of the sequence Z
p
-----→ Z

p
-----→ Z -→ ··· considered in

Example 3F.1 above, and H̃k(T) = 0 for k ≠ n , so T is a Moore space M(Z[1/p],n) .

Example 3F.4. In the preceding example, if we attach a cell en+1 to the first Sn in T

via the identity map of Sn , we obtain a space X which is a Moore space M(Zp∞ , n)

since X is the union of its subspaces Xi = Ti ∪ e
n+1 , which are M(Zpi , n) ’s, and the

inclusion Xi ⊂ Xi+1 induces the inclusion Zpi ⊂ Zpi+1 on Hn .

Generalizing these two examples, we can obtain Moore spaces M(G,n) for arbi-

trary subgroups G of Q or Q/Z by choosing maps fi :S
n→Sn of suitable degrees.

The behavior of cohomology groups is more complicated. If X is the increasing

union of subcomplexes Xi , then the cohomology groups Hn(Xi;G) , for fixed n and

G , form a sequence of homomorphisms

··· ------→G2
α2------------→G1

α1------------→G0

Given such a sequence of group homomorphisms, the inverse limit lim
←-- Gi is defined

to be the subgroup of
∏
iGi consisting of sequences (gi) with αi(gi) = gi−1 for all i .

There is a natural map λ :Hn(X;G)→ lim
←-- H

n(Xi;G) sending an element of Hn(X;G)

to its sequence of images in Hn(Xi;G) under the maps Hn(X;G)→Hn(Xi;G) induced

by inclusion. One might hope that λ is an isomorphism, but this is not true in general,

as we shall see. However, for some choices of G it is:

Proposition 3F.5. If the CW complex X is the union of an increasing sequence of sub-

complexes Xi and if G is one of the fields Q or Zp , then λ :Hn(X;G)→ lim
←-- H

n(Xi;G)

is an isomorphism for all n .

Proof: First we have an easy algebraic fact: Given a sequence of homomorphisms

of abelian groups G1
α1-----→ G2

α2-----→ G3 -→ ··· , then Hom(lim
--→Gi, G) =

lim
←-- Hom(Gi, G)
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for any G . Namely, it follows from the definition of lim
--→Gi that a homomorphism

ϕ : lim
--→Gi→G is the same thing as a sequence of homomorphisms ϕi :Gi→G with

ϕi = ϕi+1αi for all i . Such a sequence (ϕi) is exactly an element of lim
←-- Hom(Gi, G) .

Now if G is a field Q or Zp we have

Hn(X;G) = Hom(Hn(X;G),G)

= Hom(lim
--→Hn(Xi;G),G)

= lim
←-- Hom(Hn(Xi;G),G)

= lim
←-- H

n(Xi;G) ⊔⊓

Let us analyze what happens for cohomology with an arbitrary coefficient group,

or more generally for any cohomology theory. Given a sequence of homomorphisms

of abelian groups

··· ------→G2
α2------------→G1

α1------------→G0

define a map δ :
∏
iGi→

∏
iGi by δ(··· , gi, ···) = (··· , gi − αi+1(gi+1), ···) , so that

lim
←-- Gi is the kernel of δ . Denoting the cokernel of δ by lim

←--
1Gi , we have then an exact

sequence

0 -→ lim
←-- Gi -→

∏
iGi

δ
-----→

∏
iGi -→ lim

←--
1Gi -→0

This may be compared with the corresponding situation for the direct limit of a se-

quence G1
α1---------→G2

α2---------→G3 ----→··· . In this case one has a short exact sequence

0 -→
⊕
iGi

δ
-----→

⊕
iGi -→ lim

--→Gi -→0

where δ(··· , gi, ···) = (··· , gi−αi−1(gi−1), ···) , so δ is injective and there is no term

lim
--→

1Gi analogous to lim
←--

1Gi .

Here are a few simple observations about lim
←-- and lim

←--
1 :

If all the αi ’s are isomorphisms then lim
←-- Gi ≈ G0 and lim

←--
1Gi = 0. In fact,

lim
←--

1Gi = 0 if each αi is surjective, for to realize a given element (hi) ∈
∏
iGi as

δ(gi) we can take g0 = 0 and then solve α1(g1) = −h0 , α2(g2) = g1 − h1 , ··· .

If all the αi ’s are zero then lim
←-- Gi =

lim
←--

1Gi = 0.

Deleting a finite number of terms from the end of the sequence ···→G1→G0

does not affect lim
←-- Gi or lim

←--
1Gi . More generally, lim

←-- Gi and lim
←--

1Gi are un-

changed if we replace the sequence ···→G1→G0 by a subsequence, with the

appropriate compositions of αj ’s as the maps.

Example 3F.6. Consider the sequence of natural surjections ···→Zp3→Zp2→Zp

with p a prime. The inverse limit of this sequence is a famous object in number theory,

called the p adic integers. Our notation for it will be Ẑp . It is actually a commutative

ring, not just a group, since the projections Zpi+1→Zpi are ring homomorphisms, but

we will be interested only in the additive group structure. Elements of Ẑp are infinite

sequences (··· , a2, a1) with ai ∈ Zpi such that ai is the mod pi reduction of ai+1 .
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For each choice of ai there are exactly p choices for ai+1 , so Ẑp is uncountable.

There is a natural inclusion Z ⊂ Ẑp as the constant sequences ai = n ∈ Z . It is easy

to see that Ẑp is torsionfree by checking that it has no elements of prime order.

There is another way of looking at Ẑp . An element of Ẑp has a unique represen-

tation as a sequence (··· , a2, a1) of integers ai with 0 ≤ ai < p
i for each i . We can

write each ai uniquely in the form bi−1p
i−1 + ··· + b1p + b0 with 0 ≤ bj < p . The

fact that ai+1 reduces mod pi to ai means that the numbers bj depend only on the

element (··· , a2, a1) ∈ Ẑp , so we can view the elements of Ẑp as the ‘base p infinite

numbers’ ···b1b0 with 0 ≤ bi < p for all i , with the familiar rule for addition in base

p notation. The finite expressions bn ···b1b0 represent the nonnegative integers,

but negative integers have infinite expansions. For example, −1 has bi = p − 1 for

all i , as one can see by adding 1 to this number.

Since the maps Zpi+1→Zpi are surjective, lim
←--

1
Zpi = 0. The next example shows

how p adic integers can also give rise to a nonvanishing lim
←--

1 term.

Example 3F.7. Consider the sequence ··· -→Z
p
-----→Z

p
-----→Z for p prime. In this case

the inverse limit is zero since a nonzero integer can only be divided by p finitely often.

The lim
←--

1 term is the cokernel of the map δ :
∏
∞Z→

∏
∞Z given by δ(y1, y2, ···) =

(y1 − py2, y2 − py3, ···) . We claim that the map Ẑp/Z→Cokerδ sending a p adic

number ···b1b0 as in the preceding example to (b0, b1, ···) is an isomorphism. To

see this, note that the image of δ consists of the sums y1(1,0, ···)+y2(−p,1,0, ···)+

y3(0,−p,1,0, ···) + ··· . The terms after y1(1,0, ···) give exactly the relations that

hold among the p adic numbers ···b1b0 , and in particular allow one to reduce an

arbitrary sequence (b0, b1, ···) to a unique sequence with 0 ≤ bi < p for all i . The

term y1(1,0, ···) corresponds to the subgroup Z ⊂ Ẑp .

We come now to the main result of this section:

Theorem 3F.8. For a CW complex X which is the union of an increasing sequence

of subcomplexes X0 ⊂ X1 ⊂ ··· there is an exact sequence

0 -→ lim
←--

1hn−1(Xi) -→hn(X)
λ
-----→ lim
←-- h

n(Xi) -→0

where h∗ is any reduced or unreduced cohomology theory. For any homology theory

h∗ , reduced or unreduced, the natural maps lim
--→hn(Xi)→hn(X) are isomorphisms.

Proof: Let T be the mapping telescope of the inclusion sequence X0֓X1֓··· . This

is a subcomplex of X×[0,∞) when [0,∞) is given the CW structure with the integer

points as 0 cells. We have T ≃ X since T is a deformation retract of X×[0,∞) , as

we showed in the proof of Lemma 2.34 in the special case that Xi is the i skeleton of

X , but the argument works just as well for arbitrary subcomplexes Xi .

Let T1 ⊂ T be the union of the products Xi×[i, i + 1] for i odd, and let T2 be

the corresponding union for i even. Thus T1 ∩ T2 =
∐
iXi and T1 ∪ T2 = T . For an

unreduced cohomology theory h∗ we have then a Mayer–Vietoris sequence
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The maps ϕ making the diagram commute are given by the formula ϕ(··· , gi, ···) =

(··· , (−1)i−1(gi−ρ(gi+1)), ···) , the ρ ’s being the appropriate restriction maps. This

differs from δ only in the sign of its even coordinates, so if we change the isomor-

phism hk(T1 ∩ T2) ≈
∏
ih
k(Xi) by inserting a minus sign in the even coordinates, we

can replace ϕ by δ in the second row of the diagram. This row then yields a short ex-

act sequence 0→Cokerδ→hn(X;G)→Kerδ→0, finishing the proof for unreduced

cohomology.

The same argument works for reduced cohomology if we use the reduced tele-

scope obtained from T by collapsing {x0}×[0,∞) to a point, for x0 a basepoint

0 cell of X0 . Then T1 ∩ T2 =
∨
iXi rather than

∐
iXi , and the rest of the argument

goes through unchanged. The proof also applies for homology theories, with direct

products replaced by direct sums in the second row of the diagram. As we noted

earlier, Kerδ = 0 in the direct limit case, and Cokerδ = lim
--→. ⊔⊓

Example 3F.9. As in Example 3F.3, consider the mapping telescope T for the sequence

of degree p maps Sn→Sn→ ··· . Letting Ti be the union of the first i mapping cylin-

ders in the telescope, the inclusions T1֓T2֓ ··· induce on Hn(−;Z) the sequence

··· -→Z
p
-----→Z in Example 3F.7. From the theorem we deduce that Hn+1(T ;Z) ≈ Ẑp/Z

and H̃k(T ;Z) = 0 for k ≠ n+1. Thus we have the rather strange situation that the CW

complex T is the union of subcomplexes Ti each having cohomology consisting only

of a Z in dimension n , but T itself has no cohomology in dimension n and instead

has a huge uncountable group Ẑp/Z in dimension n+ 1. This contrasts sharply with

what happens for homology, where the groups Hn(Ti) ≈ Z fit together nicely to give

Hn(T) ≈ Z[1/p] .

Example 3F.10. A more reasonable behavior is exhibited if we consider the space

X = M(Zp∞ , n) in Example 3F.4 expressed as the union of its subspaces Xi . By the

universal coefficient theorem, the reduced cohomology of Xi with Z coefficients con-

sists of a Zpi = Ext(Zpi ,Z) in dimension n+ 1. The inclusion Xi֓Xi+1 induces the

inclusion Zpi֓Zpi+1 on Hn , and on Ext this induced map is a surjection Zpi+1→Zpi

as one can see by looking at the diagram of free resolutions on the left:

Applying Hom(−,Z) to this diagram, we get the diagram on the right, with exact

rows, and the left-hand vertical map is a surjection since the vertical map to the

right of it is surjective. Thus the sequence ···→Hn+1(X2;Z)→Hn+1(X1;Z) is the
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sequence in Example 3F.6, and we deduce that Hn+1(X;Z) ≈ Ẑp , the p adic integers,

and H̃k(X;Z) = 0 for k ≠ n+ 1.

This example can be related to the

preceding one. If we view X as the map-

ping cone of the inclusion Sn֓T of one

end of the telescope, then the long exact

sequences of homology and cohomology

groups for the pair (T , Sn) reduce to the

short exact sequences at the right.

From these examples and the universal coefficient theorem we obtain isomor-

phisms Ext(Zp∞ ,Z) ≈ Ẑp and Ext(Z[1/p],Z) ≈ Ẑp/Z . These can also be derived

directly from the definition of Ext. A free resolution of Zp∞ is

0 -→Z
∞ ϕ
-----→Z

∞ -→Zp∞ -→0

where Z∞ is the direct sum of an infinite number of Z ’s, the sequences (x1, x2, ···)

of integers all but finitely many of which are zero, and ϕ sends (x1, x2, ···) to

(px1−x2, px2−x3, ···) . We can view ϕ as the linear map corresponding to the infi-

nite matrix with p ’s on the diagonal, −1’s just above the diagonal, and 0’s everywhere

else. Clearly Kerϕ = 0 since integers cannot be divided by p infinitely often. The im-

age of ϕ is generated by the vectors (p,0, ···), (−1, p,0, ···), (0,−1, p,0, ···), ··· so

Cokerϕ ≈ Zp∞ . Dualizing by taking Hom(−,Z) , we have Hom(Z∞,Z) the infinite di-

rect product of Z ’s, and ϕ∗(y1, y2, ···) = (py1, py2−y1, py3−y2, ···) , correspond-

ing to the transpose of the matrix of ϕ . By definition, Ext(Zp∞ ,Z) = Cokerϕ∗ . The

image of ϕ∗ consists of the infinite sums y1(p,−1,0 ···)+y2(0, p,−1,0, ···)+ ··· ,

so Cokerϕ∗ can be identified with Ẑp by rewriting a sequence (z1, z2, ···) as the

p adic number ···z2z1 .

The calculation Ext(Z[1/p],Z) ≈ Ẑp/Z is quite similar. A free resolution of

Z[1/p] can be obtained from the free resolution of Zp∞ by omitting the first col-

umn of the matrix of ϕ and, for convenience, changing sign. This gives the for-

mula ϕ(x1, x2, ···) = (x1, x2 − px1, x3 − px2, ···) , with the image of ϕ generated

by the elements (1,−p,0, ···) , (0,1,−p,0, ···), ··· . The dual map ϕ∗ is given by

ϕ∗(y1, y2, ···) = (y1−py2, y2−py3, ···) , and this has image consisting of the sums

y1(1,0 ···) + y2(−p,1,0, ···) + y3(0,−p,1,0, ···) + ··· , so we get Ext(Z[1/p],Z) =

Cokerϕ∗ ≈ Ẑp/Z . Note that ϕ∗ is exactly the map δ in Example 3F.7.

It is interesting to note also that the map ϕ :Z∞→Z
∞ in the two cases Zp∞ and

Z[1/p] is precisely the cellular boundary map Hn+1(X
n+1, Xn)→Hn(X

n, Xn−1) for

the Moore space M(Zp∞ , n) or M(Z[1/p],n) constructed as the mapping telescope

of the sequence of degree p maps Sn→Sn→ ··· , with a cell en+1 attached to the

first Sn in the case of Zp∞ .
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More About Ext

The functors Hom and Ext behave fairly simply for finitely generated groups,

when cohomology and homology are essentially the same except for a dimension shift

in the torsion. But matters are more complicated in the nonfinitely generated case. A

useful tool for getting a handle on this complication is the following:

Proposition 3F.11. Given an abelian group G and a short exact sequence of abelian

groups 0→A→B→C→0 , there are exact sequences

0→Hom(G,A)→Hom(G, B)→Hom(G,C)→Ext(G,A)→Ext(G, B)→Ext(G,C)→0

0→Hom(C,G)→Hom(B,G)→Hom(A,G)→Ext(C,G)→Ext(B,G)→Ext(A,G)→0

Proof: A free resolution 0→F1→F0→G→0 gives rise to a commutative diagram

Since F0 and F1 are free, the two rows are exact, as they are simply direct products

of copies of the exact sequence 0→A→B→C→0, in view of the general fact that

Hom(
⊕
iGi,H) =

∏
iHom(Gi,H) . Enlarging the diagram by zeros above and below,

it becomes a short exact sequence of chain complexes, and the associated long exact

sequence of homology groups is the first of the

two six-term exact sequences in the proposition.

To obtain the other exact sequence we will

construct the commutative diagram at the right,

where the columns are free resolutions and the

rows are exact. To start, let F0→A and F ′′0→C
be surjections from free abelian groups onto A

and C . Then let F ′0 = F0⊕F
′′
0 , with the obvious

maps in the second row, inclusion and projection. The map F ′0→B is defined on the

summand F0 to make the lower left square commute, and on the summand F ′′0 it is

defined by sending basis elements of F ′′0 to elements of B mapping to the images of

these basis elements in C , so the lower right square also commutes. Now we have

the bottom two rows of the diagram, and we can regard these two rows as a short

exact sequence of two-term chain complexes. The associated long exact sequence of

homology groups has six terms, the first three being the kernels of the three vertical

maps to A , B , and C , and the last three being the cokernels of these maps. Since

the vertical maps to A and C are surjective, the fourth and sixth of the six homology

groups vanish, hence also the fifth, which says the vertical map to B is surjective. The

first three of the original six homology groups form a short exact sequence, and we

let this be the top row of the diagram, formed by the kernels of the vertical maps to

A , B , and C . These kernels are subgroups of free abelian groups, hence are also free.
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Thus the three columns are free resolutions. The upper two squares automatically

commute, so the construction of the diagram is complete.

The first two rows of the diagram split by freeness, so applying Hom(−, G) yields

a diagram

with exact rows. Again viewing this as a short exact sequence of chain complexes,

the associated long exact sequence of homology groups is the second six-term exact

sequence in the statement of the proposition. ⊔⊓

The second sequence in the proposition says in particular that an injection A→B
induces a surjection Ext(B,C)→Ext(A,C) for any C . For example, if A has torsion,

this says Ext(A,Z) is nonzero since it maps onto Ext(Zn,Z) ≈ Zn for some n > 1.

The calculation Ext(Zp∞ ,Z) ≈ Ẑp earlier in this section shows that torsion in A does

not necessarily yield torsion in Ext(A,Z) , however.

Two other useful formulas whose proofs we leave as exercises are:

Ext(
⊕
iAi, B) ≈

∏
iExt(Ai, B) Ext(A,

⊕
iBi) ≈

⊕
iExt(A, Bi)

For example, since Q/Z =
⊕
pZp∞ we obtain Ext(Q/Z,Z) ≈

∏
p Ẑp from the calcula-

tion Ext(Zp∞ ,Z) ≈ Ẑp . Then from the exact sequence 0→Z→Q→Q/Z→0 we get

Ext(Q,Z) ≈ (
∏
p Ẑp)/Z using the second exact sequence in the proposition.

In these examples the groups Ext(A,Z) are rather large, and the next result says

this is part of a general pattern:

Proposition 3F.12. If A is not finitely generated then either Hom(A,Z) or Ext(A,Z)

is uncountable. Hence if Hn(X;Z) is not finitely generated then either Hn(X;Z) or

Hn+1(X;Z) is uncountable.

Both possibilities can occur, as we see from the examples Hom(
⊕
∞Z,Z) ≈

∏
∞Z

and Ext(Zp∞ ,Z) ≈ Ẑp .

This proposition has some interesting topological consequences. First, it implies

that if a space X has H̃∗(X;Z) = 0, then H̃∗(X;Z) = 0, since the case of finitely

generated homology groups follows from our earlier results. And second, it says that

one cannot always construct a space X with prescribed cohomology groups Hn(X;Z) ,

as one can for homology. For example there is no space whose only nonvanishing

H̃n(X;Z) is a countable nonfinitely generated group such as Q or Q/Z . Even in the

finitely generated case the dimension n = 1 is somewhat special since the group

H1(X;Z) ≈ Hom(H1(X),Z) is always torsionfree.

Proof: We begin with two consequences of Proposition 3F.11:

(a) An inclusion B֓A induces a surjection Ext(A,Z)→Ext(B,Z) . Hence Ext(A,Z) is

uncountable if Ext(B,Z) is.
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(b) If A→A/B is a quotient map with B finitely generated, then the first term in

the exact sequence Hom(B,Z)→Ext(A/B,Z)→Ext(A,Z) is countable, so Ext(A,Z) is

uncountable if Ext(A/B,Z) is.

There are two explicit calculations that will be used in the proof:

(c) If A is a direct sum of infinitely many nontrivial finite cyclic groups, then Ext(A,Z)

is uncountable, the product of infinitely many nontrivial groups Ext(Zn,Z) ≈ Zn .

(d) For p prime, Example 3F.10 gives Ext(Zp∞ ,Z) ≈ Ẑp which is uncountable.

Consider now the map A→A given by a֏ pa for a fixed prime p . Denote the

kernel, image, and cokernel of this map by pA , pA , and Ap , respectively. The functor

A֏ Ap is the same as A֏ A⊗Zp . We call the dimension of Ap as a vector space

over Zp the p-rank of A .

Suppose the p -rank of A is infinite. Then Ext(Ap,Z) is uncountable by (c). There

is an exact sequence 0→pA→A→Ap→0, so Hom(pA,Z)→Ext(Ap,Z)→Ext(A,Z)

is exact, hence either Hom(pA,Z) or Ext(A,Z) is uncountable. Also, we have an iso-

morphism Hom(pA,Z) ≈ Hom(A,Z) since the exact sequence 0→pA→A→pA→0

gives an exact sequence 0→Hom(pA,Z)→Hom(A,Z)→Hom(pA,Z) whose last term

is 0 since pA is a torsion group. Thus we have shown that either Hom(A,Z) or

Ext(A,Z) is uncountable if A has infinite p -rank for some p .

In the remainder of the proof we will show that Ext(A,Z) is uncountable if A has

finite p -rank for all p and A is not finitely generated.

Let C be a nontrivial cyclic subgroup of A , either finite or infinite. If there is no

maximal cyclic subgroup of A containing C then there is an infinite ascending chain

of cyclic subgroups C = C1 ⊂ C2 ⊂ ··· . If the indices [Ci : Ci−1] involve infinitely

many distinct prime factors p then A/C contains an infinite sum
⊕
∞Zp for these

p so Ext(A/C,Z) is uncountable by (a) and (c) and hence also Ext(A,Z) by (b). If

only finitely many primes are factors of the indices [Ci : Ci−1] then A/C contains a

subgroup Zp∞ so Ext(A/C,Z) and hence Ext(A,Z) is uncountable in this case as well

by (a), (b), and (d). Thus we may assume that each nonzero element of A lies in a

maximal cyclic subgroup.

If A has positive finite p -rank we can choose a cyclic subgroup mapping nontriv-

ially to Ap and then a maximal cyclic subgroup C containing this one will also map

nontrivially to Ap . The quotient A/C has smaller p -rank since C→A→A/C→0 ex-

act implies Cp→Ap→(A/C)p→0 exact, as tensoring with Zp preserves exactness to

this extent. By (b) and induction on p -rank this gives a reduction to the case Ap = 0,

so A = pA .

If A is torsionfree, the maximality of the cyclic subgroup C in the preceding

paragraph implies that A/C is also torsionfree, so by induction on p -rank we reduce

to the case that A is torsionfree and A = pA . But in this case A has no maximal

cyclic subgroups so this case has already been covered.

If A has torsion, its torsion subgroup T is the direct sum of the p -torsion sub-

groups T(p) for all primes p . Only finitely many of these T(p) ’s can be nonzero,

otherwise A contains finite cyclic subgroups not contained in maximal cyclic sub-

groups. If some T(p) is not finitely generated then by (a) we can assume A = T(p) .

In this case the reduction from finite p -rank to p -rank 0 given above stays within the

realm of p -torsion groups. But if A = pA we again have no maximal cyclic subgroups,
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so we are done in the case that T is not finitely generated. Finally, when T is finitely

generated then we can use (b) to reduce to the torsionfree case by passing from A to

A/T . ⊔⊓

Exercises

1. Given maps fi :Xi→Xi+1 for integers i < 0, show that the ‘reverse mapping tele-

scope’ obtained by glueing together the mapping cylinders of the fi ’s in the obvious

way deformation retracts onto X0 . Similarly, if maps fi :Xi→Xi+1 are given for all

i ∈ Z , show that the resulting ‘double mapping telescope’ deformation retracts onto

any of the ordinary mapping telescopes contained in it, the union of the mapping

cylinders of the fi ’s for i greater than a given number n .

2. Show that lim
←--

1Gi = 0 if the sequence ··· ------→ G2
α2------------→ G1

α1------------→ G0 satisfies the

Mittag–Leffler condition that for each i the images of the maps Gi+n→Gi are inde-

pendent of n for sufficiently large n .

3. Show that Ext(A,Q) = 0 for all A . [Consider the homology with Q coefficients of

a Moore space M(A,n) .]

4. An abelian group G is defined to be divisible if the map G
n
-----→ G , g֏ ng , is

surjective for all n > 1. Show that a group is divisible iff it is a quotient of a direct sum

of Q ’s. Deduce from the previous problem that if G is divisible then Ext(A,G) = 0

for all A .

5. Show that Ext(A,Z) is isomorphic to the cokernel of Hom(A,Q)→Hom(A,Q/Z) ,

the map induced by the quotient map Q→Q/Z . Use this to get another proof that

Ext(Zp∞ ,Z) ≈ Ẑp for p prime.

6. Show that Ext(Zp∞ ,Zp) ≈ Zp .

7. Show that for a short exact sequence of abelian groups 0→A→B→C→0, a Moore

space M(C,n) can be realized as a quotient M(B,n)/M(A,n) . Applying the long exact

sequence of cohomology for the pair
(
M(B,n),M(A,n)

)
with any coefficient group

G , deduce an exact sequence

0→Hom(C,G)→Hom(B,G)→Hom(A,G)→Ext(C,G)→Ext(B,G)→Ext(A,G)→0

8. Show that for a Moore space M(G,n) the Bockstein long exact sequence in cohomol-

ogy associated to the short exact sequence of coefficient groups 0→A→B→C→0

reduces to an exact sequence

0→Hom(G,A)→Hom(G, B)→Hom(G,C)→Ext(G,A)→Ext(G, B)→Ext(G,C)→0

9. For an abelian group A let p :A→A be multiplication by p , and let pA = Kerp ,

pA = Imp , and Ap = Cokerp as in the proof of Proposition 3F.12. Show that the six-

term exact sequences involving Hom(−,Z) and Ext(−,Z) associated to the short exact

sequences 0→pA→A→pA→0 and 0→pA→A→Ap→0 can be spliced together

to yield the exact sequence across the top of the following diagram
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where the map labeled ‘p ’ is multiplication by p . Use this to show:

(a) Ext(A,Z) is divisible iff A is torsionfree.

(b) Ext(A,Z) is torsionfree if A is divisible, and the converse holds if Hom(A,Z) = 0.

There is a simple construction called ‘transfer’ that provides very useful informa-

tion about homology and cohomology of finite-sheeted covering spaces. After giving

the definition and proving a few elementary properties, we will use the transfer in the

construction of a number of spaces whose Zp cohomology is a polynomial ring.

Let π : X̃→X be an n sheeted covering space, for some finite n . In addition

to the induced map on singular chains π♯ :Ck(X̃)→Ck(X) there is also a homomor-

phism in the opposite direction τ :Ck(X)→Ck(X̃) which assigns to a singular simplex

σ :∆k→X the sum of the n distinct lifts σ̃ :∆k→X̃ . This is obviously a chain map,

commuting with boundary homomorphisms, so it induces transfer homomorphisms

τ∗ :Hk(X;G)→Hk(X̃;G) and τ∗ :Hk(X̃;G)→Hk(X;G) for any coefficient group G .

We focus on cohomology in what follows, but similar statements hold for homology

as well.

The composition π♯τ is clearly multiplication by n , hence τ∗π∗ = n . This

has the consequence that the kernel of π∗ :Hk(X;G)→Hk(X̃;G) consists of torsion

elements of order dividing n , since π∗(α) = 0 implies τ∗π∗(α) = nα = 0. Thus the

cohomology of X̃ must be ‘larger’ than that of X except possibly for torsion of order

dividing n . This can be a genuine exception as one sees from the examples of Sm

covering RPm and lens spaces. More generally, if Sm→X is any n sheeted covering

space, then the relation τ∗π∗ = n implies that H̃∗(X;Z) consists entirely of torsion

elements of order dividing n , apart from a possible Z in dimension m . (Since X is

a closed manifold, its homology groups are finitely generated by Corollaries A.8 and

A.9 in the Appendix.)

By studying the other composition π∗τ∗ we will prove:

Proposition 3G.1. Let π : X̃→X be an n sheeted covering space defined by an ac-

tion of a group Γ on X̃ . Then with coefficients in a field F whose characteristic is 0

or a prime not dividing n , the map π∗ :Hk(X;F)→Hk(X̃;F) is injective with image

the subgroup H∗(X̃;F)Γ consisting of classes α such that γ∗(α) = α for all γ ∈ Γ .
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Proof: We have already seen that elements of the kernel of π∗ have finite order

dividing n , so π∗ is injective for the coefficient fields we are considering here. It

remains to describe the image of π∗ . Note first that τπ♯ sends a singular simplex

∆k→X̃ to the sum of all its images under the Γ action. Hence π∗τ∗(α) =
∑
γ∈Γ γ

∗(α)

for α ∈ Hk(X̃;F) . If α is fixed under the action of Γ on Hk(X̃;F) , the sum
∑
γ∈Γ γ

∗(α)

equals nα , so if the coefficient field F has characteristic 0 or a prime not dividing n ,

we can write α = π∗τ∗(α/n) and thus α lies in the image of π∗ . Conversely, since

πγ = π for all γ ∈ Γ , we have γ∗π∗(α) = π∗(α) for all α , and so the image of π∗

is contained in H∗(X̃;F)Γ . ⊔⊓

Example 3G.2. Let X = S1 ∨ Sk , k > 1, with X̃ the n sheeted cover corresponding

to the index n subgroup of π1(X) , so X̃ is a circle with n Sk ’s attached at equally

spaced points around the circle. The deck transformation group Zn acts by rotating

the circle, permuting the Sk ’s cyclically. Hence for any coefficient group G , the in-

variant cohomology H∗(X̃;G)Zn is all of H0 and H1 , plus a copy of G in dimension

k , the cellular cohomology classes assigning the same element of G to each Sk . Thus

Hi(X̃;G)Zn is exactly the image of π∗ for i = 0 and k , while the image of π∗ in

dimension 1 is the subgroup nH1(X̃;G) . Whether this equals H1(X̃;G)Zn or not de-

pends on G . For G = Q or Zp with p not dividing n , we have equality, but not for

G = Z or Zp with p dividing n . In this last case the map π∗ is not injective on H1 .

Spaces with Polynomial mod p Cohomology

An interesting special case of the general problem of realizing graded commuta-

tive rings as cup product rings of spaces is the case of polynomial rings Zp[x1, ··· , xn]

over the coefficient field Zp , p prime. The basic question here is, which sets of num-

bers d1, ··· , dn are realizable as the dimensions |xi| of the generators xi ? From §3.2

we have the examples of products of CP∞ ’s and HP∞ ’s with di ’s equal to 2 or 4, for

arbitrary p , and when p = 2 we can also take RP∞ ’s with di ’s equal to 1.

As an application of transfer homomorphisms we will construct some examples

with larger di ’s. In the case of polynomials in one variable, it turns out that these

examples realize everything that can be realized. But for two or more variables, more

sophisticated techniques are necessary to realize all the realizable cases; see the end

of this section for further remarks on this.

The construction can be outlined as follows. Start with a space Y already known

to have polynomial cohomology H∗(Y ;Zp) = Zp[y1, ··· , yn] , and suppose there is

an action of a finite group Γ on Y . A simple trick called the Borel construction shows

that without loss of generality we may assume the action is free, defining a covering

space Y→Y/Γ . Then by Proposition 3G.1 above, if p does not divide the order of Γ ,

H∗(Y/Γ ;Zp) is isomorphic to the subring of Zp[y1, ··· , yn] consisting of polynomials

that are invariant under the induced action of Γ on H∗(Y ;Zp) . And in some cases

this subring is itself a polynomial ring.
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For example, if Y is the product of n copies of CP∞ then the symmetric group

Σn acts on Y by permuting the factors, with the induced action on H∗(Y ;Zp) ≈

Zp[y1, ··· , yn] permuting the yi ’s. A standard theorem in algebra says that the

invariant polynomials form a polynomial ring Zp[σ1, ··· , σn] where σi is the ith

elementary symmetric polynomial, the sum of all products of i distinct yj ’s. Thus

σi is a homogeneous polynomial of degree i . The order of Σn is n! so the condition

that p not divide the order of Γ amounts to p > n . Thus we realize the polynomial

ring Zp[x1, ··· , xn] with |xi| = 2i , provided that p > n .

This example is less than optimal since there happens to be another space, the

Grassmann manifold of n dimensional linear subspaces of C∞ , whose cohomology

with any coefficient ring R is R[x1, ··· , xn] with |xi| = 2i , as we show in §4.D, so

the restriction p > n is not really necessary.

To get further examples the idea is to replace CP∞ by a space with the same

Zp cohomology but with ‘more symmetry’, allowing for larger groups Γ to act. The

constructions will be made using K(π,1) spaces, which were introduced in §1.B. For

a group π we constructed there a ∆ complex Bπ with contractible universal cover

Eπ . The construction is functorial: A homomorphism ϕ :π→π ′ induces a map

Bϕ :Bπ→Bπ ′ , Bϕ([g1| ··· |gn]) = [ϕ(g1)| ··· |ϕ(gn)] , satisfying the functor prop-

erties B(ϕψ) = BϕBψ and B11 = 11. In particular, if Γ is a group of automorphisms

of π , then Γ acts on Bπ .

The other ingredient we shall need is the Borel construction, which converts an

action of a group Γ on a space Y into a free action of Γ on a homotopy equivalent

space Y ′ . Namely, take Y ′ = Y×EΓ with the diagonal action of Γ , γ(y, z) = (γy,γz)

where Γ acts on EΓ as deck transformations. The diagonal action is free, in fact a

covering space action, since this is true for the action in the second coordinate. The

orbit space of this diagonal action is denoted Y ×Γ EΓ .

Example 3G.3. Let π = Zp and let Γ be the full automorphism group Aut(Zp) .

Automorphisms of Zp have the form x֏mx for (m,p) = 1, so Γ is the multi-

plicative group of invertible elements in the field Zp . By elementary field theory this

is a cyclic group, of order p − 1. The preceding constructions then give a covering

space K(Zp,1)→K(Zp ,1)/Γ with H∗(K(Zp,1)/Γ ;Zp) ≈ H∗(K(Zp ,1);Zp)Γ . We may

assume we are in the nontrivial case p > 2. From the calculation of the cup product

structure of lens spaces in Example 3.41 or Example 3E.2 we have H∗(K(Zp ,1);Zp) ≈

ΛZp[α]⊗Zp[β] with |α| = 1 and |β| = 2, and we need to figure out how Γ acts on

this cohomology ring.

Let γ ∈ Γ be a generator, say γ(x) =mx . The induced action of γ on π1K(Zp,1)

is also multiplication by m since we have taken K(Zp,1) = BZp×EΓ and γ takes an

edge loop [g] in BZp to [γ(g)] = [mg] . Hence γ acts on H1(K(Zp ,1);Z) by multi-

plication by m . It follows that γ(α) =mα and γ(β) =mβ since H1(K(Zp ,1);Zp) ≈

Hom(H1(K(Zp,1)),Zp) and H2(K(Zp ,1);Zp) ≈ Ext(H1(K(Zp ,1)),Zp) , and it is a gen-
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eral fact, following easily from the definitions, that multiplication by an integer m in

an abelian group H induces multiplication by m in Hom(H,G) and Ext(H,G) .

Thus γ(βk) = mkβk and γ(αβk) = mk+1αβk . Since m was chosen to be a

generator of the multiplicative group of invertible elements of Zp , it follows that the

only elements of H∗(K(Zp ,1);Zp) fixed by γ , hence by Γ , are the scalar multiples of

βi(p−1) and αβi(p−1)−1 . Thus H∗(K(Zp,1);Zp)
Γ = ΛZp[αβp−2]⊗Zp[β

p−1] , so we have

produced a space whose Zp cohomology ring is ΛZp[x2p−3]⊗Zp[y2p−2] , subscripts

indicating dimension.

Example 3G.4. As an easy generalization of the preceding example, replace the group

Γ there by a subgroup of Aut(Zp) of order d , where d is any divisor of p − 1. The

new Γ is generated by the automorphism x֏m(p−1)/dx , and the same analysis

shows that we obtain a space with Zp cohomology ΛZp[x2d−1]⊗Zp[y2d] , subscripts

again denoting dimension. For a given choice of d the condition that d divides p−1

says p ≡ 1 mod d , which is satisfied by infinitely many p ’s, according to a classical

theorem of Dirichlet.

Example 3G.5. The two preceding examples can be modified so as to eliminate the

exterior algebra factors, by replacing Zp by Zp∞ , the union of the increasing sequence

Zp ⊂ Zp2 ⊂ Zp3 ⊂ ··· . The first step is to show that H∗(K(Zp∞ ,1);Zp) ≈ Zp[β] with

|β| = 2. We know that H̃∗(K(Zpi ,1);Z) consists of Zpi ’s in odd dimensions. The in-

clusion Zpi֓Zpi+1 induces a map K(Zpi ,1)→K(Zpi+1 ,1) that is unique up to homo-

topy. We can take this map to be a p sheeted covering space since the covering space

of a K(Zpi+1 ,1) corresponding to the unique index p subgroup of π1K(Zpi+1 ,1) is a

K(Zpi ,1) . The homology transfer formula π∗τ∗ = p shows that the image of the in-

duced map Hn(K(Zpi ,1);Z)→Hn(K(Zpi+1 ,1);Z) for n odd contains the multiples of

p , hence this map is the inclusion Zpi֓Zpi+1 . We can use the universal coefficient the-

orem to compute the induced map H∗(K(Zpi+1 ,1);Zp)→H
∗(K(Zpi ,1);Zp) . Namely,

the inclusion Zpi֓ Zpi+1 induces the trivial map Hom(Zpi+1 ,Zp)→Hom(Zpi ,Zp) , so

on odd-dimensional cohomology the induced map is trivial. On the other hand, the

induced map on even-dimensional cohomology is an isomorphism since the map of

free resolutions

dualizes to

Since Zp∞ is the union of the increasing sequence of subgroups Zpi , the space BZp∞ is

the union of the increasing sequence of subcomplexes BZpi . We can therefore apply
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Proposition 3F.5 to conclude that H∗(K(Zp∞ ,1);Zp) is zero in odd dimensions, while

in even dimensions the map H∗(K(Zp∞ ,1);Zp)→H
∗(K(Zp,1);Zp) induced by the

inclusion Zp֓Zp∞ is an isomorphism. Thus H∗(K(Zp∞ ,1);Zp) ≈ Zp[β] as claimed.

Next we show that the map Aut(Zp∞)→Aut(Zp) obtained by restriction to the

subgroup Zp ⊂ Zp∞ is a split surjection. Automorphisms of Zpi are the maps x֏mx

for (m,p) = 1, so the restriction map Aut(Zpi+1)→Aut(Zpi) is surjective. Since

Aut(Zp∞) = lim
←-- Aut(Zpi) , the restriction map Aut(Zp∞)→Aut(Zp) is also surjec-

tive. The order of Aut(Zpi) , the multiplicative group of invertible elements of Zpi , is

pi − pi−1 = pi−1(p − 1) and p − 1 is relatively prime to pi−1 , so the abelian group

Aut(Zpi) contains a subgroup of order p − 1. This subgroup maps onto the cyclic

group Aut(Zp) of the same order, so Aut(Zpi)→Aut(Zp) is a split surjection, hence

so is Aut(Zp∞)→Aut(Zp) .

Thus we have an action of Γ = Aut(Zp) on BZp∞ extending its natural action

on BZp . The Borel construction then gives an inclusion BZp×Γ EΓ ֓ BZp∞×Γ EΓ
inducing an isomorphism of H∗(BZp∞×Γ EΓ ;Zp) onto the even-dimensional part of

H∗(BZp×Γ EΓ ;Zp) , a polynomial algebra Zp[y2p−2] . Similarly, if d is any divisor of

p−1, then taking Γ to be the subgroup of Aut(Zp) of order d yields a space with Zp

cohomology the polynomial ring Zp[y2d] .

Example 3G.6. Now we enlarge the preceding example by taking products and bring-

ing in the permutation group to produce a space with Zp cohomology the polyno-

mial ring Zp[y2d, y4d, ··· , y2nd] where d is any divisor of p − 1 and p > n . Let

X be the product of n copies of BZp∞ and let Γ be the group of homeomorphisms

of X generated by permutations of the factors together with the actions of Zd in

each factor constructed in the preceding example. We can view Γ as a group of

n×n matrices with entries in Zp , the matrices obtained by replacing some of the

1’s in a permutation matrix by elements of Zp of multiplicative order a divisor of

d . Thus there is a split short exact sequence 0→(Zd)
n→Γ→Σn→0, and the order

of Γ is dnn! . The product space X has H∗(X;Zp) ≈ Zp[β1, ··· , βn] with |βi| = 2,

so H∗(X×Γ EΓ ;Zp) ≈ Zp[β1, ··· , βn]
Γ provided that p does not divide the order of

Γ , which means p > n . For a polynomial to be invariant under the Zd action in

each factor it must be a polynomial in the powers βdi , and to be invariant under

permutations of the variables it must be a symmetric polynomial in these powers.

Since symmetric polynomials are exactly the polynomials in the elementary symmet-

ric functions, the polynomials in the βi ’s invariant under Γ form a polynomial ring

Zp[y2d, y4d, ··· , y2nd] with y2k the sum of all products of k distinct powers βdi .

Example 3G.7. As a further variant on the preceding example, choose a divisor q

of d and replace Γ by its subgroup consisting of matrices for which the product of

the qth powers of the nonzero entries is 1. This has the effect of enlarging the ring

of polynomials invariant under the action, and it can be shown that the invariant
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polynomials form a polynomial ring Zp[y2d, y4d, ··· , y2(n−1)d, y2nq] , with the last

generator y2nd replaced by y2nq =
∏
iβ
q
i . For example, if n = 2 and q = 1 we obtain

Zp[y4, y2d] with y4 = β1β2 and y2d = β
d
1 +β

d
2 . The group Γ in this case happens to

be isomorphic to the dihedral group of order 2d .

General Remarks

The problem of realizing graded polynomial rings Zp[y] in one variable as cup

product rings of spaces was discussed in §3.2, and Example 3G.5 provides the re-

maining examples, showing that |y| can be any even divisor of 2(p − 1) . In more

variables the problem of realizing Zp[y1, ··· , yn] with specified dimensions |yi| is

more difficult, but has been solved for odd primes p . Here is a sketch of the answer.

Assuming that p is odd, the dimensions |yi| are even. Call the number di =

|yi|/2 the degree of yi . In the examples above this was in fact the degree of yi as

a polynomial in the 2 dimensional classes βj invariant under the action of Γ . It was

proved in [Dwyer, Miller, & Wilkerson 1992] that every realizable polynomial algebra

Zp[y1, ··· , yn] is the ring of invariant polynomials Zp[β1, ··· , βn]
Γ for an action of

some finite group Γ on Zp[β1, ··· , βn] , where |βi| = 2. The basic examples, whose

products yield all realizable polynomial algebras, can be divided into two categories.

First there are classifying spaces of Lie groups, each of which realizes a polynomial

algebra for all but finitely many primes p . These are listed in the following table.

Lie group degrees primes

S1 1 all

SU(n) 2,3, ··· , n all

Sp(n) 2,4, ··· ,2n all

SO(2k) 2,4, ··· ,2k− 2, k p > 2

G2 2,6 p > 2

F4 2,6,8,12 p > 3

E6 2,5,6,8,9,12 p > 3

E7 2,6,8,10,12,14 p > 3

E8 2,8,12,14,18,20,24,30 p > 5

The remaining examples form two infinite families plus 30 sporadic exceptions shown

in the table on the next page. The first row is the examples we have constructed,

though our construction needed the extra condition that p not divide the order of

the group Γ . For all entries in both tables the order of Γ , the group such that

Zp[y1, ··· , yn] = Zp[β1, ··· , βn]
Γ , turns out to equal the product of the degrees.

When p does not divide this order, the method we used for the first row can also be

applied to give examples for all the other rows. In some cases the congruence condi-

tions on p , which are needed in order for Γ to be a subgroup of Aut(Znp) = GLn(Zp) ,

automatically imply that p does not divide the order of Γ . But when this is not the case

a different construction of a space with the desired cohomology is needed. To find out

more about this the reader can begin by consulting [Kane 1988] and [Notbohm 1999].
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degrees primes

d,2d, ··· , (n− 1)d,nq with q |d p ≡ 1 mod d
2, d p ≡ −1 mod d

degrees primes

4,6 p ≡ 1 mod 3

6,12 p ≡ 1 mod 3

4,12 p ≡ 1 mod 12

12,12 p ≡ 1 mod 12

8,12 p ≡ 1 mod 4

8,24 p ≡ 1 mod 8

12,24 p ≡ 1 mod 12

24,24 p ≡ 1 mod 24

6,8 p ≡ 1,3 mod 8

8,12 p ≡ 1 mod 8

6,24 p ≡ 1,19 mod 24

12,24 p ≡ 1 mod 24

20,30 p ≡ 1 mod 5

20,60 p ≡ 1 mod 20

30,60 p ≡ 1 mod 15

degrees primes

60,60 p ≡ 1 mod 60

12,30 p ≡ 1,4 mod 15

12,60 p ≡ 1,49 mod 60

12,20 p ≡ 1,9 mod 20

2,6,10 p ≡ 1,4 mod 5

4,6,14 p ≡ 1,2,4 mod 7

6,9,12 p ≡ 1 mod 3

6,12,18 p ≡ 1 mod 3

6,12,30 p ≡ 1,4 mod 15

4,8,12,20 p ≡ 1 mod 4

2,12,20,30 p ≡ 1,4 mod 5

8,12,20,24 p ≡ 1 mod 4

12,18,24,30 p ≡ 1 mod 3

4,6,10,12,18 p ≡ 1 mod 3

6,12,18,24,30,42 p ≡ 1 mod 3

For the prime 2 the realization

problem has not yet been completely

solved. Among the known examples

are those in the table at the right. The

Lie group degrees

O(1) 1

SO(n) 2,3, ··· , n
SU(n) 4,6, ··· ,2n
Sp(n) 4,8, ··· ,4n
PSp(2n+ 1) 2,3,8,12, ··· ,8n+ 4

G2 4,6,7
Spin(7) 4,6,7,8
Spin(8) 4,6,7,8,8
Spin(9) 4,6,7,8,16

F4 4,6,7,16,24

— 8,12,14,15

construction for the last entry, which

does not arise from a Lie group, is

in [Dwyer & Wilkerson 1993]. (For

p = 2 ‘degree’ means the actual co-

homological dimension.)

Homology and cohomology with local coefficients are fancier versions of ordi-

nary homology and cohomology that can be defined for nonsimply-connected spaces.

In various situations these more refined homology and cohomology theories arise

naturally and inevitably. For example, the only way to extend Poincaré duality with

Z coefficients to nonorientable manifolds is to use local coefficients. In the overall

scheme of algebraic topology, however, the role played by local coefficients is fairly

small. Local coefficients bring an extra level of complication that one tries to avoid

whenever possible. With this in mind, the goal of this section will not be to give a full

exposition but rather just to sketch the main ideas, leaving the technical details for

the interested reader to fill in.



328 Chapter 3 Cohomology

The plan for this section is first to give the quick algebraic definition of homology

and cohomology with local coefficients, and then to reinterpret this definition more

geometrically in a way that looks more like ordinary homology and cohomology. The

reinterpretation also allows the familiar properties of homology and cohomology to

be extended to the local coefficient case with very little effort.

Local Coefficients via Modules

Let X be a path-connected space having a universal cover X̃ and fundamental

group π , so that X is the quotient of X̃ by the action of π by deck transforma-

tions x̃֏ γ x̃ for γ ∈ π and x̃ ∈ X̃ . The action of π on X̃ induces an action of

π on the group Cn(X̃) of singular n chains in X̃ , by sending a singular n simplex

σ :∆n→X̃ to the composition ∆n σ
-----→ X̃

γ
-----→ X̃ . The action of π on Cn(X̃) makes

Cn(X̃) a module over the group ring Z[π] , which consists of the finite formal sums∑
imiγi with mi ∈ Z and γi ∈ π , with the natural addition

∑
imiγi +

∑
iniγi =∑

i (mi +ni)γi and multiplication
(∑

imiγi
)(∑

j njγj
)
=
∑
i,jminjγiγj . The bound-

ary maps ∂ :Cn(X̃)→Cn−1(X̃) are Z[π] module homomorphisms since the action of

π on these groups comes from an action on X̃ .

If M is an arbitrary module over Z[π] , we would like to define Cn(X;M) to be

Cn(X̃)⊗Z[π]M , but for tensor products over a noncommutative ring one has to be a

little careful with left and right module structures. In general, if R is a ring, possibly

noncommutative, one defines the tensor product A⊗RB of a right R module A and a

left R module B to be the abelian group with generators a⊗b for a ∈ A and b ∈ B ,

subject to distributivity and associativity relations:

(i) (a1 + a2)⊗b = a1 ⊗b + a2 ⊗b and a⊗ (b1 + b2) = a⊗b1 + a⊗b2 .

(ii) ar ⊗b = a⊗ rb .

In case R = Z[π] , a left Z[π] module A can be regarded as a right Z[π] module

by setting aγ = γ−1a for γ ∈ π . So the tensor product of two left Z[π] modules

A and B is defined, and the relation aγ ⊗b = a⊗γb becomes γ−1a⊗b = a⊗γb , or

equivalently a′ ⊗b = γa′ ⊗γb where a′ = γ−1a . Thus tensoring over Z[π] has the

effect of factoring out the action of π . To simplify notation we shall write A⊗Z[π]B

as A⊗πB , emphasizing the fact that the essential part of a Z[π] module structure is

the action of π .

In particular, Cn(X̃)⊗πM is defined if M is a left Z[π] module. These chain

groups Cn(X;M) = Cn(X̃)⊗πM form a chain complex with the boundary maps ∂ ⊗11.

The homology groups Hn(X;M) of this chain complex are by definition homology

groups with local coefficients.

For cohomology one can set Cn(X;M) = HomZ[π](Cn(X̃),M) , the Z[π] module

homomorphisms Cn(X̃)→M . These groups Cn(X;M) form a cochain complex whose

cohomology groups Hn(X;M) are cohomology groups with local coefficients.
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Example 3H.1. Let us check that when M is a trivial Z[π] module, with γm =m for

all γ ∈ π and m ∈ M , then Hn(X;M) is just ordinary homology with coefficients in

the abelian group M . For a singular n simplex σ :∆n→X , the various lifts σ̃ :∆n→X̃
form an orbit of the action of π on Cn(X̃) . In Cn(X̃)⊗πM all these lifts are identi-

fied via the relation σ̃ ⊗m = γσ̃ ⊗γm = γσ̃ ⊗m . Thus we can identify Cn(X̃)⊗πM

with Cn(X)⊗M , the chain group denoted Cn(X;M) in ordinary homology theory, so

Hn(X;M) reduces to ordinary homology with coefficients in M . The analogous state-

ment for cohomology is also true since elements of HomZ[π](Cn(X̃),M) are functions

from singular n simplices σ̃ :∆n→X̃ to M taking the same value on all elements of

a π orbit since the action of π on M is trivial, so HomZ[π](Cn(X̃),M) is identifiable

with Hom(Cn(X),M) , ordinary cochains with coefficients in M .

Example 3H.2. Suppose we take M = Z[π] , viewed as a module over itself via its

ring structure. For a ring R with identity element, A⊗RR is naturally isomorphic

to A via the correspondence a⊗r ֏ ar . So we have a natural identification of

Cn(X̃)⊗πZ[π] with Cn(X̃) , and hence an isomorphism Hn(X;Z[π]) ≈ Hn(X̃) . Gen-

eralizing this, let X′→X be the cover corresponding to a subgroup π ′ ⊂ π . Then

the free abelian group Z[π/π ′] with basis the cosets γπ ′ is a Z[π] module and

Cn(X̃)⊗Z[π]Z[π/π
′] ≈ Cn(X

′) , so Hn(X;Z[π/π ′]) ≈ Hn(X
′) . More generally, if A is

an abelian group then A[π/π ′] is a Z[π] module and Hn(X;A[π/π ′]) ≈ Hn(X
′;A) .

So homology of covering spaces is a special case of homology with local coefficients.

The corresponding assertions for cohomology are not true, however, as we shall see

later in the section.

For a Z[π] module M , let π ′ be the kernel of the homomorphism ρ :π→Aut(M)

defining the module structure, given by ρ(γ)(m) = γm , where Aut(M) is the group

of automorphisms of the abelian group M . If X′→X is the cover corresponding to

the normal subgroup π ′ of π , then Cn(X̃)⊗πM ≈ Cn(X
′)⊗πM ≈ Cn(X

′)⊗Z[π/π ′]M .

This gives a more efficient description of Hn(X;M) .

Example 3H.3. As a special case, suppose that we take M = Z , so Aut(Z) ≈ Z2 = {±1} .

For a nontrivial Z[π] module structure on M , π ′ is a subgroup of index 2 and X′→X
is a 2 sheeted covering space. If τ is the nontrivial deck transformation of X′ , let

C+n (X
′) = {α ∈ Cn(X

′) | τ♯(α) = α} and C−n (X
′) = {α ∈ Cn(X

′) | τ♯(α) = −α} . It

follows easily that C±n (X
′) has basis the chains σ ± τσ for σ :∆n→X′ , and we have

short exact sequences

0 -→C−n (X
′)֓ Cn(X

′)
Σ
-----→C+n (X

′) -→0

0 -→C+n (X
′)֓ Cn(X

′)
∆
-----→C−n (X

′) -→0

where Σ(α) = α+τ♯(α) and ∆(α) = α−τ♯(α) . The homomorphism Cn(X)→C
+
n (X

′)

sending a singular simplex in X to the sum of its two lifts to X′ is an isomorphism.

The quotient map Cn(X
′)→Cn(X

′)⊗πZ has kernel C+n (X
′) , so the second short ex-

act sequence gives an isomorphism C−n (X
′) ≈ Cn(X

′)⊗πZ . These isomorphisms are
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isomorphisms of chain complexes and the short exact sequences are short exact se-

quence of chain complexes, so from the first short exact sequence we get a long exact

sequence of homology groups

··· -→Hn(X; Z̃) -→Hn(X
′)

p∗
---------→Hn(X) -→Hn−1(X; Z̃) -→···

where the symbol Z̃ indicates local coefficients in the module Z and p∗ is induced

by the covering projection p :X′→X .

Let us apply this exact sequence when X is a nonorientable n manifold M which

is closed and connected. We shall use terminology and notation from §3.3. We can

view Z as a Z[π1M] module by letting a loop γ in M act on Z by multiplication

by +1 or −1 according to whether γ preserves or reverses local orientations of M .

The double cover X′→X is then the 2 sheeted cover M̃→M with M̃ orientable. The

nonorientability of M implies that Hn(M) = 0. Since Hn+1(M) = 0, the exact se-

quence above then gives Hn(M ; Z̃) ≈ Hn(M̃) ≈ Z . This can be interpreted as saying

that by taking homology with local coefficients we obtain a fundamental class for a

nonorientable manifold.

Local Coefficients via Bundles of Groups

Now we wish to reinterpret homology and cohomology with local coefficients in

more geometric terms, making it look more like ordinary homology and cohomology.

Let us first define a special kind of covering space with extra algebraic structure.

A bundle of groups is a map p :E→X together with a group structure on each subset

p−1(x) , such that all these groups p−1(x) are isomorphic to a fixed group G in the

following special way: Each point of X has a neighborhood U for which there exists

a homeomorphism hU :p−1(U)→U×G taking each p−1(x) to {x}×G by a group

isomorphism. Since G is given the discrete topology, the projection p is a covering

space. Borrowing terminology from the theory of fiber bundles, the subsets p−1(x)

are called the fibers of p :E→X , and one speaks of E as a bundle of groups with

fiber G . It may be worth remarking that if we modify the definition by replacing the

word ‘group’ with ‘vector space’ throughout, then we obtain the much more common

notion of a vector bundle; see [VBKT].

Trivial examples are provided by products E = X×G . Nontrivial examples we

have considered are the covering spaces MZ→M of nonorientable manifolds M de-

fined in §3.3. Here the group G is the homology coefficient group Z , though one could

equally well define a bundle of groups MG→M for any abelian coefficient group G .

Homology groups of X with coefficients in a bundle E of abelian groups may

be defined as follows. Consider finite sums
∑
iniσi where each σi :∆n→X is a sin-

gular n simplex in X and ni :∆n→E is a lifting of σi . The sum of two lifts ni
and mi of the same σi is defined by (ni +mi)(s) = ni(s) +mi(s) , and is also a

lift of σi . In this way the finite sums
∑
iniσi form an abelian group Cn(X;E) , pro-

vided we allow the deletion of terms niσi when ni is the zero-valued lift. A bound-
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ary homomorphism ∂ :Cn(X;E)→Cn−1(X;E) is defined by the formula ∂
(∑

iniσi
)
=∑

i,j(−1)jniσi ||[v0, ··· , v̂j , ··· , vn] where ‘ni ’ in the right side of the equation means

the restricted lifting ni ||[v0, ··· , v̂j , ··· , vn] . The proof that the usual boundary ho-

momorphism ∂ satisfies ∂2 = 0 still works in the present context, so the groups

Cn(X;E) form a chain complex. We denote the homology groups of this chain com-

plex by Hn(X;E) .

In case E is the product bundle X×G , lifts ni are simply elements of G , so

Hn(X;E) = Hn(X;G) , ordinary homology. In the general case, lifts ni :∆n→E are

uniquely determined by their value at one point s ∈ ∆n , and these values can be

specified arbitrarily since ∆n is simply-connected, so the ni ’s can be thought of as

elements of p−1(σi(s)) , a group isomorphic to G . However if E is not a product,

there is no canonical isomorphism between different fibers p−1(x) , so one cannot

identify Hn(X;E) with ordinary homology.

An alternative approach would be to take the coefficients ni to be elements of

the fiber group over a specific point of σi(∆n) , say σi(v0) . However, with such a

definition the formula for the boundary operator ∂ becomes more complicated since

there is no point of ∆n that lies in all the faces.

Our task now is to relate the homology groups Hn(X;E) to homology groups

with coefficients in a module, as defined earlier. In §1.3 we described how covering

spaces of X with a given fiber F can be classified in terms of actions of π1(X) on F ,

assuming X is path-connected and has the local properties guaranteeing the existence

of a universal cover. It is easy to check that covering spaces that are bundles of groups

with fiber a group G are equivalent to actions of π1(X) on G by automorphisms of

G , that is, homomorphisms from π1(X) to Aut(G) .

For example, for the bundle MZ→M the action of a loop γ on the fiber Z is

multiplication by ±1 according to whether γ preserves or reverses orientation in

M , that is, whether γ lifts to a closed loop in the orientable double cover M̃→M
or not. As another example, the action of π1(X) on itself by inner automorphisms

corresponds to a bundle of groups p :E→X with fibers p−1(x) = π1(X,x) . This

example is rather similar in spirit to the examples MZ→M . In both cases one has a

functor associating a group to each point of a space, and all the groups at different

points are isomorphic, but not canonically so. Different choices of isomorphisms are

obtained by choosing different paths between two points, and loops give rise to an

action of π1 on the fibers.

In the case of bundles of groups p :E→X whose fiber G is abelian, an action of

π1(X) on G by automorphisms is the same as a Z[π1X] module structure on G .

Proposition 3H.4. If X is a path-connected space having a universal covering space,

then the groups Hn(X;E) are naturally isomorphic to the homology groups Hn(X;G)

with local coefficients in the Z[π] module G associated to E , where π = π1(X) .
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Proof: As noted earlier, a bundle of groups E→X with fiber G is equivalent to

an action of π on G . In more explicit terms this means that if X̃ is the universal

cover of X , then E is identifiable with the quotient of X̃×G by the diagonal action

of π , γ(x̃, g) = (γx̃, γg) where the action in the first coordinate is by deck trans-

formations of X̃ . For a chain
∑
iniσi ∈ Cn(X;E) , the coefficient ni gives a lift of

σi to E , and ni in turn has various lifts to X̃×G . Thus we have natural surjec-

tions Cn(X̃×G)→Cn(E)→Cn(X;E) expressing each of these groups as a quotient of

the preceding one. More precisely, identifying Cn(X̃×G) with Cn(X̃)⊗Z[G] in the

obvious way, then Cn(E) is the quotient of Cn(X̃)⊗Z[G] under the identifications

σ̃ ⊗g ∼ γ σ̃ ⊗γ g . This quotient is the tensor product Cn(X̃)⊗πZ[G] . To pass to

the quotient Cn(X;E) of Cn(E) = Cn(X̃)⊗πZ[G] we need to take into account the

sum operation in Cn(X;E) , addition of lifts ni :∆n→E . This means that in sums

σ̃ ⊗g1 + σ̃ ⊗g2 = σ̃ ⊗ (g1 + g2) , the term g1 + g2 should be interpreted not in Z[G]

but in the natural quotient G of Z[G] . Hence Cn(X;E) is identified with the quo-

tient Cn(X̃)⊗πG of Cn(X̃)⊗πZ[G] . This natural identification commutes with the

boundary homomorphisms, so the homology groups are also identified. ⊔⊓

More generally, if X has a number of path-components Xα with universal covers

X̃α , then Cn(X;E) =
⊕
α

(
Cn(X̃α)⊗Z[π1(Xα)]G

)
, so Hn(X;E) splits accordingly as a

direct sum of the local coefficient homology groups for the path-components Xα .

We turn now to the question of whether homology with local coefficients satisfies

axioms similar to those for ordinary homology. The main novelty is with the behav-

ior of induced homomorphisms. In order for a map f :X→X′ to induce a map on

homology with local coefficients we must have bundles of groups E→X and E′→X′

that are related in some way. The natural assumption to make is that there is a com-

mutative diagram as at the right, such that f̃ restricts to a homo-

morphism in each fiber. With this hypothesis there is then a chain

homomorphism f♯ :Cn(X;E)→Cn(X
′;E′) obtained by composing

singular simplices with f and their lifts with f̃ , hence there is an in-

duced homomorphism f∗ :Hn(X;E)→Hn(X
′;E′) . The fibers of E and E′ need not be

isomorphic groups, so change-of-coefficient homomorphisms Hn(X;G1)→Hn(X;G2)

for ordinary homology are a special case. To avoid this extra complication we shall

consider only the case that f̃ restricts to an isomorphism on each fiber. With this

condition, a commutative diagram as above will be called a bundle map.

Here is a method for constructing bundle maps. Starting with a map f :X→X′

and a bundle of groups p′ :E′→X′ , let

E =
{
(x, e′) ∈ X×E′ |||| f(x) = p

′(e′)
}
.

This fits into a commutative diagram as above if we define p(x, e′) = x and f̃ (x, e′) =

e′ . In particular, the fiber p−1(x) consists of pairs (x, e′) with p′(e′) = f(x) , so f̃

is a bijection of this fiber with the fiber of E′→X′ over f(x) . We use this bijection
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to give p−1(x) a group structure. To check that p :E→X is a bundle of groups, let

h′ : (p′)−1(U ′)→U ′×G be an isomorphism as in the definition of a bundle of groups.

Define h :p−1(U)→U×G over U = f−1(U ′) by h(x, e′) = (x,h′2(e
′)) where h′2 is

the second coordinate of h′ . An inverse for h is (x,g) ∈ (x, (h′)−1(f (x), g)) , and h

is clearly an isomorphism on each fiber. Thus p :E→X is a bundle of groups, called

the pullback of E′→X′ via f , or the induced bundle. The notation f∗(E′) is often

used for the pullback bundle.

Given any bundle map E→E′ as in the diagram above, it is routine to check

that the map E→f∗(E′) , e֏ (p(e), f̃ (e)) , is an isomorphism of bundles over X ,

so the pullback construction produces all bundle maps. Thus we see one reason why

homology with local coefficients is somewhat complicated: Hn(X;E) is really a functor

of two variables, covariant in X and contravariant in E .

Viewing bundles of abelian groups over X as Z[π1X] modules, the pullback con-

struction corresponds to making a Z[π1X
′] module into a Z[π1X] module by defin-

ing γg = f∗(γ)g for f∗ :π1(X)→π1(X
′) . This follows easily from the definitions. In

particular, this implies that homotopic maps f0, f1 :X→X′ induce isomorphic pull-

back bundles f∗0 (E
′), f∗1 (E

′) . Hence the map f∗ :Hn(X;E)→Hn(X
′;E′) induced by

a bundle map depends only on the homotopy class of f .

Generalizing the definition of Hn(X;E) to pairs (X,A) is straightforward, starting

with the definition of Hn(X,A;E) as the nth homology group of the chain complex

of quotients Cn(X;E)/Cn(A;E) where p :E→X becomes a bundle of groups over A

by restriction to p−1(A) . Associated to the pair (X,A) there is then a long exact

sequence of homology groups with local coefficients in the bundle E . The excision

property is proved just as for ordinary homology, via iterated barycentric subdivision.

The final axiom for homology, involving disjoint unions, extends trivially to homology

with local coefficients. Simplicial and cellular homology also extend without difficulty

to the case of local coefficients, as do the proofs that these forms of homology agree

with singular homology for ∆ complexes and CW complexes, respectively. We leave

the verifications of all these statements to the energetic reader.

Now we turn to cohomology. One might try defining Hn(X;E) by simply dual-

izing, taking Hom(Cn(X), E) , but this makes no sense since E is not a group. In-

stead, the cochain group Cn(X;E) is defined to consist of all functions ϕ assigning

to each singular simplex σ :∆n→X a lift ϕ(σ) :∆n→E . In case E is the product

X×G , this amounts to assigning an element of G to each σ , so this definition gen-

eralizes ordinary cohomology. Coboundary maps δ :Cn(X;E)→Cn+1(X;E) are de-

fined just as with ordinary cohomology, and satisfy δ2 = 0, so we have cohomology

groups Hn(X;E) , and in the relative case, Hn(X,A;E) , defined via relative cochains

Cn(X,A;E) = Ker
(
Cn(X;E)→Cn(A;E)

)
.

For a path-connected space X with universal cover X̃ and fundamental group

π , we can identify Hn(X;E) with Hn(X;G) , cohomology with local coefficients in the
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Z[π] module G corresponding to E , by identifying Cn(X;E) with HomZ[π](Cn(X̃),G)

in the following way. An element ϕ ∈ Cn(X;E) assigns to each σ :∆n→X a lift to E .

Regarding E as the quotient of X̃×G under the diagonal action of π , a lift of σ to

E is the same as an orbit of a lift to X̃×G . Such an orbit is a function f assigning to

each lift σ̃ :∆n→X̃ an element f(σ̃ ) ∈ G such that f(γσ̃) = γf(σ̃) for all γ ∈ π ,

that is, an element of HomZ[π](Cn(X̃),G) .

The basic properties of ordinary cohomology in §3.1 extend without great dif-

ficulty to cohomology groups with local coefficients. In order to define the map

f∗ :Hn(X′;E′)→Hn(X;E) induced by a bundle map as before, it suffices to observe

that a singular simplex σ :∆n→X and a lift σ̃ ′ :∆n→E′ of fσ define a lift σ̃ =

(σ , σ̃ ′) :∆n→f∗(E) of σ . To show that f ≃ g implies f∗ = g∗ requires some mod-

ification of the proof of the corresponding result for ordinary cohomology in §3.1,

which proceeded by dualizing the proof for homology. In the local coefficient case

one constructs a chain homotopy P∗ satisfying g♯ − f ♯ = P∗δ + δP∗ directly from

the subdivision of ∆n×I used in the proof of the homology result. Similar remarks

apply to proving excision and Mayer–Vietoris sequences for cohomology with local

coefficients. To prove the equivalence of simplicial and cellular cohomology with

singular cohomology in the local coefficient context, one should use the telescope ar-

gument from the proof of Lemma 2.34 to show that Hn(Xk;E) ≈ Hn(X;E) for k > n .

Once again details will be left to the reader.

The difference between homology with local coefficients and cohomology with lo-

cal coefficients is illuminated by comparing the following proposition with our earlier

identification of H∗(X;Z[π1X]) with the ordinary homology of the universal cover

of X .

Proposition 3H.5. If X is a finite CW complex with universal cover X̃ and funda-

mental group π , then for all n , Hn(X;Z[π]) is isomorphic to Hnc (X̃;Z) , cohomology

of X̃ with compact supports and ordinary integer coefficients.

For example, consider the n dimensional torus Tn , the product of n circles, with

fundamental group π = Zn and universal cover Rn . We have Hi(T
n;Z[π]) ≈ Hi(R

n) ,

which is zero except for a Z in dimension 0, but Hi(Tn;Z[π]) ≈ Hic(R
n) vanishes

except for a Z in dimension n , as we saw in Example 3.34.

To prove the proposition we shall use a few general facts about cohomology

with compact supports. One significant difference between ordinary cohomology

and cohomology with compact supports is in induced maps. A map f :X→Y in-

duces f ♯ :Cnc (Y ;G)→Cnc (X;G) and hence f∗ :Hnc (Y ;G)→Hnc (X;G) provided that f

is proper: The preimage f−1(K) of each compact set K in Y is compact in X . Thus

if ϕ ∈ Cn(Y ;G) vanishes on chains in Y − K then f ♯(ϕ) ∈ Cn(X;G) vanishes on

chains in X − f−1(K) . Further, to guarantee that f ≃ g implies f∗ = g∗ we should

restrict attention to homotopies that are proper as maps X×I→Y . Relative groups
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Hnc (X,A;G) are defined when A is a closed subset of X , which guarantees that the

inclusion A֓ X is a proper map. With these constraints the basic theory of §3.1

translates without difficulty to cohomology with compact supports.

In particular, for a locally compact CW complex X one can compute H∗c (X;G)

using finite cellular cochains, the cellular cochains vanishing on all but finitely many

cells. Namely, to compute Hnc (X
n, Xn−1;G) using excision one first has to identify

this group with Hnc (X
n,N(Xn−1);G) where N(Xn−1) is a closed neighborhood of

Xn−1 in Xn obtained by deleting an open n disk from the interior of each n cell. If

X is locally compact, the obvious deformation retraction of N(Xn−1) onto Xn−1 is

a proper homotopy equivalence. Hence via long exact sequences and the five-lemma

we obtain isomorphisms Hnc (X
n, Xn−1;G) ≈ Hnc (X

n,N(Xn−1);G) , and by excision the

latter group can be identified with the finite cochains.

Proof of 3H.5: As noted above, we can compute H∗c (X̃;Z) using the groups Cnf (X̃;Z)

of finite cellular cochains ϕ :Cn→Z , where Cn = Hn(X̃
n, X̃n−1) . Giving X̃ the CW

structure lifting the CW structure on X , then since X is compact, finite cellular

cochains are exactly homomorphisms ϕ :Cn→Z such that for each cell en of X̃ ,

ϕ(γen) is nonzero for only finitely many covering transformations γ ∈ π . Such a

ϕ determines a map ϕ̂ :Cn→Z[π] by setting ϕ̂(en) =
∑
γϕ(γ

−1en)γ . The map

ϕ̂ is a Z[π] homomorphism since if we replace the summation index γ in the right

side of ϕ(ηen) =
∑
γϕ(γ

−1ηen)γ by ηγ , we get
∑
γϕ(γ

−1en)ηγ . The function

ϕ֏ ϕ̂ defines a homomorphism Cnf (X̃;Z)→HomZ[π](Cn,Z[π]) which is injective

since ϕ is recoverable from ϕ̂ as the coefficient of γ = 1. Furthermore, this ho-

momorphism is surjective since a Z[π] homomorphism ψ :M→Z[π] has the form

ψ(x) =
∑
γψγ(x)γ with ψγ ∈ HomZ(M,Z) satisfying ψγ(x) = ψ1(γ

−1x) , so ψ1 de-

termines ψ . The isomorphisms Cnf (X̃;Z) ≈ HomZ[π](Cn,Z[π]) are isomorphisms of

cochain complexes, so the respective cohomology groups Hnc (X̃;Z) and Hn(X;Z[π])

are isomorphic. ⊔⊓

Cup and cap product work easily with local coefficients in a bundle of rings, the

latter concept being defined in the obvious way. The cap product can be used to give

a version of Poincaré duality for a closed n manifold M using coefficients in a bundle

of rings E under the same assumption as with ordinary coefficients that there exists

a fundamental class [M] ∈ Hn(M ;E) restricting to a generator of Hn(M,M − {x};E)

for all x ∈M . By excision the latter group is isomorphic to the fiber ring R of E . The

same proof as for ordinary coefficients then shows that [M]a :Hk(M ;E)→Hn−k(M ;E)

is an isomorphism for all k .

Taking R to be one of the standard rings Z , Q , or Zp does not give anything new

since the only ring automorphism these rings have is the identity, so the bundle of

rings E must be the product M×R . To get something more interesting, suppose we

take R to be the ring Z[i] of Gaussian integers, the complex numbers a + bi with
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a,b ∈ Z . This has complex conjugation a + bi֏ a − bi as a ring isomorphism. If

M is nonorientable and connected we can use the homomorphism ω :π1(M)→{±1}

that defines the bundle of groups MZ to build a bundle of rings E corresponding

to the action of π1(M) on Z[i] given by γ(a + bi) = a +ω(γ)bi . The homology

and cohomology groups of M with coefficients in E depend only on the additive

structure of Z[i] so they split as the direct sum of their real and imaginary parts,

which are just the homology or cohomology groups with ordinary coefficients Z and

twisted coefficients Z̃ , respectively. The fundamental class in Hn(M ; Z̃) constructed in

Example 3H.3 can be viewed as a pure imaginary fundamental class [M] ∈ Hn(M ;E) .

Since cap product with [M] interchanges real and imaginary parts, we obtain:

Theorem 3H.6. If M is a nonorientable closed connected n manifold then cap prod-

uct with the pure imaginary fundamental class [M] gives isomorphisms Hk(M ;Z) ≈

Hn−k(M ; Z̃) and Hk(M ; Z̃) ≈ Hn−k(M ;Z) . ⊔⊓

More generally this holds with Z replaced by other rings such as Q or Zp . There

is also a version for noncompact manifolds using cohomology with compact supports.

Exercises

1. Compute H∗(S
1;E) and H∗(S1;E) for E→S1 the nontrivial bundle with fiber Z .

2. Compute the homology groups with local coefficients Hn(M ;MZ) for a closed

nonorientable surface M .

3. Let B(X;G) be the set of isomorphism classes of bundles of groups E→X with

fiber G , and let E0→BAut(G) be the bundle corresponding to the ‘identity’ action

ρ : Aut(G)→Aut(G) . Show that the map [X, BAut(G)]→B(X,G) , [f ]֏ f∗(E0) , is

a bijection if X is a CW complex, where [X, Y ] denotes the set of homotopy classes

of maps X→Y .

4. Show that if finite connected CW complexes X and Y are homotopy equivalent,

then their universal covers X̃ and Ỹ are proper homotopy equivalent.

5. If X is a finite connected graph with π1(X) free on g > 0 generators, show that

Hn(X;Z[π1X]) is zero unless n = 1, when it is Z when g = 1 and the direct sum of

a countably infinite number of Z ’s when g > 1. [Use Proposition 3H.5 and compute

Hnc (X̃) as lim
--→H

n(X̃, X̃ − Ti) for a suitable sequence of finite subtrees T1 ⊂ T2 ⊂ ···

of X̃ with
⋃
i Ti = X̃ .]

6. Show that homology groups Hℓfn (X;G) can be defined using locally finite chains,

which are formal sums
∑
σ gσσ of singular simplices σ :∆n→X with coefficients

gσ ∈ G , such that each x ∈ X has a neighborhood meeting the images of only finitely

many σ ’s with gσ ≠ 0. Develop this version of homology far enough to show that

for a finite-dimensional locally compact CW complex X , Hℓfn (X;G) can be computed

using infinite cellular chains
∑
α gαe

n
α .


