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In the first part of this section we will use the action of π1 on πn to describe

the difference between πn(X,x0) and the set of homotopy classes of maps Sn→X
without conditions on basepoints. More generally, we will compare the set 〈Z,X〉 of

basepoint-preserving homotopy classes of maps (Z, z0)→(X,x0) with the set [Z,X]

of unrestricted homotopy classes of maps Z→X , for Z any CW complex with base-

point z0 a 0 cell. Then the section concludes with an extended example exhibit-

ing some rather subtle nonfinite generation phenomena in homotopy and homology

groups.

We begin by constructing an action of π1(X,x0) on 〈Z,X〉 when Z is a CW

complex with basepoint 0 cell z0 . Given a loop γ in X based at x0 and a map

f0 : (Z, z0)→(X,x0) , then by the homotopy extension property there is a homotopy

fs :Z→X of f0 such that fs(z0) is the loop γ . We might try to define an action of

π1(X,x0) on 〈Z,X〉 by [γ][f0] = [f1] , but this definition encounters a small problem

when we compose loops. For if η is another loop at x0 , then by applying the homo-

topy extension property a second time we get a homotopy of f1 restricting to η on

x0 , and the two homotopies together give the relation
(
[γ][η]

)
[f0] = [η]

(
[γ][f0]

)
,

in view of our convention that the product γη means first γ , then η . This is not

quite the relation we want, but the problem is easily corrected by letting the action be

an action on the right rather than on the left. Thus we set [f0][γ] = [f1] , and then

[f0]
(
[γ][η]

)
=
(
[f0][γ]

)
[η] .

Let us check that this right action is well-defined. Suppose we start with maps

f0, g0 : (Z, z0)→(X,x0) representing the same class in 〈Z,X〉 , together with homo-

topies fs and gs of f0 and g0 such that fs(z0) and gs(z0) are homotopic loops.

These various homotopies define a map H :Z×I×∂I ∪ Z×{0}×I ∪ {z0}×I×I -→X

which is fs on Z×I×{0} , gs on Z×I×{1} , the basepoint-preserving homotopy from

f0 to g0 on Z×{0}×I , and the homotopy from fs(z0) to gs(z0) on {z0}×I×I .

We would like to extend H over Z×I×I . The pair (I× I, I×∂I ∪ {0}×I) is homeo-

morphic to (I×I, I×{0}) , and via this homeomorphism we can view H as a map

Z×I×{0} ∪ {z0}×I×I -→X , that is, a map Z×I→X with a homotopy on the sub-

complex {z0}×I . This means the homotopy extension property can be applied to

produce an extension of the original H to Z×I×I . Restricting this extended H to

Z×{1}×I gives a basepoint-preserving homotopy f1 ≃ g1 , which shows that [f0][γ]

is well-defined.

Note that in this argument we did not have to assume the homotopies fs and gs
were constructed by applying the homotopy extension property. Thus we have proved
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the following result:

Proposition 4A.1. There is a right action of π1(X,x0) on 〈Z,X〉 defined by setting

[f0][γ] = [f1] whenever there exists a homotopy fs :Z→X from f0 to f1 such that

fs(z0) is the loop γ , or any loop homotopic to γ . ⊔⊓

It is easy to convert this right action into a left action, by defining [γ][f0] =

[f0][γ]
−1 . This just amounts to choosing the homotopy fs so that fs(z0) is the

inverse path of γ .

When Z = Sn this action reduces to the usual action of π1(X,x0) on πn(X,x0)

since in the original definition of γf in terms of maps (In, ∂In)→(X,x0) , a homotopy

from γf to f is obtained by restricting γf to smaller and smaller concentric cubes,

and on the ‘basepoint’ ∂In this homotopy traces out the loop γ .

Proposition 4A.2. If (Z, z0) is a CW pair and X is a path-connected space, then

the natural map 〈Z,X〉→[Z,X] induces a bijection of the orbit set 〈Z,X〉/π1(X,x0)

onto [Z,X] .

In particular, this implies that [Z,X] = 〈Z,X〉 if X is simply-connected.

Proof: Since X is path-connected, every f :Z→X can be homotoped to take z0 to the

basepoint x0 , via homotopy extension, so the map 〈Z,X〉→[Z,X] is onto. If f0 and

f1 are basepoint-preserving maps that are homotopic via the homotopy fs :Z→X ,

then by definition [f1] = [f0][γ] for the loop γ(s) = fs(z0) , so [f0] and [f1] are in

the same orbit under the action of π1(X,x0) . Conversely, two basepoint-preserving

maps in the same orbit are obviously homotopic. ⊔⊓

Example 4A.3. If X is an H–space with identity element x0 , then the action of

π1(X,x0) on 〈Z,X〉 is trivial since for a map f : (Z, z0)→(X,x0) and a loop γ in

X based at x0 , the multiplication in X defines a homotopy fs(z) = f(z)γ(s) . This

starts and ends with a map homotopic to f , and the loop fs(z0) is homotopic to γ ,

both these homotopies being basepoint-preserving by the definition of an H–space.

The set of orbits of the π1 action on πn does not generally inherit a group struc-

ture from πn . For example, when n = 1 the orbits are just the conjugacy classes in

π1 , and these form a group only when π1 is abelian. Basepoints are thus a necessary

technical device for producing the group structure in homotopy groups, though as we

have shown, they can be ignored in simply-connected spaces.

For a set of maps Sn→X to generate πn(X) as a module over Z[π1(X)] means

that all elements of πn(X) can be represented by sums of these maps along arbitrary

paths in X , where we allow reversing orientations to get negatives and repetitions to

get arbitrary integer multiples. Examples of finite CW complexes X for which πn(X)

is not finitely generated as a module over Z[π1(X)] were given in Exercise 38 in §4.2,

provided n ≥ 3. Finding such an example for n = 2 seems to be more difficult. The
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rest of this section will be devoted to a somewhat complicated construction which

does this, and is interesting for other reasons as well.

An Example of Nonfinite Generation

We will construct a finite CW complex having πn not finitely generated as a

Z[π1] module, for a given integer n ≥ 2. The complex will be a subcomplex of a

K(π,1) having interesting homological properties: It is an (n + 1) dimensional CW

complex with Hn+1 nonfinitely generated, but its n skeleton is finite so Hi is finitely

generated for i ≤ n and π is finitely presented if n > 1. The first such example

was found in [Stallings 1963] for n = 2. Our construction will be essentially the

n dimensional generalization of this, but described in a more geometric way as in

[Bestvina & Brady 1997], which provides a general technique for constructing many

examples of this sort.

To begin, let X be the product of n copies of S1 ∨ S1 . Since S1 ∨ S1 is the

1 skeleton of the torus T 2 = S1×S1 in its usual CW structure, X can be regarded as

a subcomplex of the 2n dimensional torus T 2n , the product of 2n circles. Define

f :T 2n→S1 by f(θ1, ··· , θ2n) = θ1 + ··· + θ2n where the coordinates θi ∈ S
1 are

viewed as angles measured in radians. The space Z = X ∩ f−1(0) will provide the

example we are looking for. As we shall see, Z is a finite CW complex of dimension

n− 1, with πn−1(Z) nonfinitely generated as a module over π1(Z) if n ≥ 3. We will

also see that πi(Z) = 0 for 1 < i < n− 1.

The induced homomorphism f∗ :π1(T
2n)→π1(S

1) = Z sends each generator

coming from an S1 factor to 1. Let T̃ 2n→T 2n be the covering space corresponding

to the kernel of f∗ . This is a normal covering space since it corresponds to a normal

subgroup, and the deck transformation group is Z . The subcomplex of T̃ 2n projecting

to X is a normal covering space X̃→X with the same group of deck transformations.

Since π1(X) is the product of n free groups on two generators, X̃ is the covering

space of X corresponding to the kernel of the homomorphism π1(X)→Z sending

each of the two generators of each free factor to 1. Since X is a K(π,1) , so is X̃ . For

example, when n = 1, X̃ is the union of two helices on the infinite cylinder T̃ 2 :

The map f lifts to a map f̃ : T̃ 2n→R , and Z lifts homeomorphically to a subspace

Z ⊂ X̃ , namely f̃−1(0)∩ X̃ . We will show:

(∗)
X̃ is homotopy equivalent to a space Y obtained from Z by attaching an infinite

sequence of n cells.

Assuming this is true, it follows that Hn(Y ) is not finitely generated since in the

exact sequence Hn(Z)→Hn(Y )→Hn(Y ,Z)→Hn−1(Z) the first term is zero and the

last term is finitely generated, Z being a finite CW complex of dimension n − 1,
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while the third term is an infinite sum of Z ’s, one for each n cell of Y . If πn−1(Z)

were finitely generated as a π1(Z) module, then by attaching finitely many n cells to

Z we could make it (n − 1) connected since it is already (n − 2) connected as the

(n−1) skeleton of the K(π,1) Y . Then by attaching cells of dimension greater than

n we could build a K(π,1) with finite n skeleton. But this contradicts the fact that

Hn(Y ) is not finitely generated.

To begin the verification of (∗) , consider the torus Tm . The standard cell struc-

ture on Tm lifts to a cubical cell structure on the universal cover Rm , with vertices

the integer lattice points Zm . The function f lifts to a linear projection L :Rm→R ,

L(x1, ··· , xm) = x1 + ··· + xm . The planes in L−1(Z) cut the cubes of Rm into

convex polyhedra which we call slabs. There are m slabs in each

m dimensional cube. The boundary of a slab in L−1[i, i+ 1] con-

sists of lateral faces that are slabs for lower-dimensional cubes, to-

gether with a lower face in L−1(i) and an upper face in L−1(i+ 1) .

In each cube there are two exceptional slabs whose lower or upper

face degenerates to a point. These are the slabs containing the

vertices of the cube where L has its maximum and minimum values. A slab defor-

mation retracts onto the union of its lower and lateral faces, provided that the slab

has an upper face that is not just a point. Slabs of the latter type are m simplices,

and we will refer to them as cones in what follows. These are the slabs containing the

vertex of a cube on which L takes its maximal value. The lateral faces of a cone are

also cones, of lower dimension.

The slabs, together with all their lower-dimensional faces, give a CW structure on

R
m with the planes of L−1(Z) as subcomplexes. These structures are preserved by

the deck transformations of the cover Rm→Tm so there is an induced CW structure

in the quotient Tm , with f−1(0) as a subcomplex.

If X is any subcomplex of Tm in its original cubical cell structure, then the slab

CW structure on Tm restricts to a CW structure on X . In particular, we obtain a CW

structure on Z = X ∩ f−1(0) . Likewise we get a lifted CW structure on the cover

X̃ ⊂ T̃m . Let X̃[i, j] = X̃ ∩ f̃−1[i, j] . The deformation retractions of noncone slabs

onto their lateral and lower faces give rise to a deformation retraction of X̃[i, i + 1]

onto X̃[i] ∪ Ci where Ci consists of all the cones in X̃[i, i + 1] . These cones are

attached along their lower faces, and they all have the same vertex in X̃[i+ 1] , so Ci
is itself a cone in the usual sense, attached to X̃[i] along its base.

For the particular X we are interested in, we claim that each Ci is an n disk

attached along its boundary sphere. When n = 1 this is evident from the earlier

picture of X̃ as the union of two helices on a cylinder. For larger n we argue by

induction. Passing from n to n+ 1 replaces X by two copies of X×S1 intersecting

in X , one copy for each of the additional S1 factors of T 2n+2 . Replacing X by X×S1

changes Ci to its join with a point in the base of the new Ci . The two copies of this
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join then yield the suspension of Ci attached along the suspension of the base.

The same argument shows that X̃[−i− 1,−i] deformation retracts onto X̃[−i]

with an n cell attached. We build the space Y and a homotopy equivalence g :Y→X̃
by an inductive procedure, starting with Y0 = Z . Assuming that Yi and a homotopy

equivalence gi :Yi→X̃[−i, i] have already been defined, we form Yi+1 by attaching

two n cells by the maps obtained from the attaching maps of the two n cells in

X̃[−i− 1, i+ 1]− X̃[−i, i] by composing with a homotopy inverse to gi . This allows

gi to be extended to a homotopy equivalence gi+1 :Yi+1→X̃[−i−1, i+1] . Taking the

union over i gives g :Y→X̃ . One can check this is a homotopy equivalence by seeing

that it induces isomorphisms on all homotopy groups, using the standard compact-

ness argument. This finishes the verification of (∗) .

It is interesting to see what the complex Z looks like in the case n = 3, when

Z is 2 dimensional and has π2 nonfinitely generated over Z[π1(Z)] . In this case

X is the product of three S1 ∨ S1 ’s, so X is the union of the eight 3 tori obtained

by choosing one of the two S1 summands in each S1 ∨ S1 factor. We denote these

3 tori S1
±×S

1
±×S

1
± . Viewing each of these 3 tori as the cube in the previous figure

with opposite faces identified, we see that Z is the union of the eight 2 tori formed

by the two sloping triangles in each cube. Two of these 2 tori intersect along a circle

when the corresponding 3 tori of X intersect along a 2 torus. This happens when the

triples of ± ’s for the two 3 tori differ in exactly one entry. The pattern of intersection

of the eight 2 tori of Z can thus be described combinatorially via the 1 skeleton of

the cube, with vertices (±1,±1,±1) . There is a torus of Z for each vertex of the cube,

and two tori intersect along a circle when the corresponding vertices of the cube are

the endpoints of an edge of the cube. All eight tori contain the single 0 cell of Z .

To obtain a model of Z itself, consider a regular octahedron inscribed in the cube

with vertices (±1,±1,±1) . If we identify each pair of oppo-

site edges of the octahedron, each pair of opposite triangular

faces becomes a torus. However, there are only four pairs of

opposite faces, so we get only four tori this way, not eight. To

correct this problem, regard each triangular face of the octa-

hedron as two copies of the same triangle, distinguished from

each other by a choice of normal direction, an arrow attached

to the triangle pointing either inside the octahedron or outside it, that is, either to-

ward the nearest vertex of the surrounding cube or toward the opposite vertex of the

cube. Then each pair of opposite triangles of the octahedron having normal vectors

pointing toward the same vertex of the cube determines a torus, when opposite edges

are identified as before. Each edge of the original octahedron is also replaced by two

edges oriented either toward the interior or exterior of the octahedron. The vertices

of the octahedron may be left unduplicated since they will all be identified to a single

point anyway. With this scheme, the two tori corresponding to the vertices at the ends
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of an edge of the cube then intersect along a circle, as they should, and other pairs of

tori intersect only at the 0 cell of Z .

This model of Z has the advantage of displaying the symmetry group of the cube,

a group of order 48, as a symmetry group of Z , corresponding to the symmetries of

X permuting the three S1∨S1 factors and the two S1 ’s of each S1∨S1 . Undoubtedly

Z would be very pretty to look at if we lived in a space with enough dimensions to

see all of it at one glance.

It might be interesting to see an explicit set of maps S2→Z generating π2(Z)

as a Z[π1] module. One might also ask whether there are simpler examples of these

nonfinite generation phenomena.

Exercises

1. Show directly that if X is a topological group with identity element x0 , then any two

maps f ,g : (Z, z0)→(X,x0) which are homotopic are homotopic through basepoint-

preserving maps.

2. Show that under the map 〈X,Y 〉→Hom
(
πn(X,x0),πn(Y ,y0)

)
, [f ]֏ f∗ , the ac-

tion of π1(Y ,y0) on 〈X,Y 〉 corresponds to composing with the action on πn(Y ,y0) ,

that is, (γf)∗ = βγf∗ . Deduce a bijection of [X,K(π,1)] with the set of orbits of

Hom(π1(X),π) under composition with inner automorphisms of π . In particular, if

π is abelian then [X,K(π,1)] = 〈X,K(π,1)〉 = Hom(π1(X),π) .

3. For a space X let Aut(X) denote the group of homotopy classes of homotopy

equivalences X→X . Show that for a CW complex K(π,1) , Aut
(
K(π,1)

)
is isomor-

phic to the group of outer automorphisms of π , that is, automorphisms modulo inner

automorphisms.

4. With the notation of the preceding problem, show that Aut(
∨
nS

k) ≈ GLn(Z) for

k > 1, where
∨
nS

k denotes the wedge sum of n copies of Sk and GLn(Z) is the

group of n×n matrices with entries in Z having an inverse matrix of the same form.

[GLn(Z) is the automorphism group of Zn ≈ πk(
∨
nS

k) ≈ Hk(
∨
nS

k) .]

5. This problem involves the spaces constructed in the latter part of this section.

(a) Compute the homology groups of the complex Z in the case n = 3, when Z is

2 dimensional.

(b) Letting X̃n denote the n dimensional complex X̃ , show that X̃n can be obtained

inductively from X̃n−1 as the union of two copies of the mapping torus of the gener-

ating deck transformation X̃n−1→X̃n−1 , with copies of X̃n−1 in these two mapping

tori identified. Thus there is a fiber bundle X̃n→S
1 ∨ S1 with fiber X̃n−1 .

(c) Use part (b) to find a presentation for π1(X̃n) , and show this presentation reduces

to a finite presentation if n > 2 and a presentation with a finite number of generators

if n = 2. In the latter case, deduce that π1(X̃2) has no finite presentation from the

fact that H2(X̃2) is not finitely generated.
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In §2.2 we used homology to distinguish different homotopy classes of maps

Sn→Sn via the notion of degree. We will show here that cup product can be used to

do something similar for maps S2n−1→Sn . Originally this was done by Hopf using

more geometric constructions, before the invention of cohomology and cup products.

In general, given a map f :Sm→Sn with m ≥ n , we can form a CW complex Cf
by attaching a cell em+1 to Sn via f . The homotopy type of Cf depends only on the

homotopy class of f , by Proposition 0.18. Thus for maps f ,g :Sm→Sn , any invariant

of homotopy type that distinguishes Cf from Cg will show that f is not homotopic to

g . For example, if m = n and f has degree d , then from the cellular chain complex

of Cf we see that Hn(Cf ) ≈ Z|d| , so the homology of Cf detects the degree of f , up

to sign. When m > n , however, the homology of Cf consists of Z ’s in dimensions

0, n , and m + 1, independent of f . The same is true of cohomology groups, but

cup products have a chance of being nontrivial in H∗(Cf ) when m = 2n− 1. In this

case, if we choose generators α ∈ Hn(Cf ) and β ∈ H2n(Cf ) , then the multiplicative

structure of H∗(Cf ) is determined by a relation α2 = H(f)β for an integer H(f)

called the Hopf invariant of f . The sign of H(f) depends on the choice of the gener-

ator β , but this can be specified by requiring β to correspond to a fixed generator of

H2n(D2n, ∂D2n) under the map H2n(Cf ) ≈ H
2n(Cf , S

n)→H2n(D2n, ∂D2n) induced

by the characteristic map of the cell e2n , which is determined by f . We can then

change the sign of H(f) by composing f with a reflection of S2n−1 , of degree −1.

If f ≃ g , then under the homotopy equivalence Cf ≃ Cg the chosen generators β

for H2n(Cf ) and H2n(Cg) correspond, so H(f) depends only on the homotopy class

of f .

If f is a constant map then Cf = S
n ∨ S2n and H(f) = 0 since Cf retracts

onto Sn . Also, H(f) is always zero for odd n since in this case α2 = −α2 by the

commutativity property of cup product, hence α2 = 0.

Three basic examples of maps with nonzero Hopf invariant are the maps defining

the three Hopf bundles in Examples 4.45, 4.46, and 4.47. The first of these Hopf

maps is the attaching map f :S3→S2 for the 4 cell of CP2 . This has H(f) = 1

since H∗(CP2;Z) ≈ Z[α]/(α3) by Theorem 3.19. Similarly, HP2 gives rise to a map

S7→S4 of Hopf invariant 1. In the case of the octonionic projective plane OP2 ,

which is built from the map S15→S8 defined in Example 4.47, we can deduce that

H∗(OP2;Z) ≈ Z[α]/(α3) either from Poincaré duality as in Example 3.40 or from

Exercise 5 for §4.D.

It is a fundamental theorem of [Adams 1960] that a map f :S2n−1→Sn of Hopf

invariant 1 exists only when n = 2,4,8. This has a number of very interesting con-

sequences, for example:
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R
n is a division algebra only for n = 1, 2, 4, 8.

Sn is an H–space only for n = 0, 1, 3, 7.

Sn has n linearly independent tangent vector fields only for n = 0, 1, 3, 7.

The only fiber bundles Sp→Sq→Sr occur when (p, q, r ) = (0,1,1) , (1,3,2) ,

(3,7,4) , and (7,15,8) .

The first and third assertions were in fact proved shortly before Adams’ theorem in

[Kervaire 1958] and [Milnor 1958] as applications of a theorem of Bott that π2nU(n) ≈

Zn! . A full discussion of all this, and a proof of Adams’ theorem, is given in [VBKT].

Though maps of Hopf invariant 1 are rare, there are maps S2n−1→Sn of Hopf

invariant 2 for all even n . Namely, consider the space J2(S
n) constructed in §3.2.

This has a CW structure with three cells, of dimensions 0, n , and 2n , so J2(S
n) has

the form Cf for some f :S2n−1→Sn . We showed that if n is even, the square of a

generator of Hn(J2(S
n);Z) is twice a generator of H2n(J2(S

n);Z) , so H(f) = ±2.

From this example we can get maps of any even Hopf invariant when n is even

via the following fact.

Proposition 4B.1. The Hopf invariant H :π2n−1(S
n)→Z is a homomorphism.

Proof: For f ,g :S2n−1→Sn , let us compare Cf+g with the space Cf∨g obtained

from Sn by attaching two 2n cells via f and g . There is a natural quotient map

q :Cf+g→Cf∨g collapsing the equatorial disk of the 2n cell of Cf+g to a point. The in-

duced cellular chain map q∗ sends e2n
f+g to e2n

f +e
2n
g . In cohomology this implies that

q∗(βf ) = q
∗(βg) = βf+g where βf , βg , and βf+g are the cohomology classes dual to

the 2n cells. Letting αf+g and αf∨g be the cohomology classes corresponding to the

n cells, we have q∗(αf∨g) = αf+g since q is a homeomorphism on the n cells. By re-

stricting to the subspaces Cf and Cg of Cf∨g we see that α2
f∨g = H(f)βf +H(g)βg .

Thus α2
f+g = q

∗(α2
f∨g) = H(f)q

∗(βf )+H(g)q
∗(βg) =

(
H(f)+H(g)

)
βf+g . ⊔⊓

Corollary 4B.2. π2n−1(S
n) contains a Z direct summand when n is even.

Proof: Either H or H/2 is a surjective homomorphism π2n−1(S
n)→Z . ⊔⊓

Exercises

1. Show that the Hopf invariant of a composition S2n−1 f
-----→S2n−1 g

-----→Sn is given by

H(gf) = (deg f)H(g) , and for a composition S2n−1 f
-----→Sn

g
-----→Sn the Hopf invariant

satisfies H(gf) = (degg)2H(f) .

2. Show that if Sk -→Sm
p
-----→Sn is a fiber bundle, then m = 2n− 1, k = n− 1, and,

when n > 1, H(p) = ±1. [Show that Cp is a manifold and apply Poincaré duality.]
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We can apply the homology version of Whitehead’s theorem, Corollary 4.33, to

show that a simply-connected CW complex with finitely generated homology groups

is always homotopy equivalent to a CW complex having the minimum number of cells

consistent with its homology, namely, one n cell for each Z summand of Hn and a

pair of cells of dimension n and n+ 1 for each Zk summand of Hn .

Proposition 4C.1. Given a simply-connected CW complex X and a decomposition

of each of its homology groups Hn(X) as a direct sum of cyclic groups with speci-

fied generators, then there is a CW complex Z and a cellular homotopy equivalence

f :Z→X such that each cell of Z is either :

(a) a ‘generator’ n cell enα , which is a cycle in cellular homology mapped by f to

a cellular cycle representing the specified generator α of one of the cyclic sum-

mands of Hn(X) ; or

(b) a ‘relator’ (n + 1) cell en+1
α , with cellular boundary equal to a multiple of the

generator n cell enα , in the case that α has finite order.

In the nonsimply-connected case this result can easily be false, counterexamples

being provided by acyclic spaces and the space X = (S1 ∨ Sn) ∪ en+1 constructed

in Example 4.35, which has the same homology as S1 but which must have cells of

dimension greater than 1 in order to have πn nontrivial.

Proof: We build Z inductively over skeleta, starting with Z1 a point since X is simply-

connected. For the inductive step, suppose we have constructed f :Zn→X inducing

an isomorphism on Hi for i < n and a surjection on Hn . For the mapping cylinder

Mf we then have Hi(Mf , Z
n) = 0 for i ≤ n and Hn+1(Mf , Z

n) ≈ πn+1(Mf , Z
n) by

the Hurewicz theorem. To construct Zn+1 we use the following diagram:

By induction we know the map Hn(Z
n)→Hn(Mf ) ≈ Hn(X) exactly, namely, Zn has

generator n cells, which are cellular cycles mapping to the given generators of Hn(X) ,

along with relator n cells that do not contribute to Hn(Z
n) . Thus Hn(Z

n) is free with

basis the generator n cells, and the kernel of Hn(Z
n)→Hn(X) is free with basis given

by certain multiples of some of the generator n cells. Choose ‘relator’ elements ρi in

Hn+1(Mf , Z
n) mapping to this basis for the kernel, and let the ‘generator’ elements

γi ∈ Hn+1(Mf , Z
n) be the images of the chosen generators of Hn+1(Mf ) ≈ Hn+1(X) .

Via the Hurewicz isomorphism Hn+1(Mf , Z
n) ≈ πn+1(Mf , Z

n) , the homology

classes ρi and γi are represented by maps ri, gi : (D
n+1, Sn)→(Mf , Z

n) . We form
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Zn+1 from Zn by attaching (n + 1) cells via the restrictions of the maps ri and

gi to Sn . The maps ri and gi themselves then give an extension of the inclusion

Zn֓Mf to a map Zn+1→Mf , whose composition with the retraction Mf→X is the

extended map f :Zn+1→X . This gives us the lower row of the preceding diagram,

with commutative squares. By construction, the subgroup of Hn+1(Z
n+1, Zn) gener-

ated by the relator (n + 1) cells maps injectively to Hn(Z
n) , with image the kernel

of Hn(Z
n)→Hn(X) , so f∗ :Hn(Z

n+1)→Hn(X) is an isomorphism. The elements of

Hn+1(Z
n+1, Zn) represented by the generator (n+1) cells map to the γi ’s, hence map

to zero in Hn(Z
n), so by exactness of the second row these generator (n + 1) cells

are cellular cycles representing elements of Hn+1(Z
n+1) mapped by f∗ to the given

generators of Hn+1(X) . In particular, f∗ :Hn+1(Z
n+1)→Hn+1(X) is surjective, and

the induction step is finished.

Doing this for all n , we produce a CW complex Z and a map f :Z→X with the

desired properties. ⊔⊓

Example 4C.2. Suppose X is a simply-connected CW complex such that for some

n ≥ 2, the only nonzero reduced homology groups of X are Hn(X) , which is finitely

generated, and Hn+1(X) , which is finitely generated and free. Then the proposition

says that X is homotopy equivalent to a CW complex Z obtained from a wedge sum

of n spheres by attaching (n + 1) cells. The attaching maps of these cells are de-

termined up to homotopy by the cellular boundary map Hn+1(Z
n+1, Zn)→Hn(Z

n)

since πn(Z
n) ≈ Hn(Z

n) . So the attaching maps are either trivial, in the case of gen-

erator (n + 1) cells, or they represent some multiple of an inclusion of one of the

wedge summands, in the case of a relator (n+ 1) cell. Hence Z is the wedge sum of

spheres Sn and Sn+1 together with Moore spaces M(Zm, n) of the form Sn∪en+1 . In

particular, the homotopy type of X is uniquely determined by its homology groups.

Proposition 4C.3. Let X be a simply-connected space homotopy equivalent to a CW

complex, such that the only nontrivial reduced homology groups of X are H2(X) ≈

Z
m and H4(X) ≈ Z . Then the homotopy type of X is uniquely determined by the

cup product ring H∗(X;Z) . In particular, this applies to any simply-connected closed

4 manifold.

Proof: By the previous proposition we may assume X is a complex Xϕ obtained from

a wedge sum
∨
j S

2
j of m 2 spheres S2

j by attaching a cell e4 via a map ϕ :S3→
∨
j S

2
j .

As shown in Example 4.52, π3(
∨
j S

2
j ) is free with basis the Hopf maps ηj :S3→S2

j and

the Whitehead products [ij , ik] , j < k , where ij is the inclusion S2
j ֓

∨
j S

2
j . Since

a homotopy of ϕ does not change the homotopy type of Xϕ , we may assume ϕ is

a linear combination
∑
j ajηj +

∑
j<k ajk[ij , ik] . We need to see how the coefficients

aj and ajk determine the cup product H2(X;Z)×H2(X;Z)→H4(X;Z) .

This cup product can be represented by an m×m symmetric matrix (bjk) where

the cup product of the cohomology classes dual to the j th and kth 2-cells is bjk
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times the class dual to the 4 cell. We claim that bjk = ajk for j < k and bjj = aj .

If ϕ is one of the generators ηi or [ij , ik] this is clear, since if ϕ = ηj then Xϕ is

the wedge sum of CP2 with m − 1 2 spheres, while if ϕ = [ij , ik] then Xϕ is the

wedge sum of S2
j ×S

2
k with m − 2 2 spheres. The claim is also true when ϕ is −ηj

or −[ij , ik] since changing the sign of ϕ amounts to composing ϕ with a reflection

of S3 , and this changes the generator of H4(Xϕ;Z) to its negative. The general case

now follows by induction from the assertion that the matrix (bjk) for Xϕ+ψ is the

sum of the corresponding matrices for Xϕ and Xψ . This assertion can be proved as

follows. By attaching two 4 cells to
∨
j S

2
j by ϕ and ψ we obtain a complex Xϕ,ψ

which we can view as Xϕ ∪ Xψ . There is a quotient map q :Xϕ+ψ -→Xϕ,ψ that is a

homeomorphism on the 2 skeleton and collapses the closure of an equatorial 3 disk

in the 4 cell of Xϕ+ψ to a point. The induced map q∗ :H4(Xϕ,ψ)→H
4(Xϕ+ψ) sends

each of the two generators corresponding to the 4 cells of Xϕ,ψ to a generator, and

the assertion follows.

Now suppose Xϕ and Xψ have isomorphic cup product rings. This means bases

for H∗(Xϕ;Z) and H∗(Xψ;Z) can be chosen so that the matrices specifying the cup

product H2×H2→H4 with respect to these bases are the same. The preceding propo-

sition says that any choice of basis can be realized as the dual basis to a cell structure

on a CW complex homotopy equivalent to the given complex. Therefore we may as-

sume the matrices (bjk) for Xϕ and Xψ are the same. By what we have shown in

the preceding paragraph, this means ϕ and ψ are homotopic, hence Xϕ and Xψ are

homotopy equivalent.

For the statement about simply-connected closed 4 manifolds, Corollaries A.8

and A.9 and Proposition A.11 in the Appendix say that such a manifold M has the ho-

motopy type of a CW complex with finitely generated homology groups. Then Poincaré

duality and the universal coefficient theorem imply that the only nontrivial homology

groups Hi(M) are Z for i = 0,4 and Zm for i = 2, for some m ≥ 0. ⊔⊓

This result and the example preceding it are special cases of a homotopy classi-

fication by Whitehead of simply-connected CW complexes with positive-dimensional

cells in three adjacent dimensions n , n + 1, and n + 2; see [Baues 1996] for a full

treatment of this.

While the homotopy groups of the three spaces in a fiber bundle fit into a long

exact sequence, the relation between their homology or cohomology groups is much

more complicated. The Künneth formula shows that there are some subtleties even

for a product bundle, and for general bundles the machinery of spectral sequences,
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developed in [SSAT], is required. In this section we will describe a few special sorts of

fiber bundles where more elementary techniques suffice. As applications we calculate

the cohomology rings of some important spaces closely related to Lie groups. In

particular we find a number of spaces with exterior and polynomial cohomology rings.

The Leray–Hirsch Theorem

This theorem will be the basis for all the other results in this section. It gives

hypotheses sufficient to guarantee that a fiber bundle has cohomology very much like

that of a product bundle.

Theorem 4D.1. Let F -→E
p
-----→B be a fiber bundle such that, for some commutative

coefficient ring R :

(a) Hn(F ;R) is a finitely generated free R module for each n .

(b) There exist classes cj ∈ H
kj (E;R) whose restrictions i∗(cj) form a basis for

H∗(F ;R) in each fiber F , where i :F→E is the inclusion.

Then the map Φ :H∗(B;R)⊗RH
∗(F ;R)→H∗(E;R) ,

∑
ij bi ⊗ i

∗(cj)֏
∑
ij p

∗(bi)`cj ,

is an isomorphism of R modules.

The conclusion can be restated as saying that H∗(E;R) is a free H∗(B;R) module

with basis {cj} , where we view H∗(E;R) as a module over the ring H∗(B;R) by defin-

ing scalar multiplication by bc = p∗(b)` c for b ∈ H∗(B;R) and c ∈ H∗(E;R) .

In the case of a product E = B×F with H∗(F ;R) free over R , we can pull back

a basis for H∗(F ;R) via the projection E→F to obtain the classes cj . Thus the

Leray–Hirsch theorem generalizes the version of the Künneth formula involving cup

products, Theorem 3.15, at least as far as the additive structure and the module struc-

ture over H∗(B;R) are concerned. However, the Leray–Hirsch theorem does not assert

that the isomorphism H∗(E;R) ≈ H∗(B;R)⊗RH
∗(F ;R) is a ring isomorphism, and in

fact this need not be true, for example for the Klein bottle viewed as a bundle with

fiber and base S1 , where the Leray–Hirsch theorem applies with Z2 coefficients.

An example of a bundle where the classes cj do not exist is the Hopf bundle

S1→S3→S2 , since H∗(S3) 6≈ H∗(S2)⊗H∗(S1) .

Proof: We first prove the result for finite-dimensional CW complexes B by induction

on their dimension. The case that B is 0 dimensional is trivial. For the induction step,

suppose B has dimension n , and let B′ ⊂ B be the subspace obtained by deleting a

point xα from the interior of each n cell enα of B . Let E′ = p−1(B′) . Then we have a

commutative diagram, with coefficients in R understood:

The map Φ on the left is defined exactly as in the absolute case, using the relative cup

product H∗(E, E′)⊗RH
∗(E)→H∗(E, E′) . The first row of the diagram is exact since
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tensoring with a free module preserves exactness. The second row is of course exact

also. The commutativity of the diagram follows from the evident naturality of Φ in the

case of the two squares shown. For the other square involving coboundary maps, if we

start with an element b⊗ i∗(cj) ∈ H
∗(B′)⊗RH

∗(F) and map this horizontally we get

δb⊗ i∗(cj) which maps vertically to p∗(δb)`cj , whereas if we first map vertically we

get p∗(b)`cj which maps horizontally to δ(p∗(b)`cj) = δp
∗(b)`cj = p

∗(δb)`cj
since δcj = 0.

The space B′ deformation retracts onto the skeleton Bn−1 , and the following

lemma implies that the inclusion p−1(Bn−1)֓ E′ is a weak homotopy equivalence,

hence induces an isomorphism on all cohomology groups:

Lemma 4D.2. Given a fiber bundle p :E→B and a subspace A ⊂ B such that (B,A)

is k connected, then
(
E,p−1(A)

)
is also k connected.

Proof: For a map g : (Di, ∂Di)→
(
E,p−1(A)

)
with i ≤ k , there is by hypothesis a

homotopy ft : (Di, ∂Di)→(B,A) of f0 = pg to a map f1 with image in A . The ho-

motopy lifting property then gives a homotopy gt : (Di, ∂Di)→
(
E,p−1(A)

)
of g to a

map with image in p−1(A) . ⊔⊓

The theorem for finite-dimensional B will now follow by induction on n and the

five-lemma once we show that the left-hand Φ in the diagram is an isomorphism.

By the fiber bundle property there are open disk neighborhoods Uα ⊂ e
n
α of the

points xα such that the bundle is a product over each Uα . Let U =
⋃
αUα and

let U ′ = U ∩ B′ . By excision we have H∗(B, B′) ≈ H∗(U,U ′) , and H∗(E, E′) ≈

H∗
(
p−1(U),p−1(U ′)

)
. This gives a reduction to the problem of showing that the

map Φ :H∗(U,U ′)⊗RH
∗(F)→H∗(U×F,U ′×F) is an isomorphism. For this we can

either appeal to the relative Künneth formula in Theorem 3.18 or we can argue again

by induction, applying the five-lemma to the diagram with (B, B′) replaced by (U,U ′) ,

induction implying that the theorem holds for U and U ′ since they deformation re-

tract onto complexes of dimensions 0 and n− 1, respectively, and by the lemma we

can restrict to the bundles over these complexes.

Next there is the case that B is an infinite-dimensional CW complex. Since (B, Bn)

is n connected, the lemma implies that the same is true of
(
E,p−1(Bn)

)
. Hence in

the commutative diagram at the right the

horizontal maps are isomorphisms below

dimension n . Then the fact that the right-

hand Φ is an isomorphism, as we have al-

ready shown, implies that the left-hand Φ is an isomorphism below dimension n .

Since n is arbitrary, this gives the theorem for all CW complexes B .

To extend to the case of arbitrary base spaces B we need the notion of a pull-

back bundle which is used quite frequently in bundle theory. Given a fiber bundle
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p :E→B and a map f :A→B , let f∗(E) = {(a, e) ∈ A×E
∣∣ f(a) = p(e)} , so there is

a commutative diagram as at the right, where the two maps from

f∗(E) are (a, e)֏ a and (a, e)֏ e . It is a simple exercise to

verify that the projection f∗(E)→A is a fiber bundle with the

same fiber as E→B , since a local trivialization of E→B over U ⊂ B gives rise to a

local trivialization of f∗(E)→A over f−1(U) .

If f :A→B is a CW approximation to an arbitrary base space B , then f∗(E)→E
induces an isomorphism on homotopy groups by the five-lemma applied to the long

exact sequences of homotopy groups for the two bundles E→B and f∗(E)→A with

fiber F . Hence f∗(E)→E is also an isomorphism on cohomology. The classes cj pull

back to classes in H∗(f∗(E);R) which still restrict to a basis in each fiber, and so the

naturality of Φ reduces the theorem for E→B to the case of f∗(E)→A . ⊔⊓

Corollary 4D.3. (a) H∗(U(n);Z) ≈ ΛZ[x1, x3, ··· , x2n−1] , the exterior algebra on

generators xi of odd dimension i .

(b) H∗(SU(n);Z) ≈ ΛZ[x3, x5, ··· , x2n−1] .

(c) H∗(Sp(n);Z) ≈ ΛZ[x3, x7, ··· , x4n−1] .

These are ring isomorphisms, and the proof will involve bundles where the iso-

morphism in the Leray–Hirsch theorem happens to be an isomorphism of rings.

Proof: For (a), assume inductively that the result holds for U(n−1) . From the bundle

U(n−1)→U(n)→S2n−1 we see that the pair
(
U(n),U(n−1)

)
is (2n− 2) connected,

so Hi(U(n);Z)→Hi(U(n − 1);Z) is an isomorphism for i ≤ 2n− 3 and the classes

x1, ··· , x2n−3 ∈ H
∗(U(n − 1);Z) given by induction are the restrictions of classes

c1, ··· , c2n−3 ∈ H∗(U(n);Z) . The products of distinct xi ’s form an additive ba-

sis for H∗(U(n − 1);Z) ≈ ΛZ[x1, ··· , x2n−3] , and these products are restrictions

of the corresponding products of ci ’s, so the Leray–Hirsch theorem applies to give

an additive basis for H∗(U(n);Z) consisting of all products of distinct elements

x1 = c1, ··· , x2n−3 = c2n−3 and a new generator x2n−1 coming from H2n−1(S2n−1;Z) .

By commutativity of cup product this is the exterior algebra ΛZ[x1, ··· , x2n−1] .

The same proof works for Sp(n) using the bundle Sp(n− 1)→Sp(n)→S4n−1 .

In the case of SU(n) one uses the bundle SU(n− 1)→SU(n)→S2n−1 . Since SU(1)

is the trivial group, the bundle SU(1)→SU(2)→S3 shows that SU(2) = S3 , so the

first generator is x3 . ⊔⊓

It is illuminating to look more closely at how the homology and cohomology of

O(n) , U(n) , and Sp(n) are related to their bundle structures. For U(n) one has the

sequence of bundles
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If all these were product bundles, U(n) would be homeomorphic to the product

S1×S3× ··· ×S2n−1 . In actuality the bundles are nontrivial, but the homology and

cohomology of U(n) are the same as for this product of spheres, including the cup

product structure. For Sp(n) the situation is quite similar, with the corresponding

product of spheres S3×S7× ··· ×S4n−1 . For O(n) the corresponding sequence of

bundles is

The calculations in §3.D show that H∗(O(n);Z2) ≈ H∗(S
0×S1× ··· ×Sn−1;Z2) , but

with Z coefficients this no longer holds. Instead, consider the coarser sequence of

bundles

where the last bundle O(2k)→S2k−1 is omitted if n = 2k−1. As we remarked at the

end of §3.D in the case of SO(n) , the integral homology and cohomology groups of

O(n) are the same as if these bundles were products, but the cup product structure

for O(n) with Z2 coefficients is not the same as in this product.

Cohomology of Grassmannians

Here is an important application of the Leray–Hirsch theorem, generalizing the

calculation of the cohomology rings of projective spaces:

Theorem 4D.4. If Gn(C
∞) is the Grassmann manifold of n dimensional vector sub-

spaces of C∞ , then H∗(Gn(C
∞);Z) is a polynomial ring Z[c1, ··· , cn] on generators

ci of dimension 2i . Similarly, H∗(Gn(R
∞);Z2) is a polynomial ring Z2[w1, ··· ,wn]

on generators wi of dimension i , and H∗(Gn(H
∞);Z) ≈ Z[q1, ··· , qn] with qi of

dimension 4i .

The plan of the proof is to apply the Leray–Hirsch theorem to a fiber bundle

F -→E
p
-----→Gn(C

∞) where E has the same cohomology ring as the product of n copies

of CP∞ , a polynomial ring Z[x1, ··· , xn] with each xi 2 dimensional. The induced

map p∗ :H∗(Gn(C
∞);Z)→H∗(E;Z) will be injective, and we will show that its image

consists of the symmetric polynomials in Z[x1, ··· , xn] , the polynomials invariant

under permutations of the variables xi . It is a classical theorem in algebra that the

symmetric polynomials themselves form a polynomial ring Z[σ1, ··· , σn] where σi
is a certain symmetric polynomial of degree i , namely the sum of all products of i

distinct xj ’s. This gives the result for Gn(C
∞) , and the same argument will also apply

in the real and quaternionic cases.
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Proof: Define an n flag in Ck to be an ordered n tuple of orthogonal 1 dimensional

vector subspaces of Ck . Equivalently, an n flag could be defined as a chain of vector

subspaces V1 ⊂ ··· ⊂ Vn of Ck where Vi has dimension i . Why either of these objects

should be called a ‘flag’ is not exactly clear, but that is the traditional name. The set

of all n flags in C
k forms a subspace Fn(C

k) of the product of n copies of CPk−1 .

There is a natural fiber bundle

Fn(C
n) ------→Fn(C

k)
p
------------→Gn(C

k)

where p sends an n tuple of orthogonal lines to the n plane it spans. The local

triviality property can be verified just as was done for the analogous Stiefel bundle

Vn(C
n)→Vn(C

k)→Gn(C
k) in Example 4.53. The case k = ∞ is covered by the same

argument, and this case will be the bundle F→E→Gn(C
∞) alluded to in the para-

graph preceding the proof.

The first step in the proof is to show that H∗(Fn(C
∞);Z) ≈ Z[x1, ··· , xn] where

xi is the pullback of a generator of H2(CP∞;Z) under the map Fn(C
∞)→CP∞ pro-

jecting an n flag onto its ith line. This can be seen by considering the fiber bundle

CP∞ ------→Fn(C
∞)

p
------------→Fn−1(C

∞)

where p projects an n flag onto the (n−1) flag obtained by ignoring its last line. The

local triviality property can be verified by the argument in Example 4.54. The Leray–

Hirsch theorem applies since the powers of xn restrict to a basis for H∗(CP∞;Z) in the

fibers CP∞ , each fiber being the space of lines in a vector subspace C∞ of the standard

C
∞ . The elements xi for i < n are the pullbacks via p of elements of H∗(Fn−1(C

∞);Z)

defined in the same way. By induction H∗(Fn−1(C
∞);Z) is a polynomial ring on these

elements. From the Leray–Hirsch theorem we conclude that the products of powers

of the xi ’s for 1 ≤ i ≤ n form an additive basis for H∗(Fn(C
∞);Z) , hence this ring is

the polynomial ring on the xi ’s.

There is a corresponding result for Fn(C
k) , that H∗(Fn(C

k);Z) is free with basis

the monomials x
i1
1 ···x

in
n with ij ≤ k−j for each j . This is proved in exactly the same

way, using induction on n and the fiber bundle CPk−n→Fn(C
k)→Fn−1(C

k) . Thus the

cohomology groups of Fn(C
k) are isomorphic to those of CPk−1× ··· ×CPk−n .

After these preliminaries we can start the main argument, using the fiber bundle

Fn(C
n) -→ Fn(C

∞)
p
-----→ Gn(C

∞) . The preceding calculations show that the Leray–

Hirsch theorem applies, so H∗(Fn(C
∞);Z) is a free module over H∗(Gn(C

∞);Z) with

basis the monomials x
i1
1 ···x

in
n with ij ≤ n − j for each j . In particular, since 1 is

among the basis elements, the homomorphism p∗ is injective and its image is a direct

summand of H∗(Fn(C
∞);Z) . It remains to show that the image of p∗ is exactly the

symmetric polynomials.

To show that the image of p∗ is contained in the symmetric polynomials, consider

a map π :Fn(C
∞)→Fn(C

∞) permuting the lines in each n flag according to a given
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permutation of the numbers 1, ··· , n . The induced map π∗ on H∗(Fn(C
∞);Z) ≈

Z[x1, ··· , xn] is the corresponding permutation of the variables xi . Since permuting

the lines in an n flag has no effect on the n plane they span, we have pπ = p , hence

π∗p∗ = p∗ , which says that polynomials in the image of p∗ are invariant under

permutations of the variables.

As remarked earlier, the symmetric polynomials in Z[x1, ··· , xn] form a poly-

nomial ring Z[σ1, ··· , σn] where σi has degree i . We have shown that the image of

p∗ is a direct summand, so to show that p∗ maps onto the symmetric polynomials

it will suffice to show that the graded rings H∗(Gn(C
∞);Z) and Z[σ1, ··· , σn] have

the same rank in each dimension, where the rank of a finitely generated free abelian

group is the number of Z summands.

For a graded free Z module A =
⊕
iAi , define its Poincaré series to be the formal

power series pA(t) =
∑
i ait

i where ai is the rank of Ai , which we assume to be finite

for all i . The basic formula we need is that pA⊗B(t) = pA(t)pB(t) , which is immediate

from the definition of the graded tensor product.

In the case at hand all nonzero cohomology is in even dimensions, so let us sim-

plify notation by taking Ai to be the 2i dimensional cohomology of the space in

question. Since the Poincaré series of Z[x] is
∑
i t
i = (1− t)−1 , the Poincaré series of

H∗(Fn(C
∞);Z) is (1− t)−n . For H∗(Fn(C

n);Z) the Poincaré series is

(1+ t)(1+ t + t2) ··· (1+ t + ··· + tn−1) =
n∏

i=1

1− ti

1− t
= (1− t)−n

n∏

i=1

(1− ti)

From the additive isomorphism H∗(Fn(C
∞);Z) ≈ H∗(Gn(C

∞);Z)⊗H∗(Fn(C
n);Z) we

see that the Poincaré series p(t) of H∗(Gn(C
∞);Z) satisfies

p(t)(1− t)−n
n∏

i=1

(1− ti) = (1− t)−n and hence p(t) =
n∏

i=1

(1− ti)−1

This is exactly the Poincaré series of Z[σ1, ··· , σn] since σi has degree i . As noted

before, this implies that the image of p∗ is all the symmetric polynomials.

This finishes the proof for Gn(C
∞) . The same arguments apply in the other

two cases, using Z2 coefficients throughout in the real case and replacing ‘rank’ by

‘dimension’ for Z2 vector spaces. ⊔⊓

These calculations show that the isomorphism H∗(E;R) ≈ H∗(B;R)⊗RH
∗(F ;R)

of the Leray–Hirsch theorem is not generally a ring isomorphism, for if it were, then the

polynomial ring H∗(Fn(C
∞);Z) would contain a copy of H∗(Fn(C

n);Z) as a subring,

but in the latter ring some power of every positive-dimensional element is zero since

Hk(Fn(C
n);Z) = 0 for sufficiently large k .

The Gysin Sequence

Besides the Leray–Hirsch theorem, which deals with fiber bundles that are coho-

mologically like products, there is another special class of fiber bundles for which an
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elementary analysis of their cohomology structure is possible. These are fiber bun-

dles Sn−1 -→E
p
-----→B satisfying an orientability hypothesis that will always hold if B

is simply-connected or if we take cohomology with Z2 coefficients. For such bundles

we will show there is an exact sequence, called the Gysin sequence,

··· -→Hi−n(B;R) `e-----------------→Hi(B;R)
p∗

------------→Hi(E;R) -→Hi−n+1(B;R) -→···

where e is a certain ‘Euler class’ in Hn(B;R) . Since Hi(B;R) = 0 for i < 0, the

initial portion of the Gysin sequence gives isomorphisms p∗ :Hi(B;R)
≈
-----→Hi(E;R)

for i < n− 1, and the more interesting part of the sequence begins

0 -→Hn−1(B;R)
p∗

------------→Hn−1(E;R) -→H0(B;R) `e--------------→Hn(B;R)
p∗

------------→Hn(E;R) -→···

In the case of a product bundle E = Sn−1×B there is a section, a map s :B→E with

ps = 11, so the Gysin sequence breaks up into split short exact sequences

0 -→Hi(B;R)
p∗

------------→Hi(Sn−1×B;R) -→Hi−n+1(B;R) -→0

which agrees with the Künneth formula H∗(Sn−1×B;R) ≈ H∗(Sn−1;R)⊗RH
∗(B;R) .

The splitting holds whenever the bundle has a section, even if it is not a product.

For example, consider the bundle Sn−1→V2(R
n+1)

p
-----→ Sn . Points of V2(R

n+1)

are pairs (v1, v2) of orthogonal unit vectors in Rn+1 , and p(v1, v2) = v1 . If we think

of v1 as a point of Sn and v2 as a unit vector tangent to Sn at v1 , then V2(R
n+1)

is exactly the bundle of unit tangent vectors to Sn . A section of this bundle is a

field of unit tangent vectors to Sn , and such a vector field exists iff n is odd by

Theorem 2.28. The fact that the Gysin sequence splits when there is a section then

says that V2(R
n+1) has the same cohomology as the product Sn−1×Sn if n is odd, at

least when n > 1 so that the base space Sn is simply-connected and the orientability

hypothesis is satisfied. When n is even, the calculations at the end of §3.D show that

H∗(V2(R
n+1);Z) consists of Z ’s in dimensions 0 and 2n− 1 and a Z2 in dimension

n . The latter group appears in the Gysin sequence as

hence the Euler class e must be twice a generator of Hn(Sn) in the case that n is

even. When n is odd it must be zero in order for the Gysin sequence to split.

This example illustrates a theorem in differential topology that explains why the

Euler class has this name: The Euler class of the unit tangent bundle of a closed

orientable smooth n manifold M is equal to the Euler characteristic χ(M) times a

generator of Hn(M ;Z) .

Whenever a bundle Sn−1→E
p
-----→B has a section, the Euler class e must be zero

from exactness of H0(B) `e------------→ Hn(B)
p∗

---------→ Hn(E) since p∗ is injective if there is a

section. Thus the Euler class can be viewed as an obstruction to the existence of

a section: If the Euler class is nonzero, there can be no section. This qualitative
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statement can be made more precise by bringing in the machinery of obstruction

theory, as explained in [Milnor & Stasheff 1974] or [VBKT].

Before deriving the Gysin sequence let us look at some examples of how it can be

used to compute cup products.

Example 4D.5. Consider a bundle Sn−1 -→ E
p
-----→ B with E contractible, for exam-

ple the bundle S1→S∞→CP∞ or its real or quaternionic analogs. The long exact

sequence of homotopy groups for the bundle shows that B is (n − 1) connected.

Thus if n > 1, B is simply-connected and we have a Gysin sequence for cohomology

with Z coefficients. For n = 1 we take Z2 coefficients. If n > 1 then since E is

contractible, the Gysin sequence implies that Hi(B;Z) = 0 for 0 < i < n and that

`e :Hi(B;Z)→Hi+n(B;Z) is an isomorphism for i ≥ 0. It follows that H∗(B;Z) is

the polynomial ring Z[e] . When n = 1 the map p∗ :Hn−1(B;Z2)→H
n−1(E;Z2) in the

Gysin sequence is surjective, so we see that `e :Hi(B;Z2)→H
i+n(B;Z2) is again an

isomorphism for all i ≥ 0, and hence H∗(B;Z2) ≈ Z2[e] . Thus the Gysin sequence

gives a new derivation of the cup product structure in projective spaces. Also, since

polynomial rings Z[e] are realizable as H∗(X;Z) only when e has dimension 2 or 4,

as we show in Corollary 4L.10, we can conclude that there exist bundles Sn−1→E→B
with E contractible only when n is 1, 2, or 4.

Example 4D.6. For the Grassmann manifold Gn = Gn(R
∞) we have π1(Gn) ≈

π0O(n) ≈ Z2 , so the universal cover of Gn gives a bundle S0→G̃n→Gn . One can

view G̃n as the space of oriented n planes in R
∞ , which is obviously a 2 sheeted

covering space of Gn , hence the universal cover since it is path-connected, being the

quotient Vn(R
∞)/SO(n) of the contractible space Vn(R

∞) . A portion of the Gysin

sequence for the bundle S0→G̃n→Gn is H0(Gn;Z2)
`e------------→H1(Gn;Z2) -→H1(G̃n;Z2) .

This last group is zero since G̃n is simply-connected, and H1(Gn;Z2) ≈ Z2 since

H∗(Gn;Z2) ≈ Z2[w1, ··· ,wn] as we showed earlier in this section, so e = w1 and

the map `e :H∗(Gn;Z2)→H
∗(Gn;Z2) is injective. The Gysin sequence then breaks

up into short exact sequences 0→Hi(Gn;Z2)
`e------------→Hi+1(Gn;Z2)→H

i+1(G̃n;Z2)→0,

from which it follows that H∗(G̃n;Z2) is the quotient ring Z2[w1, ··· ,wn]/(w1) ≈

Z2[w2, ··· ,wn] .

Example 4D.7. The complex analog of the bundle in the preceding example is a bundle

S1→G̃n(C
∞)→Gn(C

∞) with G̃n(C
∞) 2 connected. This can be constructed in the

following way. There is a determinant homomorphism U(n)→S1 with kernel SU(n) ,

the unitary matrices of determinant 1, so S1 is the coset space U(n)/SU(n) , and by

restricting the action of U(n) on Vn(C
∞)

to SU(n) we obtain the second row of the

commutative diagram at the right. The

second row is a fiber bundle by the usual

argument of choosing continuously varying orthonormal bases in n planes near a
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given n plane. One sees that the space G̃n(C
∞) = Vn(C

∞)/SU(n) is 2 connected

by looking at the relevant portion of the diagram of homotopy groups associated to

these two bundles:

The second vertical map is an isomorphism since S1 embeds in U(n) as the subgroup

U(1) . Since the boundary map in the upper row is an isomorphism, so also is the

boundary map in the lower row, and then exactness implies that G̃n is 2 connected.

The Gysin sequence for S1→G̃n(C
∞)→Gn(C

∞) can be analyzed just as in the

preceding example. Part of the sequence is H0(Gn;Z) `e------------→H2(Gn;Z) -→H2(G̃n;Z) ,

and this last group is zero since G̃n is 2 connected, so e must be a generator of

H2(Gn;Z) ≈ Z . Since H∗(Gn;Z) is a polynomial algebra Z[c1, ··· , cn] , we must

have e = ±c1 , so the map `e :H∗(Gn;Z)→H∗(Gn;Z) is injective, the Gysin se-

quence breaks up into short exact sequences, and H∗(G̃n;Z) is the quotient ring

Z[c1, ··· , cn]/(c1) ≈ Z[c2, ··· , cn] .

The spaces G̃n in the last two examples are often denoted BSO(n) and BSU(n) ,

expressing the fact that they are related to the groups SO(n) and SU(n) via bundles

SO(n)→Vn(R
∞)→BSO(n) and SU(n)→Vn(C

∞)→BSU(n) with contractible total

spaces Vn . There is no quaternion analog of BSO(n) and BSU(n) since for n = 2

this would give a space with cohomology ring Z[x] on an 8 dimensional generator,

which is impossible by Corollary 4L.10.

Now we turn to the derivation of the Gysin sequence, which follows a rather

roundabout route:

(1) Deduce a relative version of the Leray–Hirsch theorem from the absolute case.

(2) Specialize this to the case of bundles with fiber a disk, yielding a basic result

called the Thom isomorphism.

(3) Show this applies to all orientable disk bundles.

(4) Deduce the Gysin sequence by plugging the Thom isomorphism into the long

exact sequence of cohomology groups for the pair consisting of a disk bundle

and its boundary sphere bundle.

(1) A fiber bundle pair consists of a fiber bundle p :E→B with fiber F , together with

a subspace E′ ⊂ E such that p :E′→B is a bundle with fiber a subspace F ′ ⊂ F ,

with local trivializations for E′ obtained by restricting local trivializations for E . For

example, if E→B is a bundle with fiber Dn and E′ ⊂ E is the union of the boundary

spheres of the fibers, then (E, E′) is a fiber bundle pair since local trivializations of E

restrict to local trivializations of E′ , in view of the fact that homeomorphisms from

an n disk to an n disk restrict to homeomorphisms between their boundary spheres,

boundary and interior points of Dn being distinguished by the local homology groups

Hn(D
n,Dn − {x};Z) .
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Theorem 4D.8. Suppose that (F, F ′)→(E, E′)
p
-----→B is a fiber bundle pair such that

H∗(F, F ′;R) is a free R module, finitely generated in each dimension. If there exist

classes cj ∈ H
∗(E, E′;R) whose restrictions form a basis for H∗(F, F ′;R) in each

fiber (F, F ′) , then H∗(E, E′;R) , as a module over H∗(B;R) , is free with basis {cj} .

The module structure is defined just as in the absolute case by bc = p∗(b)` c ,

but now we use the relative cup product H∗(E;R)×H∗(E, E′;R)→H∗(E, E′;R) .

Proof: Construct a bundle Ê→B from E by attaching the mapping cylinder M of

p :E′→B to E by identifying the subspaces E′ ⊂ E and E′ ⊂ M . Thus the fibers

F̂ of Ê are obtained from the fibers F by attaching cones CF ′ on the subspaces

F ′ ⊂ F . Regarding B as the subspace of Ê at one end of the mapping cylinder M , we

have H∗(Ê,M ;R) ≈ H∗(Ê − B,M − B;R) ≈ H∗(E, E′;R) via excision and the obvious

deformation retraction of Ê − B onto E . The long exact sequence of a triple gives

H∗(Ê,M ;R) ≈ H∗(Ê, B;R) since M deformation retracts to B . All these isomorphisms

are H∗(B;R) module isomorphisms. Since B is a retract of Ê via the bundle projection

Ê→B , we have a splitting H∗(Ê;R) ≈ H∗(Ê, B;R)
⊕
H∗(B;R) as H∗(B;R) modules.

Let ĉj ∈ H
∗(Ê;R) correspond to cj ∈ H

∗(E, E′;R) ≈ H∗(Ê, B;R) in this splitting.

The classes ĉj together with 1 restrict to a basis for H∗(F̂ ;R) in each fiber F̂ =

F ∪ CF ′ , so the absolute form of the Leray–Hirsch theorem implies that H∗(Ê;R) is

a free H∗(B;R) module with basis {1, ĉj} . It follows that {cj} is a basis for the free

H∗(B;R) module H∗(E, E′;R) . ⊔⊓

(2) Now we specialize to the case of a fiber bundle pair (Dn, Sn−1) -→ (E, E′)
p
-----→ B .

An element c ∈ Hn(E, E′;R) whose restriction to each fiber (Dn, Sn−1) is a gener-

ator of Hn(Dn, Sn−1;R) ≈ R is called a Thom class for the bundle. We are mainly

interested in the cases R = Z and Z2 , but R could be any commutative ring with

identity, in which case a ‘generator’ is an element with a multiplicative inverse, so

all elements of R are multiples of the generator. A Thom class with Z coefficients

gives rise to a Thom class with any other coefficient ring R under the homomorphism

Hn(E, E′;Z)→Hn(E, E′;R) induced by the homomorphism Z→R sending 1 to the

identity element of R .

Corollary 4D.9. If the disk bundle (Dn, Sn−1) -→ (E, E′)
p
-----→ B has a Thom class

c ∈ Hn(E, E′;R) , then the map Φ :Hi(B;R)→Hi+n(E, E′;R) , Φ(b) = p∗(b) ` c , is

an isomorphism for all i ≥ 0 , and Hi(E, E′;R) = 0 for i < n . ⊔⊓

The isomorphism Φ is called the Thom isomorphism. The corollary can be made

into a statement about absolute cohomology by defining the Thom space T(E) to be

the quotient E/E′ . Each disk fiber Dn of E becomes a sphere Sn in T(E) , and all

these spheres coming from different fibers are disjoint except for the common base-

point x0 = E
′/E′ . A Thom class can be regarded as an element of Hn(T(E),x0;R) ≈
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Hn(T(E);R) that restricts to a generator of Hn(Sn;R) in each ‘fiber’ Sn in T(E) , and

the Thom isomorphism becomes Hi(B;R) ≈ H̃n+i(T(E);R) .

(3) The major remaining step in the derivation of the Gysin sequence is to relate the

existence of a Thom class for a disk bundle Dn→E→B to a notion of orientability

of the bundle. First we define orientability for a sphere bundle Sn−1→E′→B . In

the proof of Proposition 4.61 we described a procedure for lifting paths γ in B to

homotopy equivalences Lγ between the fibers above the endpoints of γ . We did this

for fibrations rather than fiber bundles, but the method applies equally well to fiber

bundles whose fiber is a CW complex since the homotopy lifting property was used

only for the fiber and for the product of the fiber with I . In the case of a sphere

bundle Sn−1→E′→B , if γ is a loop in B then Lγ is a homotopy equivalence from

the fiber Sn−1 over the basepoint of γ to itself, and we define the sphere bundle to

be orientable if Lγ induces the identity map on Hn−1(Sn−1;Z) for each loop γ in B .

For example, the Klein bottle, regarded as a bundle over S1 with fiber S1 , is

nonorientable since as we follow a path looping once around the base circle, the cor-

responding fiber circles sweep out the full Klein bottle, ending up where they started

but with orientation reversed. The same reasoning shows that the torus, viewed as a

circle bundle over S1 , is orientable. More generally, any sphere bundle that is a prod-

uct is orientable since the maps Lγ can be taken to be the identity for all loops γ .

Also, sphere bundles over simply-connected base spaces are orientable since γ ≃ η

implies Lγ ≃ Lη , hence all Lγ ’s are homotopic to the identity when all loops γ are

nullhomotopic.

One could define orientability for a disk bundle Dn→E→B by relativizing the

previous definition, constructing lifts Lγ which are homotopy equivalences of the

fiber pairs (Dn, Sn−1) . However, since Hn(Dn, Sn−1;Z) is canonically isomorphic to

Hn−1(Sn−1;Z) via the coboundary map in the long exact sequence of the pair, it is

simpler and amounts to the same thing just to define E to be orientable if its boundary

sphere subbundle E′ is orientable.

Theorem 4D.10. Every disk bundle has a Thom class with Z2 coefficients, and ori-

entable disk bundles have Thom classes with Z coefficients.

An exercise at the end of the section is to show that the converse of the last state-

ment is also true: A disk bundle is orientable if it has a Thom class with Z coefficients.

Proof: The case of a non-CW base space B reduces to the CW case by pulling back over

a CW approximation to B , as in the Leray–Hirsch theorem, applying the five-lemma

to say that the pullback bundle has isomorphic homotopy groups, hence isomorphic

absolute and relative cohomology groups. From the definition of the pullback bundle

it is immediate that the pullback of an orientable sphere bundle is orientable. There

is also no harm in assuming the base CW complex B is connected. We will show:
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(∗)

If the disk bundle Dn→E→B is orientable and B is a connected CW complex,

then the restriction map Hi(E, E′;Z)→Hi(Dnx , S
n−1
x ;Z) is an isomorphism for

all fibers Dnx , x ∈ B , and for all i ≤ n .

For Z2 coefficients we will see that (∗) holds without any orientability hypothesis.

Hence with either Z or Z2 coefficients, a generator of Hn(E, E′) ≈ Hn(Dnx , S
n−1
x ) is a

Thom class.

If the disk bundle Dn→E→B is orientable, then if we choose an isomorphism

Hn(Dnx , S
n−1
x ;Z) ≈ Z for one fiber Dnx , this determines such isomorphisms for all

fibers by composing with the isomorphisms L∗γ , which depend only on the endpoints

of γ . Having made such a choice, then if (∗) is true, we have a preferred isomorphism

Hn(E, E′;Z) ≈ Z which restricts to the chosen isomorphism Hn(Dnx , S
n−1
x ;Z) ≈ Z for

each fiber. This is because for a path γ from x to y , the inclusion (Dnx , S
n−1
x )֓(E, E′)

is homotopic to the composition of Lγ with the inclusion (Dny , S
n−1
y )֓ (E, E′) . We

will use this preferred isomorphism Hn(E, E′;Z) ≈ Z in the inductive proof of (∗)

given below. In the case of Z2 coefficients, there can be only one isomorphism of

a group with Z2 so no choices are necessary and orientability is irrelevant. We will

prove (∗) in the Z coefficient case, leaving it to the reader to replace all Z ’s in the

proof by Z2 ’s to obtain a proof in the Z2 case.

Suppose first that the CW complex B has finite dimension k . Let U ⊂ B be the

subspace obtained by deleting one point from the interior of each k cell of B , and let

V ⊂ B be the union of the open k cells. Thus B = U ∪ V . For a subspace A ⊂ B let

EA→A and E′A→A be the disk and sphere bundles obtained by taking the subspaces

of E and E′ projecting to A . Consider the following portion of a Mayer–Vietoris

sequence, with Z coefficients implicit from now on:

Hn(E, E′) -→Hn(EU , E
′
U)
⊕
Hn(EV , E

′
V )

Ψ
------------→Hn(EU∩V , E

′
U∩V)

The first map is injective since the preceding term in the sequence is zero by induction

on k , since U ∩ V deformation retracts onto a disjoint union of (k − 1) spheres

and we can apply Lemma 4D.2 to replace EU∩V by the part of E over this union

of (k − 1) spheres. By exactness we then have an isomorphism Hn(E, E′) ≈ KerΨ .

Similarly, by Lemma 4D.2 and induction each of the terms Hn(EU , E
′
U) , H

n(EV , E
′
V ) ,

and Hn(EU∩V , E
′
U∩V) is a product of Z ’s, with one Z factor for each component of the

spaces involved, projection onto the Z factor being given by restriction to any fiber in

the component. Elements of KerΨ are pairs (α,β) ∈ Hn(EU , E
′
U)
⊕
Hn(EV , E

′
V ) having

the same restriction to Hn(EU∩V , E
′
U∩V ) . Since B is connected, this means that all the

Z coordinates of α and β in the previous direct product decompositions must be

equal, since between any two components of U or V one can interpolate a finite

sequence of components of U and V alternately, each component in the sequence

having nontrivial intersection with its neighbors. Thus KerΨ is a copy of Z , with

restriction to a fiber being the isomorphism Hn(E, E′) ≈ Z .
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To finish proving (∗) for finite-dimensional B it remains to see that Hi(E, E′) = 0

for i < n , but this follows immediately by looking at an earlier stage of the Mayer–

Vietoris sequence, where the two terms adjacent to Hi(E, E′) vanish by induction.

Proving (∗) for an infinite-dimensional CW complex B reduces to the finite-

dimensional case as in the Leray–Hirsch theorem since we are only interested in co-

homology in a finite range of dimensions. ⊔⊓

(4) Now we can derive the Gysin sequence for a sphere bundle Sn−1→E
p
-----→B . Con-

sider the mapping cylinder Mp , which is a disk bundle Dn→Mp
p
-----→B with E as its

boundary sphere bundle. Assuming that a Thom class c ∈ Hn(Mp, E;R) exists, as is

the case if E is orientable or if R = Z2 , then the long exact sequence of cohomology

groups for the pair (Mp, E) gives the first row of the following commutative diagram,

with R coefficients implicit:

The maps Φ are the Thom isomorphism, and the vertical map p∗ is an isomorphism

since Mp deformation retracts onto B . The Euler class e ∈ Hn(B;R) is defined to be

(p∗)−1j∗(c) , c being a Thom class. The square containing the map `e commutes

since for b ∈ Hi−n(B;R) we have j∗Φ(b) = j∗(p∗(b) ` c) = p∗(b) ` j∗(c) , which

equals p∗(b ` e) = p∗(b) ` p∗(e) since p∗(e) = j∗(c) . Another way of defining e

is as the class corresponding to c ` c under the Thom isomorphism, since Φ(e) =
p∗(e)` c = j∗(c)` c = c ` c .

Finally, the lower row of the diagram is by definition the Gysin sequence. ⊔⊓

To conclude this section we will use the following rather specialized application

of the Gysin sequence to compute a few more examples of spaces with polynomial

cohomology.

Proposition 4D.11. Suppose that S2k−1 -→ E
p
-----→ B is an orientable sphere bundle

such that H∗(E;R) is a polynomial ring R[x1, ··· , xℓ] on even-dimensional genera-

tors xi . Then H∗(B;R) = R[y1, ··· , yℓ, e] where e is the Euler class of the bundle

and p∗(yi) = xi for each i .

Proof: Consider the three terms Hi(B;R) `e------------→ Hi+2k(B;R) -----→ Hi+2k(E;R) of the

Gysin sequence. If i is odd, the third term is zero since E has no odd-dimensional

cohomology. Hence the map `e is surjective, and by induction on dimension this

implies that H∗(B;R) is zero in odd dimensions. This means the Gysin sequence

reduces to short exact sequences

0 -→H2i(B;R) `e-----------------→H2i+2k(B;R)
p∗

------------→H2i+2k(E;R) -→0
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Since p∗ is surjective, we can choose elements yj ∈ H
∗(B;R) with p∗(yj) = xj . It

remains to check that H∗(B;R) = R[y1, ··· , yℓ, e] , which is elementary algebra: Given

b ∈ H∗(B;R) , p∗(b) must be a polynomial f(x1, ··· , xℓ) , so b− f(y1, ··· , yℓ) is in

the kernel of p∗ and exactness gives an equation b−f(y1, ··· , yℓ) = b
′
`e for some

b′ ∈ H∗(B;R) . Since b′ has lower dimension than b , we may assume by induction that

b′ is a polynomial in y1, ··· , yℓ, e . Hence b = f(y1, ··· , yℓ)+b
′
`e is also a polyno-

mial in y1, ··· , yℓ, e . Thus the natural map R[y1, ··· , yℓ, e]→H
∗(B;R) is surjective.

To see that it is injective, suppose there is a polynomial relation f(y1, ··· , yℓ, e) = 0 in

H∗(B;R) . Applying p∗ , we get f(x1, ··· , xℓ,0) = 0 since p∗(yi) = xi and p∗(e) = 0

from the short exact sequence. The relation f(x1, ··· , xℓ,0) = 0 takes place in the

polynomial ring R[x1, ··· , xℓ] , so f(y1, ··· , yℓ,0) = 0 in R[y1, ··· , yℓ, e] , hence

f(y1, ··· , yℓ, e) must be divisible by e , say f = ge for some polynomial g . The

relation f(y1, ··· , yℓ, e) = 0 in H∗(B;R) then has the form g(y1, ··· , yℓ, e)` e = 0.

Since `e is injective, this gives a polynomial relation g(y1, ··· , yℓ, e) = 0 with g hav-

ing lower degree than f . By induction we deduce that g must be the zero polynomial,

hence also f . ⊔⊓

Example 4D.12. Let us apply this to give another proof that H∗(Gn(C
∞);Z) is a

polynomial ring Z[c1, ··· , cn] with |ci| = 2i . We use two fiber bundles:

S2n−1 -→E -→Gn(C
∞) S∞ -→E -→Gn−1(C

∞)

The total space E in both cases is the space of pairs (P, v) where P is an n plane in

C
∞ and v is a unit vector in P . In the first bundle the map E→Gn(C

∞) is (P, v)֏P ,

with fiber S2n−1 , and for the second bundle the map E→Gn−1(C
∞) sends (P, v) to the

(n − 1) plane in P orthogonal to v , with fiber S∞ consisting of all the unit vectors

in C
∞ orthogonal to a given (n − 1) plane. Local triviality for the two bundles is

verified in the usual way. Since S∞ is contractible, the map E→Gn−1(C
∞) induces

isomorphisms on homotopy groups, hence also on cohomology. By induction on n we

then have H∗(E;Z) ≈ Z[c1, ··· , cn−1] . The first bundle is orientable since Gn(C
∞) is

simply-connected, so the proposition gives H∗(Gn(C
∞);Z) ≈ Z[c1, ··· , cn] for cn = e .

The same argument works in the quaternionic case. For a version of this argument

in the real case see §3.3 of [VBKT].

Before giving our next example, let us observe that the Gysin sequence with a

fixed coefficient ring R is valid for any orientable fiber bundle F -→ E
p¬
-----→ B whose

fiber is a CW complex F with H∗(F ;R) ≈ H∗(Sn−1;R) . Orientability is defined just

as before in terms of induced maps L∗γ :Hn−1(F ;R)→Hn−1(F ;R) . No changes are

needed in the derivation of the Gysin sequence to get this more general case, if the

associated ‘disk’ bundle is again taken to be the mapping cylinder CF→Mp→B .

Example 4D.13. We have computed the cohomology of G̃n(R
∞) with Z2 coefficients,

finding it to be a polynomial ring on generators in dimensions 2 through n , and now
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we compute the cohomology with Zp coefficients for p an odd prime. The answer

will again be a polynomial algebra, but this time on even-dimensional generators,

depending on the parity of n . Consider first the case that n is odd, say n = 2k+ 1.

There are two fiber bundles

V2(R
2k+1) -→E -→G̃2k+1(R

∞) V2(R
∞) -→E -→G̃2k−1(R

∞)

where E is the space of triples (P, v1, v2) with P an oriented (2k + 1) plane in R
∞

and v1 and v2 two orthogonal unit vectors in P . The projection map in the first

bundle is (P, v1, v2)֏ P , and for the second bundle the projection sends (P, v1, v2)

to the oriented (2k − 1) plane in P orthogonal to v1 and v2 , with the orientation

specified by saying for example that v1, v2 followed by a positively oriented basis

for the orthogonal (2k − 1) plane is a positively oriented basis for P . Both bundles

are orientable since their base spaces G̃n(R
∞) are simply-connected, from the bundle

SO(n)→Vn(R
∞)→G̃n(R

∞) .

The fiber V2(R
∞) of the second bundle is contractible, so E has the same coho-

mology as G̃2k−1(R
∞) . The fiber of the first bundle has the same Zp cohomology as

S4k−1 if p is odd, by the calculation at the end of §3.D. So if we assume inductively

that H∗(G̃2k−1(R
∞);Zp) ≈ Zp[p1, ··· , pk−1] with |pi| = 4i , then Proposition 4D.11

above implies that H∗(G̃2k+1(R
∞);Zp) ≈ Zp[p1, ··· , pk] where pk = e has dimension

4k . The induction can start with G̃1(R
∞) which is just S∞ since an oriented line in

R
∞ contains a unique unit vector in the positive direction.

To handle the case of G̃n(R
∞) with n = 2k even, we proceed just as in Exam-

ple 4D.12, considering the bundles

S2k−1 -→E -→G̃2k(R
∞) S∞ -→E -→G̃2k−1(R

∞)

By the case n odd we have H∗(G̃2k−1(R
∞);Zp) ≈ Zp[p1, ··· , pk−1] with |pi| = 4i , so

the corollary implies that H∗(G̃2k(R
∞);Zp) is a polynomial ring on these generators

and also a generator in dimension 2k .

Summarizing, for p an odd prime we have shown:

H∗(G̃2k+1(R
∞);Zp) ≈ Zp[p1, ··· , pk], |pi| = 4i

H∗(G̃2k(R
∞);Zp) ≈ Zp[p1, ··· , pk−1, e], |pi| = 4i, |e| = 2k

The same result holds also with Q coefficients. In fact, our proof applies for any

coefficient ring in which 2 has a multiplicative inverse, since all that is needed is that

H∗(V2(R
2k+1);R) ≈ H∗(S4k−1;R) . For a calculation of the cohomology of G̃n(R

∞)

with Z coefficients, see [VBKT]. It turns out that all torsion elements have order 2,

and modulo this torsion the integral cohomology is again a polynomial ring on the

generators pi and e . Similar results hold also for the cohomology of the unoriented

Grassmann manifold Gn(R
∞) , but with the generator e replaced by pk when n = 2k .
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Exercises

1. By Exercise 35 in §4.2 there is a bundle S2→CP3→S4 . Let S2→Ek→S
4 be the

pullback of this bundle via a degree k map S4→S4 , k > 1. Use the Leray-Hirsch

theorem to show that H∗(Ek;Z) is additively isomorphic to H∗(CP3;Z) but has a

different cup product structure in which the square of a generator of H2(Ek;Z) is k

times a generator of H4(Ek;Z) .

2. Apply the Leray–Hirsch theorem to the bundle S1→S∞/Zp→CP∞ to compute

H∗(K(Zp ,1);Zp) from H∗(CP∞;Zp) .

3. Use the Leray–Hirsch theorem as in Corollary 4D.3 to compute H∗(Vn(C
k);Z) ≈

ΛZ[x2k−2n+1, x2k−2n+3, ··· , x2k−1] and similarly in the quaternionic case.

4. For the flag space Fn(C
n) show that H∗(Fn(C

n);Z) ≈ Z[x1, ··· , xn]/(σ1, ··· , σn)

where σi is the ith elementary symmetric polynomial.

5. Use the Gysin sequence to show that for a fiber bundle Sk→Sm
p
-----→ Sn we must

have k = n− 1 and m = 2n− 1. Then use the Thom isomorphism to show that the

Hopf invariant of p must be ±1. [Hence n = 1,2,4,8 by Adams’ theorem.]

6. Show that if M is a manifold of dimension 2n for which there exists a fiber bundle

S1→S2n+1→M , then M is simply-connected and H∗(M ;Z) ≈ H∗(CPn;Z) as rings.

Conversely, if M is simply-connected and H∗(M ;Z) ≈ H∗(CPn;Z) as rings, show there

is a bundle S1→E→M where E ≃ S2n+1 . [When n > 1 there are examples where M

is not homeomorphic to CPn .]

7. Show that if a disk bundle Dn→E→B has a Thom class with Z coefficients, then

it is orientable.

8. If E is the product bundle B×Dn with B a CW complex, show that the Thom space

T(E) is the n fold reduced suspension Σn(B+) , where B+ is the union of B with

a disjoint basepoint, and that the Thom isomorphism specializes to the suspension

isomorphism H̃i(B;R) ≈ H̃n+i(ΣnB;R) given by the reduced cross product in §3.2.

9. Show that the inclusion Tn֓ U(n) of the n torus of diagonal matrices is homo-

topic to the map Tn→U(1)֓ U(n) sending an n tuple of unit complex numbers

(z1, ··· , zn) to the 1×1 matrix (z1 ···zn) . Do the same for the diagonal subgroup of

Sp(n) . [Hint: Diagonal matrices in U(n) are compositions of scalar multiplication in

n lines in Cn , and CPn−1 is connected.]

10. Fill in the details of the following argument to show that every n×n matrix

A with entries in H has an eigenvalue in H . (The usual argument over C involv-

ing roots of the characteristic polynomial does not work due to the lack of a good

quaternionic determinant function.) For t ∈ [0,1] and λ ∈ S3 ⊂ H , consider the

matrix tλI + (1− t)A . If A has no eigenvalues, this is invertible for all t . Thus the

map S3→GLn(H) , λ֏ λI , is nullhomotopic. But by the preceding problem and

Exercise 10(b) in §3.C, this map represents n times a generator of π3GLn(H) .
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In Theorem 4.58 in §4.3 we showed that Ω spectra define cohomology theories,

and now we will prove the converse statement that all cohomology theories on the

CW category arise in this way from Ω spectra.

Theorem 4E.1. Every reduced cohomology theory on the category of basepointed

CW complexes and basepoint-preserving maps has the form hn(X) = 〈X,Kn〉 for

some Ω spectrum {Kn} .

We will also see that the spaces Kn are unique up to homotopy equivalence.

This theorem gives another proof that ordinary cohomology is representable as

maps into Eilenberg–MacLane spaces, since for the spaces Kn in an Ω spectrum rep-

resenting H̃∗(−;G) we have πi(Kn) = 〈S
i, Kn〉 = H̃

n(Si;G) , so Kn is a K(G,n) .

Before getting into the proof of the theorem let us observe that cofibration se-

quences, as constructed in §4.3, allow us to recast the definition of a reduced coho-

mology theory in a slightly more concise form: A reduced cohomology theory on the

category C whose objects are CW complexes with a chosen basepoint 0 cell and whose

morphisms are basepoint-preserving maps is a sequence of functors hn , n ∈ Z , from

C to abelian groups, together with natural isomorphisms hn(X) ≈ hn+1(ΣX) for all

X in C , such that the following axioms hold for each hn :

(i) If f ≃ g :X→Y in the basepointed sense, then f∗ = g∗ :hn(Y )→hn(X) .

(ii) For each inclusion A֓X in C the sequence hn(X/A)→hn(X)→hn(A) is exact.

(iii) For a wedge sum X =
∨
αXα with inclusions iα :Xα֓ X , the product map∏

αi
∗
α :hn(X)→

∏
αh

n(Xα) is an isomorphism.

To see that these axioms suffice to define a cohomology theory, the main thing to

note is that the cofibration sequence A→X→X/A→ΣA→ ··· allows us to construct

the long exact sequence of a pair, just as we did in the case of the functors hn(X) =

〈X,Kn〉 . In the converse direction, if we have natural long exact sequences of pairs,

then by applying these to pairs of the form (CX,X) we get natural isomorphisms

hn(X) ≈ hn+1(ΣX) . Note that these natural isomorphisms coming from coboundary

maps of pairs (CX,X) uniquely determine the coboundary maps for all pairs (X,A)

via the diagram at the right, where the maps from

hn(A) are coboundary maps of pairs and the dia-

gram commutes by naturality of these coboundary

maps. The isomorphism comes from a deforma-

tion retraction of CX onto CA . It is easy to check that these processes for converting

one definition of a cohomology theory into the other are inverses of each other.

Most of the work in representing cohomology theories by Ω spectra will be in

realizing a single functor hn of a cohomology theory as 〈−, Kn〉 for some space Kn .
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So let us consider what properties the functor h(X) = 〈X,K〉 has, where K is a fixed

space with basepoint. First of all, it is a contravariant functor from the category

of basepointed CW complexes to the category of pointed sets, that is, sets with a

distinguished element, the homotopy class of the constant map in the present case.

Morphisms in the category of pointed sets are maps preserving the distinguished

element. We have already seen in §4.3 that h(X) satisfies the three axioms (i)–(iii). A

further property is the following Mayer–Vietoris axiom:

Suppose the CW complex X is the union of subcomplexes A and B containing

the basepoint. Then if a ∈ h(A) and b ∈ h(B) restrict to the same element of

h(A ∩ B) , there exists an element x ∈ h(X) whose restrictions to A and B are

the given elements a and b .

Here and in what follows we use the term ‘restriction’ to mean the map induced by

inclusion. In the case that h(X) = 〈X,K〉 , this axiom is an immediate consequence of

the homotopy extension property. The functors hn in any cohomology theory also

satisfy this axiom since there are Mayer–Vietoris exact sequences in any cohomology

theory, as we observed in §2.3 in the analogous setting of homology theories.

Theorem 4E.2. If h is a contravariant functor from the category of connected base-

pointed CW complexes to the category of pointed sets, satisfying the homotopy ax-

iom (i), the Mayer–Vietoris axiom, and the wedge axiom (iii), then there exists a

connected CW complex K and an element u ∈ h(K) such that the transformation

Tu : 〈X,K〉→h(X) , Tu(f ) = f
∗(u) , is a bijection for all X .

Such a pair (K,u) is called universal for the functor h . It is automatic from

the definition that the space K in a universal pair (K,u) is unique up to homo-

topy equivalence. For if (K′, u′) is also universal for h , then, using the notation

f : (K,u)→(K′, u′) to mean f :K→K′ with f∗(u′) = u , universality implies that

there are maps f : (K,u)→(K′, u′) and g : (K′, u′)→(K,u) that are unique up to ho-

motopy. Likewise the compositions gf : (K,u)→(K,u) and fg : (K′, u′)→(K′, u′)
are unique up to homotopy, hence are homotopic to the identity maps.

Before starting the proof of this theorem we make a few preliminary comments

on the axioms.

(1) The wedge axiom implies that h(point) is trivial. To see this, just use the fact that

for any X we have X ∨ point = X , so the map h(X)×h(point)→h(X) induced by

inclusion of the first summand is a bijection, but this map is the projection (a, b)֏a ,

hence h(point) must have only one element.

(2) Axioms (i), (iii), and the Mayer–Vietoris axiom imply axiom (ii). Namely, (ii) is equiv-

alent to exactness of h(A)←h(X)←h(X∪CA) , where CA is the reduced cone since

we are in the basepointed category. The inclusion Im ⊂ Ker holds since the composi-

tion A→X∪CA is nullhomotopic, so the induced map factors through h(point) = 0.
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To obtain the opposite inclusion Ker ⊂ Im, decompose X ∪ CA into two subspaces

Y and Z by cutting along a copy of A halfway up the cone CA , so Y is a smaller

copy of CA and Z is the reduced mapping cylinder of the inclusion A֓ X . Given

an element x ∈ h(X) , this extends to an element z ∈ h(Z) since Z deformation

retracts to X . If x restricts to the trivial element of h(A) , then z restricts to the

trivial element of h(Y ∩Z) . The latter element extends to the trivial element of h(Y) ,

so the Mayer–Vietoris axiom implies there is an element of h(X ∪ CA) restricting to

z in h(Z) and hence to x in h(X) .

(3) If h satisfies axioms (i) and (iii) then h(ΣY) is a group and Tu : 〈ΣY ,K〉→h(ΣY) is

a homomorphism for all suspensions ΣY and all pairs (K,u) . [See the Corrections.]

The proof of Theorem 4E.2 will use two lemmas. To state the first, consider

pairs (K,u) with K a basepointed connected CW complex and u ∈ h(K) , where h

satisfies the hypotheses of the theorem. Call such a pair (K,u) n universal if the

homomorphism Tu :πi(K)→h(S
i) , Tu(f ) = f

∗(u) , is an isomorphism for i < n

and surjective for i = n . Call (K,u) π∗ universal if it is n universal for all n .

Lemma 4E.3. Given any pair (Z, z) with Z a connected CW complex and z ∈ h(Z) ,

there exists a π∗ universal pair (K,u) with Z a subcomplex of K and u||Z = z .

Proof: We construct K from Z by an inductive process of attaching cells. To begin,

let K1 = Z
∨
αS

1
α where α ranges over the elements of h(S1) . By the wedge axiom

there exists u1 ∈ h(K1) with u1
||Z = z and u1

||S
1
α = α , so (K1, u1) is 1 universal.

For the inductive step, suppose we have already constructed (Kn, un) with un
n universal, Z ⊂ Kn , and un ||Z = z . Represent each element α in the kernel of

Tun :πn(Kn)→h(S
n) by a map fα :Sn→Kn . Let f =

∨
αfα :

∨
αS

n
α→Kn . The reduced

mapping cylinder Mf deformation retracts to Kn , so we can regard un as an element

of h(Mf ) , and this element restricts to the trivial element of h(
∨
αS

n
α) by the definition

of f . The exactness property of h then implies that for the reduced mapping cone

Cf = Mf /
∨
αS

n
α there is an element w ∈ h(Cf ) restricting to un on Kn . Note that Cf

is obtained from Kn by attaching cells en+1
α by the maps fα . To finish the construction

of Kn+1 , set Kn+1 = Cf
∨
βS

n+1
β where β ranges over h(Sn+1) . By the wedge axiom,

there exists un+1 ∈ h(Kn+1) restricting to w on Cf and β on Sn+1
β .

To see that (Kn+1, un+1) is (n+1) universal, consider the commutative diagram

displayed at the right. Since Kn+1 is obtained from Kn by

attaching (n+1) cells, the upper map is an isomorphism

for i < n and a surjection for i = n . By induction the

same is true for Tun , hence it is also true for Tun+1
. The

kernel of Tun+1
is trivial for i = n since an element of this kernel pulls back to

KerTun ⊂ πn(Kn) , by surjectivity of the upper map when i = n , and we attached

cells to Kn by maps representing all elements of KerTun . Also, Tun+1
is surjective for

i = n+ 1 by construction.
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Now let K =
⋃
nKn . We apply a mapping telescope argument as in the proofs of

Lemma 2.34 and Theorem 3F.8 to show there is an element u ∈ h(K) restricting to

un on Kn , for all n . The mapping telescope of the inclusions K1֓ K2֓ ··· is the

subcomplex T =
⋃
iKi×[i, i+1] of K×[1,∞) . We take ‘× ’ to be the reduced product

here, with basepoint × interval collapsed to a point. The natural projection T→K is a

homotopy equivalence since K×[1,∞) deformation retracts onto T , as we showed in

the proof of Lemma 2.34. Let A ⊂ T be the union of the subcomplexes Ki×[i, i+1] for

i odd and let B be the corresponding union for i even. Thus A∪B = T , A∩B =
∨
iKi ,

A ≃
∨
iK2i−1 , and B ≃

∨
iK2i . By the wedge axiom there exist a ∈ h(A) and b ∈ h(B)

restricting to ui on each Ki . Then using the fact that ui+1
||Ki = ui , the Mayer–Vietoris

axiom implies that a and b are the restrictions of an element t ∈ h(T) . Under the

isomorphism h(T) ≈ h(K) , t corresponds to an element u ∈ h(K) restricting to un
on Kn for all n .

To verify that (K,u) is π∗ universal we use the com-

mutative diagram at the right. For n > i + 1 the upper

map is an isomorphism and Tun is surjective with trivial

kernel, so the same is true of Tu . ⊔⊓

Lemma 4E.4. Let (K,u) be a π∗ universal pair and let (X,A) be a basepointed CW

pair. Then for each x ∈ h(X) and each map f :A→K with f∗(u) = x ||A there

exists a map g :X→K extending f with g∗(u) = x .

Schematically, this is saying that the diagonal arrow in

the diagram at the right always exists, where the map i is

inclusion.

Proof: Replacing K by the reduced mapping cylinder of f reduces us to the case

that f is the inclusion of a subcomplex. Let Z be the union of X and K with the

two copies of A identified. By the Mayer–Vietoris axiom, there exists z ∈ h(Z) with

z ||X = x and z ||K = u . By the previous lemma, we can embed (Z, z) in a π∗ universal

pair (K′, u′) . The inclusion (K,u)֓ (K′, u′) induces an isomorphism on homotopy

groups since both u and u′ are π∗ universal, so K′ deformation retracts onto K .

This deformation retraction induces a homotopy rel A of the inclusion X֓K′ to a

map g :X→K . The relation g∗(u) = x holds since u′ ||K = u and u′ ||X = x . ⊔⊓

Proof of Theorem 4E.2: It suffices to show that a π∗ universal pair (K,u) is univer-

sal. Applying the preceding lemma with A a point shows that Tu : 〈X,K〉→h(X) is

surjective. To show injectivity, suppose Tu(f0) = Tu(f1) , that is, f∗0 (u) = f
∗
1 (u) . We

apply the preceding lemma with (X×I,X×∂I) playing the role of (X,A) , using the

maps f0 and f1 on X×∂I and taking x to be p∗f∗0 (u) = p
∗f∗1 (u) where p is the

projection X×I→X . Here X×I should be the reduced product, with basepoint ×I

collapsed to a point. The lemma then gives a homotopy from f0 to f1 . ⊔⊓
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Proof of Theorem 4E.1: Since suspension is an isomorphism in any reduced coho-

mology theory, and the suspension of any CW complex is connected, it suffices to re-

strict attention to connected CW complexes. Each functor hn satisfies the homotopy,

wedge, and Mayer–Vietoris axioms, as we noted earlier, so the preceding theorem

gives CW complexes Kn with hn(X) = 〈X,Kn〉 . It remains to show that the natu-

ral isomorphisms hn(X) ≈ hn+1(ΣX) correspond to weak homotopy equivalences

Kn→ΩKn+1 . The natural isomorphism hn(X) ≈ hn+1(ΣX) corresponds to a nat-

ural bijection 〈X,Kn〉 ≈ 〈ΣX,Kn+1〉 = 〈X,ΩKn+1〉 which we call Φ . The naturality

of this bijection gives, for any map f :X→Kn , a

commutative diagram as at the right. Let εn =

Φ(11) :Kn→ΩKn+1 . Then using commutativity

we have Φ(f ) = Φf∗(11) = f∗Φ(11) = f∗(εn) =
εnf , which says that the map Φ : 〈X,Kn〉→〈X,ΩKn+1〉 is composition with εn . Since

Φ is a bijection, if we take X to be Si , we see that εn induces an isomorphism on πi
for all i , so εn is a weak homotopy equivalence and we have an Ω spectrum.

There is one final thing to verify, that the bijection hn(X) = 〈X,Kn〉 is a group

isomorphism, where 〈X,Kn〉 has the group structure that comes from identifying

it with 〈X,ΩKn+1〉 = 〈ΣX,Kn+1〉 . Via the natural isomorphism hn(X) ≈ hn+1(ΣX)
this is equivalent to showing the bijection hn+1(ΣX) = 〈ΣX,Kn+1〉 preserves group

structure. For maps f ,g :ΣX→K , the relation Tu(f + g) = Tu(f ) + Tu(g) means

(f +g)∗(u) = f∗(u)+g∗(u) , and this holds since (f+g)∗ = f∗+g∗ :h(K)→h(ΣX)
by Lemma 4.60. ⊔⊓

We have seen in §4.3 and the preceding section how cohomology theories have

a homotopy-theoretic interpretation in terms of Ω spectra, and it is natural to look

for a corresponding description of homology theories. In this case we do not already

have a homotopy-theoretic description of ordinary homology to serve as a starting

point. But there is another homology theory we have encountered which does have a

very homotopy-theoretic flavor:

Proposition 4F.1. Stable homotopy groups π sn(X) define a reduced homology theory

on the category of basepointed CW complexes and basepoint-preserving maps.

Proof: In the preceding section we reformulated the axioms for a cohomology theory

so that the exactness axiom asserts just the exactness of hn(X/A)→hn(X)→hn(A)
for CW pairs (X,A) . In order to derive long exact sequences, the reformulated axioms
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require also that natural suspension isomorphisms hn(X) ≈ hn+1(ΣX) be specified

as part of the cohomology theory. The analogous reformulation of the axioms for a

homology theory is valid as well, by the same argument, and we shall use this in what

follows.

For stable homotopy groups, suspension isomorphisms π sn(X) ≈ π
s
n+1(ΣX) are

automatic, so it remains to verify the three axioms. The homotopy axiom is appar-

ent. The exactness of a sequence π sn(A)→π
s
n(X)→π

s
n(X/A) follows from exactness

of πn(A)→πn(X)→πn(X,A) together with the isomorphism πn(X,A) ≈ πn(X/A)

which holds under connectivity assumptions that are achieved after sufficiently many

suspensions. The wedge sum axiom π sn(
∨
αXα) ≈

⊕
απ

s
n(Xα) reduces to the case of

finitely many summands by the usual compactness argument, and the case of finitely

many summands reduces to the case of two summands by induction. Then we have

isomorphisms πn+i(ΣiX∨ΣiY) ≈ πn+i(ΣiX×ΣiY) ≈ πn+i(ΣiX)
⊕
πn+i(ΣiY) , the first

of these isomorphisms holding when n+ i < 2i− 1, or i > n+ 1, since ΣiX ∨ ΣiY is

the (2i− 1) skeleton of ΣiX×ΣiY . Passing to the limit over increasing i , we get the

desired isomorphism π sn(X ∨ Y) ≈ π
s
n(X)

⊕
π sn(Y ) . ⊔⊓

A modest generalization of this homology theory can be obtained by defining

hn(X) = π
s
n(X∧K) for a fixed complex K . Verifying the homology axioms reduces to

the case of stable homotopy groups themselves by basic properties of smash product:

hn(X) ≈ hn+1(ΣX) since Σ(X ∧K) = (ΣX)∧ K , both spaces being S1 ∧ X ∧K .

The exactness axiom holds since (X∧K)/(A∧K) = (X/A)∧K , both spaces being

quotients of X×K with A×K ∪X×{k0} collapsed to a point.

The wedge axiom follows from distributivity: (
∨
αXα)∧K =

∨
α (Xα ∧ K) .

The coefficients of this homology theory are hn(S
0) = π sn(S

0 ∧ K) = π sn(K) . Sup-

pose for example that K is an Eilenberg–MacLane space K(G,n) . Because K(G,n) is

(n − 1) connected, its stable homotopy groups are the same as its unstable homo-

topy groups below dimension 2n . Thus if we shift dimensions by defining hi(X) =

π si+n
(
X ∧K(G,n)

)
we obtain a homology theory whose coefficient groups below di-

mension n are the same as ordinary homology with coefficients in G . It follows as

in Theorem 4.59 that this homology theory agrees with ordinary homology for CW

complexes of dimension less than n− 1.

This dimension restriction could be removed if there were a ‘stable Eilenberg–

MacLane space’ whose stable homotopy groups were zero except in one dimension.

However, this is a lot to ask for, so instead one seeks to form a limit of the groups

π si+n
(
X∧K(G,n)

)
as n goes to infinity. The spaces K(G,n) for varying n are related

by weak homotopy equivalences K(G,n)→ΩK(G,n+1) . Since suspension plays such

a large role in the current discussion, let us consider instead the corresponding map

ΣK(G,n)→K(G,n+ 1) , or to write this more concisely, ΣKn→Kn+1 This induces a

map π si+n(X ∧ Kn) = π
s
i+n+1(X ∧ ΣKn)→π si+n+1(X ∧ Kn+1) . Via these maps, it then
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makes sense to consider the direct limit as n goes to infinity, the group hi(X) =

lim
--→π

s
i+n(X ∧ Kn) . This gives a homology theory since direct limits preserve exact

sequences so the exactness axiom holds, and direct limits preserve isomorphisms

so the suspension isomorphism and the wedge axiom hold. The coefficient groups

of this homology theory are the same as for ordinary homology with G coefficients

since hi(S
0) = lim

--→π
s
i+n(Kn) is zero unless i = 0, when it is G . Hence this homology

theory coincides with ordinary homology by Theorem 4.59.

To place this result in its natural generality, define a spectrum to be a sequence

of CW complexes Kn together with basepoint-preserving maps ΣKn→Kn+1 . This

generalizes the notion of an Ω spectrum, where the maps ΣKn→Kn+1 come from

weak homotopy equivalences Kn→ΩKn+1 . Another obvious family of examples is

suspension spectra, where one starts with an arbitrary CW complex X and defines

Kn = ΣnX with ΣKn→Kn+1 the identity map.

The homotopy groups of a spectrum K are defined to be πi(K) = lim
--→πi+n(Kn)

where the direct limit is computed using the compositions

πi+n(Kn)
Σ
----------→πi+n+1(ΣKn) ------→πi+n+1(Kn+1)

with the latter map induced by the given map ΣKn→Kn+1 . Thus in the case of the

suspension spectrum of a space X , the homotopy groups of the spectrum are the

same as the stable homotopy groups of X . For a general spectrum K we could also

describe πi(K) as lim
--→π

s
i+n(Kn) since the composition πi+n(Kn)→πi+n+j(Kn+j) fac-

tors through πi+n+j(ΣjKn) . So the homotopy groups of a spectrum are ‘stable homo-

topy groups’ essentially by definition.

Returning now to the context of homology theories, if we are given a spectrum

K and a CW complex X , then we have a spectrum X ∧ K with (X ∧ K)n = X ∧ Kn ,

using the obvious maps Σ(X ∧Kn) = X ∧ΣKn→X∧Kn+1 . The groups πi(X ∧K) are

the groups lim
--→π

s
i+n(X ∧ Kn) considered earlier in the case of an Eilenberg–MacLane

spectrum, and the arguments given there show:

Proposition 4F.2. For a spectrum K , the groups hi(X) = πi(X∧K) form a reduced

homology theory. When K is the Eilenberg–MacLane spectrum with Kn = K(G,n) ,

this homology theory is ordinary homology, so πi(X ∧ K) ≈ H̃i(X;G) . ⊔⊓

If one wanted to associate a cohomology theory to an arbitrary spectrum K , one’s

first inclination would be to set hi(X) = lim
--→〈Σ

nX,Kn+i〉 , the direct limit with respect

to the compositions

〈ΣnX,Kn+i〉
Σ
----------→ 〈Σn+1X,ΣKn+i〉 ------→〈Σn+1X,Kn+i+1〉

For example, in the case of the sphere spectrum S = {Sn} this definition yields the

stable cohomotopy groups π is(X) = lim
--→〈Σ

nX,Sn+i〉 . Unfortunately the definition

hi(X) = lim
--→〈Σ

nX,Kn+i〉 runs into problems with the wedge sum axiom since the direct
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limit of a product need not equal the product of the direct limits. For finite wedge sums

there is no difficulty, so we do have a cohomology theory for finite CW complexes. But

for general CW complexes a different definition is needed. The simplest thing to do

is to associate to each spectrum K an Ω spectrum K′ and let hn(X) = 〈X,K′n〉 . We

obtain K′ from K by setting K′n = lim
--→Ω

iKn+i , the mapping telescope of the sequence

Kn→ΩKn+1→Ω2Kn+2→ ··· . The Ω spectrum structure is given by equivalences

K′n = lim
--→Ω

iKn+i ≃ lim
--→Ω

i+1Kn+i+1
κ
------------→Ω lim

--→Ω
iKn+i+1 = ΩK′n+1

The first homotopy equivalence comes from deleting the first term of the sequence

Kn→ΩKn+1→Ω2Kn+2→ ··· , which has negligible effect on the mapping telescope.

The next map κ is a special case of the natural weak equivalence lim
--→ΩZn→Ω lim

--→Zn
that holds for any sequence Z1→Z2→ ··· . Strictly speaking, we should let K′n be a

CW approximation to the mapping telescope lim
--→Ω

iKn+i in order to obtain a spectrum

consisting of CW complexes, in accordance with our definition of a spectrum.

In case one starts with a suspension spectrum Kn = ΣnK it is not necessary

to take mapping telescopes since one can just set K′n =
⋃
iΩiΣi+nK =

⋃
iΩiΣiKn ,

the union with respect to the natural inclusions ΩiΣiKn ⊂ Ωi+1Σi+1Kn . The union⋃
iΩiΣiX is usually abbreviated to Ω∞Σ∞X . Another common notation for this union

is QX . Thus πi(QX) = π
s
i (X) , so Q is a functor converting stable homotopy groups

into ordinary homotopy groups.

It follows routinely from the definitions that the homology theory defined by a

spectrum is the same as the homology theory defined by the associated Ω spectrum.

One may ask whether every homology theory is defined by a spectrum, as we showed

for cohomology. The answer is yes if one replaces the wedge axiom by a stronger

direct limit axiom: hi(X) = lim
--→hi(Xα) , the direct limit over the finite subcomplexes

Xα of X . The homology theory defined by a spectrum satisfies this axiom, and the

converse is proved in [Adams 1971].

Spectra have become the preferred language for describing many stable phenom-

ena in algebraic topology. The increased flexibility of spectra is not without its price,

however, since a number of concepts that are elementary for spaces become quite a

bit more subtle for spectra, such as the proper definition of a map between spectra,

or the smash product of two spectra. For the reader who wants to learn more about

this language a good starting point is [Adams 1974].

Exercises

1. Assuming the first two axioms for a homology theory on the CW category, show

that the direct limit axiom implies the wedge sum axiom. Show that the converse also

holds for countable CW complexes.

2. For CW complexes X and Y consider the suspension sequence

〈X,Y 〉
Σ
-----→〈ΣX,ΣY 〉 Σ

-----→〈Σ2X,Σ2Y 〉 -----→···
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Show that if X is a finite complex, these maps eventually become isomorphisms. [Use

induction on the number of cells of X and the five-lemma.]

3. Show that for any sequence Z1→Z2→ ··· , the natural map lim
--→ΩZn→Ω lim

--→Zn is

a weak homotopy equivalence, where the direct limits mean mapping telescopes.

It is a common practice in algebraic topology to glue spaces together to form

more complicated spaces. In this section we describe two general procedures for

making such constructions. The first is fairly straightforward but also rather rigid,

lacking some homotopy invariance properties an algebraic topologist would like to

see. The second type of gluing construction avoids these drawbacks by systematic

use of mapping cylinders. We have already seen many special cases of both types of

constructions, and having a general framework covering all these special cases should

provide some conceptual clarity.

A diagram of spaces consists of an oriented graph Γ with a space Xv for each

vertex v of Γ and a map fe :Xv→Xw for each edge e of Γ from a vertex v to a vertex

w , the words ‘from’ and ‘to’ referring to the given orientation of e . Commutativity of

the diagram is not assumed. Denoting such a diagram of spaces simply by X , we define

a space X to be the quotient of the disjoint union of all the spaces Xv associated to

vertices of Γ under the identifications x ∼ fe(x) for all maps fe associated to edges

of Γ . To give a name to this construction, let us call X the amalgamation of the

diagram X . Here are some examples:

If the diagram of spaces has the simple form X0

f
←------ A֓ X1 then X is the

space X0 ⊔f X1 obtained from X0 by attaching X1 along A via f .

A sequence of inclusions X0֓ X1֓ ··· determines a diagram of spaces X for

which X is
⋃
iXi with the weak topology. This holds more generally when the

spaces Xi are indexed by any directed set.

From a cover U = {Xi} of a space X by subspaces Xi we can form a diagram of

spaces XU whose vertices are the nonempty finite intersections Xi1 ∩ ··· ∩ Xin
with distinct indices ij , and whose edges are the various inclusions obtained by

omitting some of the subspaces in such an intersection, for example the inclusions

Xi ∩ Xj֓ Xi . Then XU equals X as a set, though possibly with a different

topology. If the cover is an open cover, or if X is a CW complex and the Xi ’s are

subcomplexes, then the topology will be the original topology on X .

An action of a group G on a space X determines a diagram of spaces XG , with X

itself as the only space and with maps the homeomorphisms g :X→X , g ∈ G ,

given by the action. In this case XG is the orbit space X/G .
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A ∆ complex X can be viewed as a diagram of spaces X∆ where each simplex

of X gives a vertex space Xv which is a simplex of the same dimension, and the

edge maps are the inclusions of faces into the simplices that contain them. Then

X∆ = X .

It can very easily happen that for a diagram of spaces X the amalgamation X

is rather useless because so much collapsing has occurred that little of the original

diagram remains. For example, consider a diagram X of the form X0←X0×X1→X1

whose maps are the projections onto the two factors. In this case X is simply a point.

To correct for problems like this, and to get a notion with nicer homotopy-theoretic

properties, we introduce the homotopy version of X , which we shall denote ∆X
and call the realization of X . Here we again start with the disjoint union of all the

vertex spaces Xv , but instead of passing to a quotient space of this disjoint union,

we enlarge it by filling in a mapping cylinder Mf for each map f of the diagram,

identifying the two ends of this cylinder with the appropriate Xv ’s. In the case of the

projection diagram X0←X0×X1→X1 , the union of the two mapping cylinders is the

same as the quotient of X0×X1×I with X0×X1×{0} collapsed to X0 and X0×X1×{1}

collapsed to X1 . Thus ∆X is the join X0 ∗X1 defined in Chapter 0.

We have seen a number of other special cases of the construction ∆X . For a dia-

gram consisting of just one map f :X0→X1 one gets of course the mapping cylinder

Mf itself. For a diagram X0

f
←------ X1

g
-----→X2 the realization ∆X is a double mapping

cylinder. In case X2 is a point this is the mapping cone of f . When the diagram has

just one space and one map from this space to itself, then ∆X is the mapping torus.

For a diagram consisting of two maps f ,g :X0→X1 the space ∆X was studied in Ex-

ample 2.48. Mapping telescopes are the case of a sequence of maps X0→X1→ ··· .

In §1.B we considered general diagrams in which the spaces are K(G,1) ’s.

There is a natural generalization of ∆X in which one starts with a ∆ complex

Γ and a diagram of spaces associated to the 1 skeleton of Γ such that the maps

corresponding to the edges of each n simplex of Γ , n > 1, form a commutative di-

agram. We call this data a complex of spaces. If X is a complex of spaces, then

for each n simplex of Γ we have a sequence of maps X0

f1
-----→ X1

f2
-----→ ···

fn
-----→ Xn ,

and we define the iterated mapping cylinder M(f1, ··· , fn) to be the usual map-

ping cylinder for n = 1, and inductively for n > 1, the mapping cylinder of the

composition M(f1, ··· , fn−1)→Xn−1

fn
-----→ Xn where the first map is the canonical

projection of a mapping cylinder onto its target end. There is a natural projection

M(f1, ··· , fn)→∆n , and over each face of ∆n one has the iterated mapping cylin-

der for the maps associated to the edges in this face. For example when n = 2 one

has the three mapping cylinders M(f1) , M(f2) , and M(f2f1) over the three edges

of ∆2 . All these iterated mapping cylinders over the various simplices of Γ thus fit

together to form a space ∆X with a canonical projection ∆X→Γ . We again call ∆X
the realization of the complex of spaces X , and we call Γ the base of X or ∆X .
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Some of our earlier examples of diagrams of spaces can be regarded in a natural

way as complexes of spaces:

For a cover U = {Xi} of a space X the diagram of spaces XU whose vertices are

the finite intersections of Xi ’s and whose edges are inclusions is a complex of

spaces with n simplices the n fold inclusions. The base Γ for this complex of

spaces is the barycentric subdivision of the nerve of the cover. Recall from the

end of §3.3 that the nerve of a cover is the simplicial complex with n simplices

the nonempty (n+ 1) fold intersections of sets in the cover.

The diagram of spaces XG associated to an action of a group G on a space X is a

complex of spaces, with n simplices corresponding to the n fold compositions

X
g1
-----→X

g2
-----→ ···

gn
-----→X . The base ∆ complex Γ is the K(G,1) called BG in §1.B.

This was the orbit space of a free action of G on a contractible ∆ complex EG .

Checking through the definitions, one sees that the space ∆XG in this case can

be regarded as the quotient of X×EG under the diagonal action of G , g(x,y) =

(g(x), g(y)) . This is the space we called the Borel construction in §3.G, with the

notation X×GEG .

By a map f :X→Y of complexes of spaces over the same base Γ we mean a

collection of maps fv :Xv→Yv for all the vertices of Γ , with commutative squares

over all edges of Γ . There is then an induced map ∆f :∆X→∆Y .

Proposition 4G.1. If all the maps fv making up a map of complexes of spaces

f :X→Y are homotopy equivalences, then so is the map ∆f :∆X→∆Y .

Proof: The mapping cylinders M(fv) form a complex of spaces M(f) over the same

base Γ , and the space ∆M(f) is the mapping cylinder M(∆f) . This deformation

retracts onto ∆Y , so it will suffice to show that it also deformation retracts onto ∆X .

Let Mn(∆f) be the part of M(∆f) lying over the n skeleton of Γ . We claim that

Mn(∆f) ∪∆X deformation retracts onto Mn−1(∆f) ∪∆X . It is enough to show this

when Γ = ∆n . In this case f is a map from X0→ ···→Xn to Y0→ ···→Yn . By

Corollary 0.20 it suffices to show that the inclusion Mn−1(∆f) ∪ ∆X֓M(∆f) is a

homotopy equivalence and the pair (M(∆f),Mn−1(∆f)∪∆X) satisfies the homotopy

extension property. The latter assertion is evident from Example 0.15 since a mapping

cylinder neighborhood is easily constructed for this pair. For the other condition, note

that by induction on the dimension of Γ we may assume that Mn−1(∆f) deformation

retracts onto the part of ∆X over ∂∆n . Also, the inclusion ∆X֓ M(∆f) is a ho-

motopy equivalence since it is equivalent to the map Xn→Yn , which is a homotopy

equivalence by hypothesis. So Corollary 0.20 applies, and the claim that Mn(∆f)∪∆X
deformation retracts onto Mn−1(∆f)∪∆X is proved.

Letting n vary, the infinite concatenation of these deformation retractions in the

t intervals [1/2n+1,1/2n] gives a deformation retraction of M(∆f) onto ∆X . ⊔⊓
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There is a canonical map ∆X→ X induced by retracting each mapping cylinder

onto its target end. In some cases this is a homotopy equivalence, for example, for

a diagram X0←A֓ X1 where the pair (X1, A) has the homotopy extension prop-

erty. Another example is a sequence of inclusions X0֓X1֓ ··· for which the pairs

(Xn, Xn−1) satisfy the homotopy extension property, by the argument involving map-

ping telescopes in the proof of Lemma 2.34. However, without some conditions on

the maps it need not be true that ∆X→ X is a homotopy equivalence, as the earlier

example of the projections X0←X0×X1→X1 shows. Even with inclusion maps one

need not have ∆X ≃ X if the base Γ is not contractible. A trivial example is the

diagram consisting of the two spaces ∆0 and ∆1 and two maps f0, f1 :∆0→∆1 that

happen to have the same image.

Thus one can expect the map ∆X→ X to be a homotopy equivalence only in

special circumstances. Here is one such situation:

Proposition 4G.2. When XU is the complex of spaces associated to an open cover

U = {Xi} of a paracompact space X , the map p :∆XU→ XU = X is a homotopy

equivalence.

Proof: The realization ∆XU can also be described as the quotient space of the disjoint

union of all the products Xi0 ∩ ··· ∩ Xin×∆
n , as the subscripts range over sets of

n+ 1 distinct indices and n ≥ 0, with the identifications over the faces of ∆n using

inclusions Xi0 ∩ ··· ∩ Xin֓ Xi0 ∩ ··· ∩ X̂ij ∩ ··· ∩ Xin . From this viewpoint, points

of ∆XU in a given ‘fiber’ p−1(x) can be written as finite linear combinations
∑
i tixi

where
∑
i ti = 1 and xi is x regarded as a point of Xi , for those Xi ’s that contain x .

Since X is paracompact there is a partition of unity subordinate to the cover

U . This is a family of maps ϕα :X→[0,1] satisfying three conditions: The sup-

port of each ϕα is contained in some Xi(α) , only finitely many ϕα ’s are nonzero

near each point of X , and
∑
αϕα = 1. Define a section s :X→∆XU of p by setting

s(x) =
∑
αϕα(x)xi(α) . The figure shows the case X = S1 with a

cover by two arcs, the heavy line indicating the image of s . In the

general case the section s embeds X as a retract of ∆XU , and it

is a deformation retract since points in fibers p−1(x) can move

linearly along line segments to s(x) . ⊔⊓

Corollary 4G.3. If U is an open cover of a paracompact space X such that every

nonempty intersection of finitely many sets in U is contractible, then X is homotopy

equivalent to the nerve NU .

Proof: The proposition gives a homotopy equivalence X ≃ ∆XU . Since the nonempty

finite intersections of sets in U are contractible, the earlier proposition implies that

the map ∆XU→Γ induced by sending each intersection to a point is a homotopy

equivalence. Since Γ is the barycentric subdivision of NU , the result follows. ⊔⊓
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Let us conclude this section with a few comments about terminology. For some

diagrams of spaces such as sequences X1→X2→ ··· the amalgamation X can be

regarded as the direct limit of the vertex spaces Xv with respect to the edge maps

fe . Following this cue, the space X is commonly called the direct limit for arbitrary

diagrams, even finite ones. If one views X as a direct limit, then ∆X becomes a sort

of homotopy direct limit. For reasons that are explained in the next section, direct

limits are often called ‘colimits’. This has given rise to the rather unfortunate name of

‘hocolim’ for ∆X , short for ‘homotopy colimit’. In preference to this we have chosen

the term ‘realization’, both for its intrinsic merits and because ∆X is closely related

to what is called the geometric realization of a simplicial space.

Exercises

1. Show that for a sequence of maps X0

f1
-----→X1

f2
-----→ ··· , the infinite iterated mapping

cylinder M(f1, f2, ···) , which is the union of the finite iterated mapping cylinders

M(f1, ··· , fn) , deformation retracts onto the mapping telescope.

2. Show that if X is a complex of spaces in which all the maps are homeomorphisms,

then the projection ∆X→Γ is a fiber bundle.

3. What is the nerve of the cover of a simplicial complex by the open stars of its

vertices? [See Lemma 2C.2.]

4. Show that Proposition 4G.2 and its corollary hold also for CW complexes and covers

by families of subcomplexes. [CW complexes are paracompact; see [VBKT].]

There is a very nice duality principle in homotopy theory, called Eckmann–Hilton

duality in its more refined and systematic aspects, but which in its most basic form

involves the simple idea of reversing the direction of all arrows in a given construc-

tion. For example, if in the definition of a fibration as a map satisfying the homotopy

lifting property we reverse the direction of all the arrows, we obtain the dual notion of

a cofibration. This is a map i :A→B satisfying the following prop-

erty: Given g̃0 :B→X and a homotopy gt :A→X such that g̃0i = g0 ,

there exists a homotopy g̃t :B→X such that g̃ti = gt . In the special

case that i is the inclusion of a subspace, this is the homotopy extension property,

and the next proposition says that this is indeed the general case. So a cofibration is

the same as an inclusion satisfying the homotopy extension property.

Proposition 4H.1. If i :A→B is a cofibration, then i is injective, and in fact a homeo-

morphism onto its image.
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Proof: Consider the mapping cylinder Mi , the quotient of A×I∐B in which (a,1) is

identified with i(a) . Let gt :A→Mi be the homotopy mapping a ∈ A to the image of

(a,1− t) ∈ A×I in Mi , and let g̃0 be the inclusion B֓Mi . The cofibration property

gives g̃t :B→Mi with g̃ti = gt . Restricting to a fixed t > 0, this implies i is injective

since gt is. Furthermore, since gt is a homeomorphism onto its image A×{1 − t} ,

the relation g̃ti = gt implies that the map g−1
t g̃t : i(A)→A is a continuous inverse of

i :A→i(A) . ⊔⊓

Many constructions for fibrations have analogs for cofibrations, and vice versa.

For example, for an arbitrary map f :A→B the inclusion A֓Mf is readily seen to

be a cofibration, so the analog of the factorization A֓Ef→B of f into a homotopy

equivalence followed by a fibration is the factorization A֓Mf→B into a cofibration

followed by a homotopy equivalence. Even the definition of Mf is in some way dual to

the definition of Ef , since Ef can be defined as a pullback and Mf can be defined as

a dual pushout. In general, the pushout of maps

f :Z→X and g :Z→Y is defined as the quotient

of X ∐ Y under the identifications f(z) ∼ g(z) .

Thus the pushout is a quotient of X∐Y , while the pullback of maps X→Z and Y→Z
is a subobject of X×Y , so we see here two instances of duality: a duality between

disjoint union and product, and a duality between subobjects and quotients. The first

of these is easily explained, since a collection of maps Xα→X is equivalent to a map∐
αXα→X , while a collection of maps X→Xα is equivalent to a map X→

∏
αXα . The

notation
∐

for the ‘coproduct’ was chosen to indicate that it is dual to
∏

. If we were

dealing with basepointed spaces and maps, the coproduct would be wedge sum. In

the category of abelian groups the coproduct is direct sum.

The duality between subobjects and quotient objects is clear for abelian groups,

where subobjects are kernels and quotient objects cokernels. The strict topological

analog of a kernel is a fiber of a fibration. Dually, the topological analog of a cokernel

is the cofiber B/A of a cofibration A֓B . If we make an arbitrary map f :A→B into

a cofibration A֓Mf , the cofiber is the mapping cone Cf =Mf /(A×{0}) .

In the diagram showing Ef and Mf as pullback and pushout, there also appears to

be some sort of duality involving the terms A×I and BI . This leads us to ask whether

X×I and XI are in some way dual. Indeed, if we ignore topology and just think set-

theoretically, this is an instance of the familiar product–coproduct duality since the

product of copies of X indexed by I is XI , all functions I→X , while the coproduct

of copies of X indexed by I is X×I , the disjoint union of the sets X×{t} for t ∈ I .

Switching back from the category of sets to the topological category, we can view XI

as a ‘continuous product’ of copies of X and X×I as a ‘continuous coproduct’.

On a less abstract level, the fact that maps A×I→B are the same as maps A→BI

indicates a certain duality between A×I and BI . This leads to a duality between
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suspension and loopspace, since ΣA is a quotient of A×I and ΩB is a subspace

of BI . This duality is expressed in the adjoint relation 〈ΣX,Y 〉 = 〈X,ΩY 〉 from §4.3.

Combining this duality between Σ and Ω with the duality between fibers and cofibers,

we see a duality relationship between the fibration and cofibration sequences of §4.3:

··· -→ΩF -→ΩE -→ΩB -→F -→E -→B

A→X→X/A→ΣA→ΣX→Σ(X/A)→ ···

Pushout and pullback constructions can be generalized to arbitrary diagrams. In

the case of pushouts, this was done in §4.G where we associated a space X to a dia-

gram of spaces X . This was the quotient of the coproduct
∐
vXv , with v ranging over

vertices of the diagram, under the identifications x ∼ fe(x) for all maps fe associated

to edges e of the diagram. The dual construction X would be the subspace of the

product
∏
vXv consisting of tuples (xv) with fe(xv) = xw for all maps fe :Xv→Xw

in the diagram. Perhaps more useful in algebraic topology is the homotopy variant of

this notion obtained by dualizing the definition of ∆X in the previous section. This

is the space ∇X consisting of all choices of a point xv in each Xv and a path γe in

the target space of each edge map fe :Xv→Xw , with γe(0) = f(xv) and γe(1) = xw .

The subspace with all paths constant is X . In the case of a diagram ···→X2→X1

such as a Postnikov tower this construction gives something slightly different from

simply turning each successive map into a fibration via the usual pathspace construc-

tion, starting with X2→X1 and proceeding up the tower, as we did in §4.3. The latter

construction is rather the dual of an iterated mapping cylinder, involving spaces of

maps ∆n→Xv instead of simply pathspaces. One could use such mapping spaces to

generalize the definition of ∇X from diagrams of spaces to complexes of spaces.

As special cases of the constructions X and X we have direct limits and

inverse limits for diagrams X0→X1→ ··· and ···→X1→X0 , respectively. Since

inverse limit is related to product and direct limit to coproduct, it is common practice

in some circles to use reverse logic and call inverse limit simply ‘limit’ and direct limit

‘colimit’. The homotopy versions are then called ‘holim’ for ∇X and ‘hocolim’ for

∆X . This terminology is frequently used for more general diagrams as well.

Homotopy Groups with Coefficients

There is a somewhat deeper duality between homotopy groups and cohomology,

which one can see in the fact that cohomology groups are homotopy classes of maps

into a space with a single nonzero homotopy group, while homotopy groups are ho-

motopy classes of maps from a space with a single nonzero cohomology group. This

duality is in one respect incomplete, however, in that the cohomology statement holds

for an arbitrary coefficient group, but we have not yet defined homotopy groups with

coefficients. In view of the duality, one would be tempted to define πn(X;G) to be the

set of basepoint-preserving homotopy classes of maps from the cohomology analog

of a Moore space M(G,n) to X . The cohomology analog of M(G,n) would be a space
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Y whose only nonzero cohomology group H̃i(Y ;Z) is G for i = n . Unfortunately,

such a space does not exist for arbitrary G , for example for G = Q , since we showed

in Proposition 3F.12 that if the cohomology groups of a space are all countable, then

they are all finitely generated.

As a first approximation to πn(X;G) let us consider 〈M(G,n),X〉 , the set of

basepoint-preserving homotopy classes of maps M(G,n)→X . To give this set a more

suggestive name, let us call it µn(X;G) . We should assume n > 1 to guarantee

that the homotopy type of M(G,n) is well-defined, as shown in Example 4.34. For

n > 1, µn(X;G) is a group since we can choose M(G,n) to be the suspension of an

M(G,n− 1) . And if n > 2 then µn(X;G) is abelian since we can choose M(G,n) to

be a double suspension.

There is something like a universal coefficient theorem for these groups µn(X;G) :

Proposition 4H.2. For n > 1 there are natural short exact sequences

0 -→Ext(G,πn+1(X)) -→µn(X;G) -→Hom(G,πn(X)) -→0.

The similarity with the universal coefficient theorem for cohomology is apparent,

but with a reversal of the variables in the Ext and Hom terms, reflecting the fact that

µn(X;G) is covariant as a functor of X and contravariant as a functor of G , just like

the Ext and Hom terms.

Proof: Let 0→R i
-----→ F -→G→0 be a free resolution of G . The inclusion map i is

realized by a map M(R,n)→M(F,n) , where M(R,n) and M(F,n) are wedges of Sn ’s

corresponding to bases for F and R . Converting this map into a cofibration via the

mapping cylinder, the cofiber is an M(G,n) , as one sees from the long exact sequence

of homology groups. As in §4.3, the cofibration sequence

M(R,n)→M(F,n)→M(G,n)→M(R,n+ 1)→M(F,n+ 1)

gives rise to the exact sequence across the top of the following diagram:

The four outer terms of the exact sequence can be identified with the indicated Hom

terms since mapping a wedge sum of Sn ’s into X amounts to choosing an element of

πn(X) for each wedge summand. The kernel and cokernel of i∗ are Hom(G,−) and

Ext(G,−) by definition, and so we obtain the short exact sequence we are looking for.

Naturality will be left for the reader to verify. ⊔⊓

Unlike in the universal coefficient theorems for homology and cohomology, the

short exact sequence in this proposition does not split in general. For an example,

take G = Z2 and X = M(Z2, n) for n ≥ 2, where the identity map of M(Z2, n)
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defines an element of µn(M(Z2, n);Z2) = 〈M(Z2, n),M(Z2, n)〉 having order 4, as

we show in Example 4L.7, whereas the two outer terms in the short exact sequence

can only contain elements of order 2 since G = Z2 . This example shows also that

µn(X;Zm) need not be a module over Zm , as homology and cohomology groups with

Zm coefficients are.

The proposition implies that the first nonzero µi(S
n;Zm) is µn−1(S

n;Zm) = Zm ,

from the Ext term. This result would look more reasonable if we changed notation to

replace the subscript n− 1 by n . So let us make the definition

πn(X;Zm) = 〈M(Zm, n− 1),X〉 = µn−1(X;Zm)

There are two good reasons to expect this to be the right definition. The first is formal:

M(Zm, n−1) is a ‘cohomology M(Zm, n) ’ since its only nontrivial cohomology group

H̃i(M(Zm, n − 1);Z) is Zm in dimension n . The second reason is more geometric:

Elements of πn(X;Zm) should be homotopy classes of ‘homotopy-theoretic cycles

mod m ’, meaning maps Dn→X whose boundary is not necessarily a constant map as

would be the case for πn(X) , but rather whose boundary is m times a cycle Sn−1→X .

This is precisely what a map M(Zm, n − 1)→X is, if we choose M(Zm, n − 1) to be

Sn−1 with a cell en attached by a map of degree m .

Besides the calculation πn(S
n;Zm) ≈ Zm , the proposition also yields an isomor-

phism πn(M(Zm, n);Zm) ≈ Ext(Zm,Zm) = Zm . Both these results are in fact special

cases of a Hurewicz-type theorem relating πn(X;Zm) and Hn(X;Zm) , which is proved

in [Neisendorfer 1980].

Along with Z and Zm , another extremely useful coefficient group for homology

and cohomology is Q . We pointed out above the difficulty that there is no coho-

mology analog of M(Q, n) . The groups µn(X;Q) are also problematic. For example

the proposition gives µn−1(S
n;Q) ≈ Ext(Q,Z) , which is a somewhat complicated un-

countable group as we showed in §3.F. However, there is an alternative approach

that turns out to work rather well. One defines rational homotopy groups simply as

πn(X)⊗Q , analogous to the isomorphism Hn(X;Q) ≈ Hn(X;Z)⊗Q from the univer-

sal coefficient theorem for homology. See [SSAT] for more on this.

Homology Decompositions

Eckmann–Hilton duality can be extremely helpful as an organizational principle,

reducing significantly what one has to remember, and providing valuable hints on how

to proceed in various situations. To illustrate, let us consider what would happen if

we dualized the notion of a Postnikov tower of principal fibrations, where a space is

represented as an inverse limit of a sequence of fibers of maps to Eilenberg–MacLane

spaces. In the dual representation, a space would be realized as a direct limit of a

sequence of cofibers of maps from Moore spaces.

In more detail, suppose we are given a sequence of abelian groups Gn , n ≥ 1,

and we build a CW complex X with Hn(X) ≈ Gn for all n by constructing inductively
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an increasing sequence of subcomplexes X1 ⊂ X2 ⊂ ··· with Hi(Xn) ≈ Gi for i ≤ n

and Hi(Xn) = 0 for i > n , where:

(1) X1 is a Moore space M(G1,1) .

(2) Xn+1 is the mapping cone of a cellular map hn :M(Gn+1, n)→Xn such that the

induced map hn∗ :Hn
(
M(Gn+1, n)

)
→Hn(Xn) is trivial.

(3) X =
⋃
nXn .

One sees inductively that Xn+1 has the desired homology groups by comparing the

long exact sequences of the pairs (Xn+1, Xn) and (CM,M) where M = M(Gn+1, n)

and CM is the cone M×I/M×{0} :

The assumption that hn∗ is trivial means that the boundary map in the upper row

is zero, hence Hn+1(Xn+1) ≈ Gn+1 . The other homology groups of Xn+1 are the

same as those of Xn since Hi(Xn+1, Xn) ≈ Hi(CM,M) for all i by excision, and

Hi(CM,M) ≈ H̃i−1(M) since CM is contractible.

In case all the maps hn are trivial, X is the wedge sum of the Moore spaces

M(Gn, n) since in this case the mapping cone construction in (2) produces a wedge

sum with the suspension of M(Gn+1, n) , a Moore space M(Gn+1, n+ 1) .

For a space Y , a homotopy equivalence f :X→Y where X is constructed as in

(1)–(3) is called a homology decomposition of Y .

Theorem 4H.3. Every simply-connected CW complex has a homology decomposition.

Proof: Given a simply-connected CW complex Y , let Gn = Hn(Y ) . Suppose in-

ductively that we have constructed Xn via maps hi as in (2), together with a map

f :Xn→Y inducing an isomorphism on Hi for i ≤ n . The induction can start with

X1 a point since Y is simply-connected. To construct Xn+1 we first replace Y by

the mapping cylinder of f :Xn→Y , converting f into an inclusion. By the Hurewicz

theorem and the homology exact sequence of the pair (Y ,Xn) we have πn+1(Y ,Xn) ≈

Hn+1(Y ,Xn) ≈ Hn+1(Y ) = Gn+1 . We will use this isomorphism to construct a map

hn :M(Gn+1, n)→Xn and an extension f :Xn+1→Y .

The standard construction of an M(Gn+1, n) consists of a wedge of spheres

Snα corresponding to generators gα of Gn+1 , with cells en+1
β attached according to

certain linear combinations rβ =
∑
αnαβgα that are zero in Gn+1 . Under the iso-

morphism Gn+1 ≈ πn+1(Y ,Xn) each gα corresponds to a basepoint-preserving map

fα : (CSn, Sn)→(Y ,Xn) where CSn is the cone on Sn . The restrictions of these fα ’s

to Sn define hn :
∨
αS

n
α→Xn , and the maps fα :CSn→Y themselves give an exten-

sion of f :Xn→Y to the mapping cone of hn :
∨
αS

n
α→Xn . Each relation rβ gives a

homotopy Fβ : (CSn, Sn)× I→(Y ,Xn) from
∑
αnαβfα to the constant map. We use
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Fβ ||S
n×{0} to attach en+1

β , and then Fβ ||S
n×I gives hn on en+1

β and Fβ gives an

extension of f over the cone on en+1
β .

This construction assures that f∗ :Hn+1(Xn+1, Xn)→Hn+1(Y ,Xn) is an isomor-

phism, so from the five-lemma applied to the long exact sequences of these pairs we

deduce that f∗ :Hi(Xn+1)→Hi(Y ) is an isomorphism for i ≤ n+1. This finishes the

induction step. We may assume the maps fα and Fβ are cellular, so X =
⋃
nXn is

a CW complex with subcomplexes Xn . Since f :X→Y is a homology isomorphism

between simply-connected CW complexes, it is a homotopy equivalence. ⊔⊓

As an example, suppose that Y is a simply-connected CW complex having all its

homology groups free. Then the Moore spaces used in the construction of X can

be taken to be wedges of spheres, and so Xn is obtained from Xn−1 by attaching an

n cell for each Z summand of Hn(Y ) . The attaching maps may be taken to be cellular,

making X into a CW complex whose cellular chain complex has trivial boundary maps.

Similarly, finite cyclic summands of Hn(Y ) can be realized by wedge summands of

the form Sn−1∪ en in M(Hn(Y ),n−1) , contributing an n cell and an (n+1) cell to

X . This is Proposition 4C.1, but the present result is stronger because it tells us that

a finite cyclic summand of Hn can be realized in one step by attaching the cone on a

Moore space M(Zk, n − 1) , rather than in two steps of attaching an n cell and then

an (n+ 1) cell.

Exercises

1. Show that if A֓X is a cofibration of compact Hausdorff spaces, then for any space

Y , the map YX→YA obtained by restriction of functions is a fibration. [If A֓X is

a cofibration, so is A×Y֓X×Y for any space Y .]

2. Consider a pushout diagram as at the right, where B ⊔f X

is B with X attached along A via f . Show that if A֓ X is a

cofibration, so is B֓ B ⊔f X .

3. For fibrations E1→B and E2→B , show that a fiber-preserving map E1→E2 that

is a homotopy equivalence is in fact a fiber homotopy equivalence. [This is dual to

Proposition 0.19.]

4. Define the dual of an iterated mapping cylinder precisely, in terms of maps from

∆n , and use this to give a definition of ∇X , the dual of ∆X , for X a complex of spaces.

It sometimes happens that suspending a space has the effect of simplifying its

homotopy type, as the suspension becomes homotopy equivalent to a wedge sum of



Stable Splittings of Spaces Section 4.I 467

smaller spaces. Much of the interest in such stable splittings comes from the fact

that they provide a geometric explanation for algebraic splittings of homology and

cohomology groups, as well as other algebraic invariants of spaces that are unaffected

by suspension such as the cohomology operations studied in §4.L.

The simplest example of a stable splitting occurs for the torus S1×S1 . Here the

reduced suspension Σ(S1×S1) is homotopy equivalent to S2∨S2∨S3 since Σ(S1×S1)

is S2∨ S2 with a 3 cell attached by the suspension of the attaching map of the 2 cell

of the torus, but the latter attaching map is the commutator of the two inclusions

S1 ֓ S1 ∨ S1 , and the suspension of this commutator is trivial since it lies in the

abelian group π2(S
2 ∨ S2) .

By an easy geometric argument we will prove more generally:

Proposition 4I.1. If X and Y are CW complexes, then Σ(X×Y) ≃ ΣX∨ΣY∨Σ(X∧Y) .
For example, Σ(Sm×Sn) ≃ Sm+1 ∨ Sn+1 ∨ Sm+n+1 . In view of the cup product

structure on H∗(Sm×Sn) there can be no such splitting of Sm×Sn before suspension.

Proof: Consider the join X ∗ Y defined in Chapter 0, consisting of all line segments

joining points in X to points in Y . For our present purposes it is convenient to use

the reduced version of the join, obtained by collapsing to a point the line segment

joining the basepoints x0 ∈ X and y0 ∈ Y . We will still denote this reduced join

by X ∗ Y . Consider the space obtained

from X∗Y by attaching reduced cones

CX and CY to the copies of X and Y

at the two ends of X ∗ Y . If we col-

lapse each of these cones to a point, we

get the reduced suspension Σ(X×Y) .
Since each cone is contractible, collapsing the cones gives a homotopy equivalence

X ∗ Y ∪ CX ∪ CY ≃ Σ(X×Y) . Inside X ∗ Y there are also cones x0 ∗ Y and X ∗ y0

intersecting in a point. Collapsing these cones converts X ∗ Y into Σ(X ∧ Y) and

X ∗ Y ∪ CX ∪ CY into Σ(X ∧ Y)∨ ΣX ∨ ΣY . ⊔⊓

This result can be applied inductively to obtain splittings for suspensions of prod-

ucts of more than two spaces, using the fact that reduced suspension is smash product

with S1 , and smash product is associative and commutative. For example,

Σ(X×Y×Z) ≃ ΣX ∨ ΣY ∨ ΣZ ∨ Σ(X ∧ Y)∨ Σ(X ∧ Z)∨ Σ(Y ∧ Z)∨ Σ(X ∧ Y ∧ Z)

Our next example involves the reduced product J(X) defined in §3.2. An inter-

esting case is J(Sn) , which has a CW structure of the form Sn∪e2n∪e3n∪··· . All the

cells ein for i > 1 are attached nontrivially since H∗(J(Sn);Q) is a polynomial ring

Q[x] for n even and a tensor product Q[x]⊗ΛQ[y] for n odd. However, after we

suspend to ΣJ(Sn) , it is a rather surprising fact that all the attaching maps become

trivial:
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Proposition 4I.2. ΣJ(Sn) ≃ Sn+1 ∨ S2n+1 ∨ S3n+1 ∨ ··· . More generally, if X is a

connected CW complex then ΣJ(X) ≃ ∨nΣX∧n where X∧n denotes the smash product

of n copies of X .

Proof: The space J(X) is the union of an increasing sequence of subcomplexes Jk(X)

with Jk(X) a quotient of the k fold product X×k . The quotient Jk(X)/Jk−1(X) is X∧k .

Thus we have maps

X×k -→Jk(X) -→X∧k = Jk(X)/Jk−1(X)

By repeated application of the preceding proposition, ΣX∧k is a wedge summand of

ΣX×k , up to homotopy equivalence. The proof shows moreover that there is a map

ΣX∧k→ΣX×k such that the composition ΣX∧k→ΣX×k→ΣX∧k is homotopic to the

identity. This composition factors as

ΣX∧k -→ΣX×k -→ΣJk(X) -→ΣX∧k

so we obtain a map sk :ΣX∧k→ΣJk(X) such that ΣX∧k sk-----→ΣJk(X)→ΣX∧k is homo-

topic to the identity.

The map sk induces a splitting of the long exact sequence of homology groups

for the pair (ΣJk(X),ΣJk−1(X)) . Hence the map i ∨ sk :ΣJk−1(X) ∨ ΣX∧k→ΣJk(X)
induces an isomorphism on homology, where i denotes the inclusion map. It follows

by induction that the map
∨n
k=1sk :

∨n
k=1ΣX∧k→ΣJn(X) induces an isomorphism on

homology for all finite n . This implies the corresponding statement for n = ∞ since

X∧n is (n − 1) connected if X is connected. Thus we have a map
∨
kΣX∧k→ΣJ(X)

inducing an isomorphism on homology. By Whitehead’s theorem this map is a homo-

topy equivalence since the spaces are simply-connected CW complexes. ⊔⊓

For our final example the stable splitting will be constructed using the group

structure on 〈ΣX,Y 〉 , the set of basepointed homotopy classes of maps ΣX→Y .

Proposition 4I.3. For any prime power pn the suspension ΣK(Zpn ,1) is homotopy

equivalent to a wedge sum X1∨···∨Xp−1 where Xi is a CW complex having H̃∗(Xi;Z)

nonzero only in dimensions congruent to 2i mod 2p − 2 .

This result is best possible in a strong sense: No matter how many times any one

of the spaces Xi is suspended, it never becomes homotopy equivalent to a nontrivial

wedge sum. This will be shown in Example 4L.3 by studying cohomology operations

in H∗(K(Zpn ,1);Zp) . There is also a somewhat simpler K–theoretic explanation for

this; see [VBKT].

Proof: Let K = K(Zpn ,1) . The multiplicative group of nonzero elements in the field

Zp is cyclic, so let the integer r represent a generator. By Proposition 1B.9 there is a

map f :K→K inducing multiplication by r on π1(K) . We will need to know that f

induces multiplication by r i on H2i−1(K;Z) ≈ Zpn , and this can be seen as follows. Via



Stable Splittings of Spaces Section 4.I 469

the natural isomorphism π1(K) ≈ H1(K;Z) we know that f induces multiplication

by r on H1(K;Z) . Via the universal coefficient theorem, f also induces multiplica-

tion by r on H1(K;Zpn) and H2(K;Zpn) . The cup product structure in H∗(K;Zpn)

computed in Examples 3.41 and 3E.2 then implies that f induces multiplication by

r i on H2i−1(K;Zpn) , so the same is true for H2i−1(K;Z) by another application of the

universal coefficient theorem.

For each integer j ≥ 0 let hj :ΣK→ΣK be the difference Σf − r j11, so hj in-

duces multiplication by r i − r j on H2i(ΣK;Z) ≈ Zpn . By the choice of r we know

that p divides r i − r j iff i ≡ j mod p − 1. This means that the map induced by hj
on H̃2i(ΣK;Z) has nontrivial kernel iff i ≡ j mod p − 1. Therefore the composition

mi = h1
◦ ···hi−1

◦hi+1 ···hp−1 induces an isomorphism on H̃∗(ΣK;Z) in dimen-

sions congruent to 2i mod 2p − 2 and has a nontrivial kernel in other dimensions

where the homology group is nonzero. When there is a nontrivial kernel, some power

of mi will induce the zero map since we are dealing with homomorphisms Zpn→Zpn .

Let Xi be the mapping telescope of the sequence ΣK→ΣK→ ··· where each map

is mi . Since homology commutes with direct limits, the inclusion of the first factor

ΣK֓Xi induces an isomorphism on H̃∗ in dimensions congruent to 2i mod 2p−2,

and H̃∗(Xi;Z) = 0 in all other dimensions. The sum of these inclusions is a map

ΣK→X1 ∨ ··· ∨Xp−1 inducing an isomorphism on all homology groups. Since these

complexes are simply-connected, the result follows by Whitehead’s theorem. ⊔⊓

The construction of the spaces Xi as mapping telescopes produces rather large

spaces, with infinitely many cells in each dimension. However, by Proposition 4C.1

each Xi is homotopy equivalent to a CW complex with the minimum configuration of

cells consistent with its homology, namely, a 0 cell and a k cell for each k congruent

to 2i or 2i+ 1 mod 2p − 2.

Stable splittings of K(G,1) ’s for finite groups G have been much studied and are

a complicated and subtle business. To take the simplest noncyclic example, Proposi-

tion 4I.1 implies that ΣK(Z2×Z2,1) splits as the wedge sum of two copies of ΣK(Z2,1)

and Σ(K(Z2,1)∧K(Z2,1)
)
, but the latter summand can be split further, according to

a result in [Harris & Kuhn 1988] which says that for G the direct sum of k copies

of Zpn , ΣK(G,1) splits canonically as the wedge sum of pieces having exactly pk − 1

distinct homotopy types. Some of these summands occur more than once, as we see

in the case of Z2×Z2 .

Exercises

1. If a connected CW complex X retracts onto a subcomplex A , show that ΣX ≃
ΣA∨Σ(X/A) . [One approach: Show the map Σr +Σq :ΣX→ΣA∨Σ(X/A) induces an

isomorphism on homology, where r :X→A is the retraction and q : X→X/A is the

quotient map.]
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2. Using the Künneth formula, show that ΣK(Zm×Zn,1) ≃ ΣK(Zm,1) ∨ ΣK(Zn,1)
if m and n are relatively prime. Thus to determine stable splittings of K(Zn,1) it

suffices to do the case that n is a prime power, as in Proposition 4I.3.

3. Extending Proposition 4I.3, show that the (2k + 1) skeleton of the suspension

of a high-dimensional lens space with fundamental group of order pn is homotopy

equivalent to the wedge sum of the (2k + 1) skeleta of the spaces Xi , if these Xi ’s

are chosen to have the minimum number of cells in each dimension, as described in

the remarks following the proof.

Loopspaces appear at first glance to be hopelessly complicated objects, but if one

is only interested in homotopy type, there are many cases when great simplifications

are possible. One of the nicest of these cases is the loopspace of a sphere. We show

in this section that ΩSn+1 has the weak homotopy type of the James reduced product

J(Sn) introduced in §3.2. More generally, we show that ΩΣX has the weak homotopy

type of J(X) for every connected CW complex X . If one wants, one can strengthen

‘weak homotopy type’ to ‘homotopy type’ by quoting Milnor’s theorem, mentioned in

§4.3, that the loopspace of a CW complex has the homotopy type of a CW complex.

Part of the interest in ΩΣX can be attributed to its close connection with the sus-

pension homomorphism πi(X)→πi+1(ΣX) . We will use the weak homotopy equiva-

lence of ΩΣX with J(X) to give another proof that the suspension homomorphism is

an isomorphism in dimensions up to approximately double the connectivity of X . In

addition, we will obtain an exact sequence that measures the failure of the suspension

map to be an isomorphism in dimensions between double and triple the connectivity

of X . An easy application of this, together with results proved elsewhere in the book,

will be to compute πn+1(S
n) and πn+2(S

n) for all n .

As a rough first approximation to ΩSn+1 there is a natural inclusion of Sn into

ΩSn+1 obtained by regarding Sn+1 as the reduced suspension ΣSn , the quotient

(Sn×I)/(Sn×∂I∪{e}× I) where e is the basepoint of Sn , then

associating to each point x ∈ Sn the loop λ(x) in ΣSn given

by t֏ (x, t) . The figure shows what a few such loops look

like. However, we cannot expect this inclusion Sn֓ ΩSn+1

to be a homotopy equivalence since ΩSn+1 is an H–space but

Sn is only an H–space when n = 1,3,7 by the theorem of

Adams discussed in §4.B. The simplest way to correct this deficiency in Sn would be

to replace it by the free H–space that it generates, the reduced product J(Sn) . Re-
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call from §3.2 that a point in J(Sn) is a formal product x1 ···xk of points xi ∈ S
n ,

with the basepoint e acting as an identity element for the multiplication obtained by

juxtaposition of formal products. We would like to define a map λ : J(Sn)→ΩSn+1

by setting λ(x1 ···xk) = λ(x1) ···λ(xk) , the product of the loops λ(xi) . The only

difficulty is in the parametrization of this product, which needs to be adjusted so that

λ is continuous. The problem is that when some xi approaches the basepoint e ∈ Sn ,

one wants the loop λ(xi) to disappear gradually from the product λ(x1) ···λ(xk) ,

without disrupting the parametrization as simply deleting λ(e) would do. This can

be achieved by first making the time it takes to traverse each loop λ(xi) equal to the

distance from xi to the basepoint of Sn , then normalizing the resulting product of

loops so that it takes unit time, giving a map I→ΣSn .

More generally, this same procedure defines a map λ : J(X)→ΩΣX for any con-

nected CW complex X , where ‘distance to the basepoint’ is replaced by any map

d :X→[0,1] with d−1(0) = e , the basepoint of X .

Theorem 4J.1. The map λ : J(X)→ΩΣX is a weak homotopy equivalence for every

connected CW complex X .

Proof: The main step will be to compute the homology of ΩΣX . After this is done,

it will be easy to deduce that λ induces an isomorphism on homology using the cal-

culation of the homology of J(X) in Proposition 3C.8, and from this conclude that λ

is a weak homotopy equivalence. It will turn out to be sufficient to consider homol-

ogy with coefficients in a field F . We know that H∗(J(X);F) is the tensor algebra

TH̃∗(X;F) by Proposition 3C.8, so we want to show that H∗(ΩΣX;F) has this same

structure, a result first proved in [Bott & Samelson 1953].

Let us write the reduced suspension Y = ΣX as the union of two reduced cones

Y+ = C+X and Y− = C−X intersecting in the equatorial X ⊂ ΣX . Consider the path

fibration p :PY→Y with fiber ΩY . Let P+Y = p
−1(Y+) and P−Y = p

−1(Y−) , so

P+Y consists of paths in Y starting at the basepoint and ending in Y+ , and similarly

for P−Y . Then P+Y ∩ P−Y is p−1(X) , the paths from the basepoint to X . Since

Y+ and Y− are deformation retracts of open neighborhoods U+ and U− in Y such

that U+ ∩ U− deformation retracts onto Y+ ∩ Y− = X , the homotopy lifting property

implies that P+Y , P−Y , and p+Y ∩ P−Y are deformation retracts, in the weak sense,

of open neighborhoods p−1(U+) , p
−1(U−) , and p−1(U+) ∩ p

−1(U−) , respectively.

Therefore there is a Mayer–Vietoris sequence in homology for the decomposition of

PY as P+Y∪P−Y . Taking reduced homology and using the fact that PY is contractible,

this gives an isomorphism

(i) Φ : H̃∗(P+Y ∩ P−Y ;F)
≈
------------→ H̃∗(P+Y ;F)

⊕
H̃∗(P−Y ;F)

The two coordinates of Φ are induced by the inclusions, with a minus sign in one case,

but Φ will still be an isomorphism if this minus sign is eliminated, so we may assume

this has been done.
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We claim that the isomorphism Φ can be rewritten as an isomorphism

(ii) Θ : H̃∗(ΩY×X;F)
≈
------------→ H̃∗(ΩY ;F)

⊕
H̃∗(ΩY ;F)

To see this, we observe that the fibration P+Y→Y+ is fiber-homotopically trivial. This

is true since the cone Y+ is contractible, but we shall need an explicit fiber homo-

topy equivalence P+Y ≃ ΩY×Y+ , and this is easily constructed as follows. Define

f+ :P+Y→ΩY×Y+ by f+(γ) = (γ γ+y , y) where y = γ(1) and γ+y is the obvious

path in Y+ from y = (x, t) to the basepoint along the segment {x}×I . In the other

direction, define g+ :ΩY×Y+→P+Y by g+(γ,y) = γ γ +y where the bar denotes the

inverse path. Then f+g+ and g+f+ are fiber-homotopic to the respective identity

maps since γ +y γ+y and γ+y γ +y are homotopic to the constant paths.

In similar fashion the fibration P−Y→Y− is fiber-homotopically trivial via maps

f− and g− . By restricting a fiber-homotopy trivialization of either P+Y or P−Y to

P+Y ∩ P−Y , we see that the fibration P+Y ∩ P−Y is fiber-homotopy equivalent to the

product ΩY×X . Let us do this using the fiber-homotopy trivialization of P−Y . The

groups in (i) can now be replaced by those in (ii). The map Φ has coordinates induced

by inclusion, and it follows that the corresponding map Θ in (ii) has coordinates

induced by the two maps ΩY×X→ΩY , (γ,x)֏ γ λ(x) and (γ,x)֏ γ . Namely,

the first coordinate of Θ is induced by f+g− ||ΩY×X followed by projection to ΩY ,

and the second coordinate is the same but with f−g− in place of f+g− .

Writing the two coordinates of Θ as Θ1 and Θ2 , the fact that Θ is an isomorphism

means that the restriction of Θ1 to the kernel of Θ2 is an isomorphism. Via the

Künneth formula we can write H̃∗(ΩY×X;F) as
(
H∗(ΩY ;F)⊗H̃∗(X;F)

)⊕
H̃∗(ΩY ;F)

where projection onto the latter summand is Θ2 . Hence Θ1 gives an isomorphism

from the first summand H∗(ΩY ;F)⊗H̃∗(X;F) onto H̃∗(ΩY ;F) . Since Θ1(γ,x) =

(γ λ(x)) , this means that the composed map

H∗(ΩY ;F)⊗H̃∗(X;F)
11⊗ λ∗-----------------------------→H∗(ΩY ;F)⊗H̃∗(ΩY ;F) --------→ H̃∗(ΩY ;F)

with the second map Pontryagin product, is an isomorphism. Now to finish the calcu-

lation of H∗(ΩY ;F) as the tensor algebra TH̃∗(X;F) , we apply the following algebraic

lemma, with A = H∗(ΩY ;F) , V = H̃∗(X;F) , and i = λ∗ .

Lemma 4J.2. Let A be a graded algebra over a field F with A0 = F and let V be a

graded vector space over F with V0 = 0 . Suppose we have a linear map i :V→A pre-

serving grading, such that the multiplication map µ :A⊗V→Ã , µ(a⊗v) = ai(v) , is

an isomorphism. Then the canonical algebra homomorphism i :TV→A extending

the previous i is an isomorphism.

For example, if V is a 1 dimensional vector space over F , as happens in the case

X = Sn , then this says that if the map A→Ã given by right-multiplication by an

element a = i(v) is an isomorphism, then A is the polynomial algebra F[a] . The
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general case can be viewed as the natural generalization of this to polynomials in any

number of noncommuting variables.

Proof: Since µ is an isomorphism, each element a ∈ An with n > 0 can be written

uniquely in the form µ
(∑

j aj ⊗vj
)
=
∑
j aji(vj) for vj ∈ V and aj ∈ An(j) , with

n(j) < n since V0 = 0. By induction on n , aj = i(αj) for a unique αj ∈ (TV)n(j) .

Thus a = i
(∑

j αj ⊗vj
)

so i is surjective. Since these representations are unique, i

is also injective. The induction starts with the hypothesis that A0 = F , the scalars

in TV . ⊔⊓

Returning now to the proof of the theorem, we observe that λ is an H–map: The

two maps J(X)×J(X)→ΩΣX , (x,y)֏ λ(xy) and (x,y)֏ λ(x)λ(y) , are homo-

topic since the loops λ(xy) and λ(x)λ(y) differ only in their parametrizations. Since

λ is an H–map, the maps X֓ J(X)
λ
-----→ΩΣX in-

duce the commutative diagram at the right. We

have shown that the downward map on the right

is an isomorphism, and the same is true of the

one on the left by the calculation of H∗(J(X);F) in Proposition 3C.8. Hence λ∗ is

an isomorphism. By Corollary 3A.7 this is also true for Z coefficients. When X is

simply-connected, so are J(X) and ΩΣX , so after taking a CW approximation to ΩΣX ,

Whitehead’s theorem implies that λ is a weak homotopy equivalence. In the general

case that X is only connected, we obtain the same conclusion from the generalization

of Whitehead’s theorem to abelian spaces, Proposition 4.74, since J(X) and ΩΣX are

H–spaces, with trivial action of π1 on all homotopy groups by Example 4A.3. ⊔⊓

Using the natural identification πi(ΩΣX) = πi+1(ΣX) , the inclusion X֓ ΩΣX
induces the suspension map πi(X)→πi+1(ΣX) . Since this inclusion factors through

J(X) , we can identify the relative groups πi(ΩΣX,X) with πi(J(X),X) . If X is

n connected then the pair (J(X),X) is (2n + 1) connected since we can replace X

by a complex with n skeleton a point, and then the (2n + 1) skeleton of J(X) is

contained in X . Thus we have:

Corollary 4J.3. The suspension map πi(X)→πi+1(ΣX) for an n connected CW

complex X is an isomorphism if i ≤ 2n and a surjection if i = 2n+ 1 . ⊔⊓

In the case of a sphere we can describe what happens in the first dimension when

suspension is not an isomorphism, namely the suspension π2n−1(S
n)→π2n(S

n+1)

which the corollary guarantees only to be a surjection. The CW structure on J(Sn)

consists of a single cell in each dimension a multiple of n , so from exactness of

π2n(J(S
n), Sn)

∂
-----→π2n−1(S

n)
Σ
-----→π2n(S

n+1) we see that the kernel of the suspension

π2n−1(S
n)→π2n(S

n+1) is generated by the attaching map of the 2n cell of J(Sn) .

This attaching map is the Whitehead product [11,11] , as we noted in §4.2 when we
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defined Whitehead products following Example 4.52. When n is even, the Hopf in-

variant homomorphism π2n−1(S
n)→Z has the value ±2 on [11,11] , as we saw in §4.B.

If there is no map of Hopf invariant ±1, it follows that [11,11] generates a Z summand

of π2n−1(S
n) , and so the suspension homomorphism simply cancels this summand

from π2n−1(S
n) . By Adams’ theorem, this is the situation for all even n except 2, 4,

and 8.

When n = 2 we have π3(S
2) ≈ Z generated by the Hopf map η with Hopf invari-

ant 1, so 2η = ±[11,11] , generating the kernel of the suspension, hence:

Corollary 4J.4. πn+1(S
n) is Z2 for n ≥ 3 , generated by the suspension or iterated

suspension of the Hopf map. ⊔⊓

The situation for n = 4 and 8 is more subtle. We do not have the tools available

here to do the actual calculation, but if we consult the table near the beginning of §4.1

we see that the suspension π7(S
4)→π8(S

5) is a map Z⊕Z12→Z24 . By our preceding

remarks we know this map is surjective with kernel generated by the single element

[11,11] . Algebraically, what must be happening is that the coordinate of [11,11] in

the Z summand is twice a generator, while the coordinate in the Z12 summand is a

generator. Thus a generator of the Z summand, which we may take to be the Hopf

map S7→S4 , suspends to a generator of the Z24 . For n = 8 the situation is entirely

similar, with the suspension π15(S
8)→π16(S

9) a homomorphism Z⊕Z120→Z240 .

We can also obtain some information about suspension somewhat beyond the

edge of the stable dimension range. Since Sn is (n − 1) connected and (J(Sn), Sn)

is (2n − 1) connected, we have isomorphisms πi(J(S
n), Sn) ≈ πi(J(S

n)/Sn) for

i ≤ 3n− 2 by Proposition 4.28. The group πi(J(S
n)/Sn) is isomorphic to πi(S

2n)

in the same range i ≤ 3n− 2 since J(Sn)/Sn has S2n as its (3n− 1) skeleton. Thus

the terminal portion of the long exact sequence of the pair (J(Sn), Sn) starting with

the term π3n−2(S
n) can be written in the form

π3n−2(S
n)

Σ
-----→π3n−1(S

n+1)→π3n−2(S
2n)→π3n−3(S

n)
Σ
-----→π3n−2(S

n+1)→ ···

This is known as the EHP sequence since its three maps were originally called E ,

H , and P . (The German word for ‘suspension’ begins with E, the H refers to a gen-

eralization of the Hopf invariant, and the P denotes a connection with Whitehead

products; see [Whitehead 1978] for more details.) Note that the terms πi(S
2n) in the

EHP sequence are stable homotopy groups since i ≤ 3n− 2. Thus we have the curi-

ous situation that stable homotopy groups are measuring the lack of stability of the

groups πi(S
n) in the range 2n− 1 ≤ i ≤ 3n− 2, the so-called metastable range.

Specializing to the first interesting case n = 2, the sequence becomes
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From the Hopf bundle S1→S3→S2 we have π4(S
2) ≈ π4(S

3) ≈ Z2 , with π4(S
2) gen-

erated by the composition η(Ση) where η is the Hopf map S3→S2 . From exactness

of the latter part of the sequence we deduce that the map π4(S
4)→π3(S

2) is injective,

and hence that the suspension π4(S
2)→π5(S

3) is surjective, so π5(S
3) is either Z2 or

0. From the general suspension theorem, the suspension π5(S
3)→π6(S

4) is surjec-

tive as well, and the latter group is in the stable range. We show in Proposition 4L.11

that the stable group π s2 is nonzero, and so we conclude that πn+2(S
n) ≈ Z2 for all

n ≥ 2, generated by the composition (Σn−2η)(Σn−1η) .

We will see in [SSAT] that the EHP sequence extends all the way to the left to form

an infinite exact sequence when n is odd, and when n is even a weaker statement

holds: The sequence extends after factoring out all odd torsion.

Replacing Sn by any (n − 1) connected CW complex X , our derivation of the

finite EHP sequence generalizes immediately to give an exact sequence

π3n−2(X)
Σ
-----→π3n−1(ΣX)→π3n−2(X ∧X)→π3n−3(X)

Σ
-----→π3n−2(ΣX)→ ···

using the fact that J2(X)/X = X ∧X .

The generalization of the results of this section to ΩnΣnX turns out to be of

some importance in homotopy theory. In case we do not get to this topic in [SSAT],

the reader can begin to learn about it by looking at [Carlsson & Milgram 1995].

Exercise

1. Show that ΩΣX for a nonconnected CW complex X reduces to the connected case

by showing that each path-component of ΩΣX is homotopy equivalent to ΩΣ(∨αXα
)

where the Xα ’s are the components of X .

In the preceding section we studied the free monoid J(X) generated by a space

X , and in this section we take up its commutative analog, the free abelian monoid

generated by X . This is the infinite symmetric product SP(X) introduced briefly

in §3.C. The main result will be a theorem of [Dold & Thom 1958] asserting that

π∗SP(X) ≈ H̃∗(X;Z) for all connected CW complexes X . In particular this yields

the surprising fact that SP(Sn) is a K(Z, n) , and more generally that the functor SP

takes Moore spaces M(G,n) to Eilenberg–MacLane spaces K(G,n) . This leads to the

general result that for all connected CW complexes X , SP(X) has the homotopy type

of a product of Eilenberg–MacLane spaces. In other words, the k invariants of SP(X)

are all trivial.
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The main step in the proof of the Dold–Thom theorem will be to show that the

homotopy groups π∗SP(X) define a homology theory. An easy computation of the

coefficient groups π∗SP(S
n) will then show that this must be ordinary homology with

Z coefficients. A new idea needed for the proof of the main step is the notion of a

quasifibration, generalizing fibrations and fiber bundles. In order to establish a few

basic facts about quasifibrations we first make a small detour to prove an essentially

elementary fact about relative homotopy groups.

A Mayer–Vietoris Property of Homotopy Groups

In this subsection we will be concerned largely with relative homotopy groups,

and it will be impossible to avoid the awkward fact that there is no really good way to

define the relative π0 . What we will do as a compromise is to take π0(X,A,x0) to be

the quotient set π0(X,x0)/π0(A,x0) . This at least allows the long exact sequence of

homotopy groups for (X,A) to end with the terms

π0(A,x0)→π0(X,x0)→π0(X,A,x0)→0

An exercise for §4.1 shows that the five-lemma can be applied to the map of long

exact sequences induced by a map (X,A)→(Y , B) , provided the basepoint is allowed

to vary. However, the long exact sequence of a triple cannot be extended through the

π0 terms with this definition, so one must proceed with some caution.

The excision theorem for homology involves a space X with subspaces A and B

such that X is the union of the interiors of A and B . In this situation we call (X;A,B)

an excisive triad. By a map f : (X;A,B)→(Y ;C,D) we mean f :X→Y with f(A) ⊂ C

and f(B) ⊂ D .

Proposition 4K.1. Let f : (X;A,B)→(Y ;C,D) be a map of excisive triads. If the

induced maps πi(A,A ∩ B)→πi(C,C ∩ D) and πi(B,A ∩ B)→πi(D,C ∩ D) are

bijections for i < n and surjections for i = n , for all choices of basepoints, then the

same is true of the induced maps πi(X,A)→πi(Y ,C) . By symmetry the conclusion

holds also for the maps πi(X, B)→πi(Y ,D) .

The corresponding statement for homology is a trivial consequence of excision

which says that Hi(X,A) ≈ Hi(B,A ∩ B) and Hi(Y ,C) ≈ Hi(D,C ∩ D) , so it is not

necessary to assume anything about the map Hi(A,A∩ B)→Hi(C,C ∩D) . With the

failure of excision for homotopy groups, however, it is not surprising that the assump-

tion on πi(A,A ∩ B)→πi(C,C ∩D) cannot be dropped. An example is provided by

the quotient map f :D2→S2 collapsing ∂D2 to the north pole of S2 , with C and D

the northern and southern hemispheres of S2 , and A and B their preimages under f .

Proof: First we will establish a general fact about relative homotopy groups. Con-

sider an inclusion (X,A)֓ (Y ,C) . We will show the following three conditions are

equivalent for each n ≥ 1:
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(i) For all choices of basepoints the map πi(X,A)→πi(Y ,C) induced by inclusion

is surjective for i = n and has trivial kernel for i = n− 1.

(ii) Let ∂Dn be written as the union of hemispheres ∂+D
n and

∂−D
n intersecting in Sn−2 . Then every map

(Dn×{0} ∪ ∂+D
n×I, ∂−D

n×{0} ∪ Sn−2×I) -→(Y ,C)

taking (∂+D
n×{1}, Sn−2×{1}) to (X,A) extends to a map

(Dn×I, ∂−D
n×I)→(Y ,C) taking (Dn×{1}, ∂−D

n×{1}) to

(X,A) .

(iii) Condition (ii) with the added hypothesis that the restriction of the given map to

∂+D
n×I is independent of the I coordinate.

It is obvious that (ii) and (iii) are equivalent since the stronger hypothesis in (iii) can

always be achieved by composing with a homotopy of Dn×I that shrinks ∂+D
n×I to

∂+D
n×{1} .

To see that (iii) implies (i), let f : (∂+D
n×{1}, Sn−2×{1})→(X,A) represent an

element of πn−1(X,A) . If this is in the kernel of the map to πn−1(Y ,C) , then we get

an extension of f over Dn×{0} ∪ ∂+D
n×I , with the constant homotopy on ∂+D

n×I

and (Dn×{0}, ∂−D
n×{0}) mapping to (Y ,C) . Condition (iii) then gives an extension

over Dn×I , whose restriction to Dn×{1} shows that f is zero in πn−1(X,A) , so

the kernel of πn−1(X,A)→πn−1(Y ,C) is trivial. To check surjectivity of the map

πn(X,A)→πn(Y ,C) , represent an element of πn(Y ,C) by a map f :Dn×{0}→Y
taking ∂−D

n×{0} to C and ∂+D
n×{0} to a chosen basepoint. Extend f over ∂+D

n×I

via the constant homotopy, then extend over Dn×I by applying (iii). The result

is a homotopy of the given f to a map representing an element of the image of

πn(X,A)→πn(Y ,C) .

Now we show that (i) implies (ii). Given a map f as in the

hypothesis of (ii), the injectivity part of (i) gives an extension

of f over Dn×{1} . Choose a small disk En ⊂ ∂−D
n×I , shown

shaded in the figure, intersecting ∂−D
n×{1} in a hemisphere

∂+E
n of its boundary. We may assume the extended f has a

constant value x0 ∈ A on ∂+E
n . Viewing the extended f as

representing an element of πn(Y ,C,x0) , the surjectivity part

of (i) then gives an extension of f over Dn×I taking (En, ∂−E
n) to (X,A) and the

rest of ∂−D
n×I to C . The argument is finished by composing this extended f with a

deformation of Dn×I pushing En into Dn×{1} .

Having shown the equivalence of (i)–(iii), let us prove the proposition. We may

reduce to the case that the given f : (X;A,B)→(Y ;C,D) is an inclusion by using map-

ping cylinders. One’s first guess would be to replace (Y ;C,D) by the triad of mapping

cylinders (Mf ;Mf |A,Mf |B) , where we view f ||A as a map A→C and f ||B as a map

B→D . However, the triad (Mf ;Mf |A,Mf |B) need not be excisive, for example if X
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consists of two points A and B and Y is a single point. To remedy this problem,

replace Mf |A by its union with f−1(C)×(1/2,1) in Mf , and enlarge Mf |B similarly.

Now we prove the proposition for an inclusion (X;A,B)֓ (Y ;C,D) . The case

n = 0 is trivial from the definitions, so let us assume n ≥ 1. In view of the equivalence

of condition (i) with (ii) and (iii), it suffices to show that condition (ii) for the inclusions

(A,A ∩ B)֓ (C,C ∩ D) and (B,A ∩ B)֓ (D,C ∩ D) implies (iii) for the inclusion

(X,A)֓ (Y ,C) . Let a map f :Dn×{0} ∪ ∂+D
n×I→Y as in the hypothesis of (iii) be

given. The argument will involve subdivision of Dn into smaller disks, and for this it

is more convenient to use the cube In instead of Dn , so let us identify In with Dn in

such a way that ∂−D
n corresponds to the face In−1×{1} , which we denote by ∂−I

n ,

and ∂+D
n corresponds to the remaining faces of In , which we denote by ∂+I

n . Thus

we are given f on In×{0} taking ∂+I
n×{0} to X and ∂−I

n×{0} to C , and on ∂+I
n×I

we have the constant homotopy.

Since (Y ;C,D) is an excisive triad, we can subdivide each of the I factors of

In×{0} into subintervals so that f takes each of the resulting n dimensional sub-

cubes of In×{0} into either C or D . The extension of f we construct will have the

following key property:

(∗)

If K is a one of the subcubes of In×{0} , or a lower-dimensional face of such a

cube, then the extension of f takes (K×I, K×{1}) to (C,A) or (D, B) when-

ever f takes K to C or D , respectively.

Initially we have f defined on ∂+I
n×I with image in X , independent of the I co-

ordinate, and we may assume the condition (∗) holds here since we may assume

that A = X ∩ C and B = X ∩ D , these conditions holding for the mapping cylinder

construction described above.

Consider the problem of extending f over K×I for K one of the subcubes. We

may assume that f has already been extended to ∂+K×I so that (∗) is satisfied, by

induction on n and on the sequence of subintervals of the last

coordinate of In×{0} . To extend f over K×I , let us first deal

with the cases that the given f takes (K, ∂−K) to (C,C ∩D) or

(D,C∩D) . Then by (ii) for the inclusion (A,A∩B)֓(C,C∩D)

or (B,A∩ B)֓ (D,C ∩D) we may extend f over K×I so that

(∗) is still satisfied. If neither of these two cases applies, then

the given f takes (K, ∂−K) just to (C,C) or (D,D) , and we can apply (ii) trivially to

construct the desired extension of f over K×I . ⊔⊓

Corollary 4K.2. Given a map f :X→Y and open covers {Ui} of X and {Vi} of Y

with f(Ui) ⊂ Vi for all i , then if each restriction f :Ui→Vi and more generally each

f :Ui1 ∩ ··· ∩Uin→Vi1 ∩ ··· ∩ Vin is a weak homotopy equivalence, so is f :X→Y .

Proof: First let us do the case of covers by two sets. By the five-lemma, the hypothe-

ses imply that πn(Ui, U1 ∩ U2)→πn(Vi, V1 ∩ V2) is bijective for i = 1,2, n ≥ 0,



The Dold–Thom Theorem Section 4.K 479

and all choices of basepoints. The preceding proposition then implies that the maps

πn(X,U1)→πn(Y , V1) are isomorphisms. Hence by the five-lemma again, so are the

maps πn(X)→πn(Y ) .
By induction, the case of finite covers by k > 2 sets reduces to the case of covers

by two sets, by letting one of the two sets be the union of the first k− 1 of the given

sets and the other be the kth set. The case of infinite covers reduces to the finite case

since for surjectivity of πn(X)→πn(Y ) , a map Sn→Y has compact image covered

by finitely many Vi ’s, and similarly for injectivity. ⊔⊓

Quasifibrations

A map p :E→B with B path-connected is a quasifibration if the induced map

p∗ :πi(E,p
−1(b),x0)→πi(B, b) is an isomorphism for all b ∈ B , x0 ∈ p

−1(b) , and

i ≥ 0. We have shown in Theorem 4.41 that fiber bundles and fibrations have this

property for i > 0, as a consequence of the homotopy lifting property, and the same

reasoning applies for i = 0 since we assume B is path-connected.

For example, consider the natural projection Mf→I of the

mapping cylinder of a map f :X→Y . This projection will be a

quasifibration iff f is a weak homotopy equivalence, since the lat-

ter condition is equivalent to having πi
(
Mf , p

−1(b)
)
= 0 = πi(I, b)

for all i and all b ∈ I . Note that if f is not surjective, there are

paths in I that do not lift to paths in Mf with a prescribed starting point, so p will

not be a fibration in such cases.

An alternative condition for a map p :E→B to be a quasifibration is that the

inclusion of each fiber p−1(b) into the homotopy fiber Fb of p over b is a weak

homotopy equivalence. Recall that Fb is the space of all pairs (x, γ) with x ∈ E and

γ a path in B from p(x) to b . The actual fiber p−1(b) is included in Fb as the pairs

with x ∈ p−1(b) and γ the constant path at x . To see the equivalence of the two

definitions, consider the commutative triangle at the

right, where Fb→Ep→B is the usual path-fibration

construction applied to p . The right-hand map in

the diagram is an isomorphism for all i ≥ 0, and the

upper map will be an isomorphism for all i ≥ 0 iff the inclusion p−1(b)֓ Fb is a

weak equivalence since E ≃ Ep . Hence the two definitions are equivalent.

Recall from Proposition 4.61 that all fibers of a fibration over a path-connected

base are homotopy equivalent. Since we are only considering quasifibrations over

path-connected base spaces, this implies that all the fibers of a quasifibration have

the same weak homotopy type. Quasifibrations over a base that is not path-connected

are considered in the exercises, but we will not need this generality in what follows.

The following technical lemma gives various conditions for recognizing that a

map is a quasifibration, which will be needed in the proof of the Dold–Thom theorem.
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Lemma 4K.3. A map p :E→B is a quasifibration if any one of the following condi-

tions is satisfied :

(a) B can be decomposed as the union of open sets V1 and V2 such that each of

the restrictions p−1(V1)→V1 , p−1(V2)→V2 , and p−1(V1 ∩ V2)→V1 ∩ V2 is a

quasifibration.

(b) B is the union of an increasing sequence of subspaces B1 ⊂ B2 ⊂ ··· with the

property that each compact set in B lies in some Bn , and such that each restriction

p−1(Bn)→Bn is a quasifibration.

(c) There is a deformation Ft of E into a subspace E′ , covering a deformation Ft
of B into a subspace B′ , such that the restriction E′→B′ is a quasifibration and

F1 :p−1(b)→p−1(F1(b)
)

is a weak homotopy equivalence for each b ∈ B .

By a ‘deformation’ in (c) we mean a deformation retraction in the weak sense as

defined in the exercises for Chapter 0, where the homotopy is not required to be the

identity on the subspace.

Proof: (a) To avoid some tedious details we will consider only the case that the fibers

of p are path-connected, which will suffice for our present purposes, leaving the

general case as an exercise for the reader. This hypothesis on fibers guarantees that

all π0 ’s arising in the proof are trivial. In particular, by an exercise for §4.1 this allows

us to terminate long exact sequences of homotopy groups of triples with zeros in the

π0 positions.

Let U1 = p
−1(V1) and U2 = p

−1(V2) . The five-lemma for the long exact se-

quences of homotopy groups of the triples
(
Uk, U1 ∩U2, p

−1(b)
)

and (Vk, V1 ∩V2, b)

implies that the maps πi(Uk, U1∩U2)→πi(Vk, V1∩V2) are isomorphisms for k = 1,2

and all i . Then Proposition 4K.1 implies that the maps πi(E,Uk)→πi(B, Vk) are iso-

morphisms for all choices of basepoints. The maps πi
(
Uk, p

−1(b)
)
→πi(Vk, b) are

isomorphisms by hypothesis, so from the five-lemma we can then deduce that the

maps πi
(
E,p−1(b)

)
→πi(B, b) are isomorphisms for all b ∈ Vk , hence for all b ∈ B .

(b) Since each compact set in B lies in some Bn , each compact set in E lies in some

subspace En = p
−1(Bn) , so πi

(
E,p−1(b)

)
is the direct limit lim

--→πi
(
En, p

−1(b)
)

just

as πi(B, b) = lim
--→πi(Bn, b) . It follows that the map πi

(
E,p−1(b)

)
→πi(B, b) is an

isomorphism since each of the maps πi
(
En, p

−1(b)
)
→πi(Bn, b) is an isomorphism

by assumption. We can take the point b to be an arbitrary point in B and then discard

any initial spaces Bn in the sequence that do not contain b , so we can assume b lies

in Bn for all n .

(c) Consider the commutative diagram
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where b is an arbitrary point in B . The upper map in the diagram is an isomor-

phism by the five-lemma since the hypotheses imply that F1 induces isomorphisms

πi(E)→πi(E
′) and πi(p

−1(b))→πi
(
p−1(F1(b))

)
for all i . The hypotheses also im-

ply that the lower map and the right-hand map are isomorphisms. Hence the left-hand

map is an isomorphism. ⊔⊓

Symmetric Products

Let us recall the definition from §3.C. For a space X the n fold symmetric product

SPn(X) is the quotient space of the product of n copies of X obtained by factoring

out the action of the symmetric group permuting the factors. A choice of basepoint

e ∈ X gives inclusions SPn(X)֓SPn+1(X) induced by (x1, ··· , xn)֏(x1, ··· , xn, e) ,

and SP(X) is defined to be the union of this increasing sequence of spaces, with

the direct limit topology. Note that SPn is a homotopy functor: A map f :X→Y
induces f∗ :SPn(X)→SPn(Y ) , and f ≃ g implies f∗ ≃ g∗ . Hence X ≃ Y implies

SPn(X) ≃ SPn(Y ) . In similar fashion SP is a homotopy functor on the category of

basepointed spaces and basepoint-preserving homotopy classes of maps. It follows

that X ≃ Y implies SP(X) ≃ SP(Y) for connected CW complexes X and Y since in

this case requiring maps and homotopies to preserve basepoints does not affect the

relation of homotopy equivalence.

Example 4K.4. An interesting special case is when X = S2 because in this case

SP(S2) can be identified with CP∞ in the following way. We first identify CPn with the

nonzero polynomials of degree at most n with coefficients in C , modulo scalar mul-

tiplication, by letting a0+···+anz
n correspond to the line containing (a0, ··· , an) .

The sphere S2 we view as C ∪ {∞} , and then we define f : (S2)n→CPn by setting

f(a1, ··· , an) = (z + a1) ··· (z + an) with factors z + ∞ omitted, so in particular

f(∞, ··· ,∞) = 1. To check that f is continuous, suppose some ai approaches ∞ ,

say an , and all the other aj ’s are finite. Then if we write

(z + a1) ··· (z + an) =

zn + (a1 + ··· + an)z
n−1 + ··· +

∑

i1<···<ik

ai1 ···aikz
n−k + ··· + a1 ···an

we see that, dividing through by an and letting an approach ∞ , this polynomial

approaches zn−1+ (a1+···+an−1)z
n−2+···+a1 ···an−1 = (z+a1) ··· (z+an−1) .

The same argument would apply if several ai ’s approach ∞ simultaneously.

The value f(a1, ··· , an) is unchanged under permutation of the ai ’s, so there

is an induced map SPn(S
2)→CPn which is a continuous bijection, hence a homeo-

morphism since both spaces are compact Hausdorff. Letting n go to ∞ , we then get

a homeomorphism SP(S2) ≈ CP∞ .

The same argument can be used to show that SPn(S
1) ≃ S1 for all n , including

n = ∞ . Namely, the argument shows that SPn(C − {0}) can be identified with the
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polynomials zn + an−1z
n−1 + ··· + a0 with a0 ≠ 0, or in other words, the n tuples

(a0, ··· , an−1) ∈ C
n with a0 ≠ 0, and this subspace of Cn deformation retracts onto

a circle.

The symmetric products of higher-dimensional spheres are more complicated,

though things are not so bad for the 2 fold symmetric product:

Example 4K.5. Let us show that SP2(S
n) is homeomorphic to the mapping cone of

a map SnRPn−1→Sn where SnRPn−1 is the n fold unreduced suspension of RPn−1 .

Hence H∗(SP2(S
n)) ≈ H∗(S

n)⊕H̃∗(S
n+1

RPn−1) from the long exact sequence of ho-

mology groups for the pair (SP2(S
n), Sn) , since SP2(S

n)/Sn is Sn+1
RPn−1 with no

reduced homology below dimension n+ 2.

If we view Sn as Dn/∂Dn , then SP2(S
n) becomes a certain quotient of Dn×Dn .

Viewing Dn×Dn as the cone on its boundary Dn×∂Dn∪∂Dn×Dn , the identifications

that produce SP2(S
n) respect the various concentric copies of this boundary which

fill up the interior of Dn×Dn , so it suffices to analyze the identifications in all these

copies of the boundary. The identifications on the boundary of Dn×Dn itself yield

Sn . This is clear since the identification (x,y) ∼ (y,x) converts Dn×∂Dn∪∂Dn×Dn

to Dn×∂Dn , and all points of ∂Dn are identified in Sn .

It remains to see that the identifications (x,y) ∼ (y,x) on each concentric copy

of the boundary in the interior of Dn×Dn produce SnRPn−1 . Denote by Z the quo-

tient of Dn×∂Dn∪∂Dn×Dn under these identifications. This is the same as the quo-

tient of Dn×∂Dn under the identifications (x,y) ∼ (y,x) for (x,y) ∈ ∂Dn×∂Dn .

Define f :Dn×RPn−1→Z by f(x, L) = (w, z) where

x is equidistant from z ∈ ∂Dn and w ∈ Dn along the line

through x parallel to L , as in the figure. If x is the midpoint

of the segment zz′ then w = z′ and there is no way to

distinguish between w and z , but since f takes values in

the quotient space Z , this is not a problem. If x ∈ ∂Dn then

w = z = x , independent of L . If x ∈ Dn − ∂Dn then w ≠ z , and conversely, given

(w, z) ∈ Dn×∂Dn with w ≠ z there is a unique (x, L) with f(x, L) = (w, z) , namely

x is the midpoint of the segment wz and L is the line parallel to this segment. In

view of these remarks, we see that Z is the quotient space of Dn×RPn−1 under the

identifications (x, L) ∼ (x, L′) if x ∈ ∂Dn . This quotient is precisely SnRPn−1 .

This example illustrates that passing from a CW structure on X to a CW structure

on SPn(X) or SP(X) is not at all straightforward. However, if X is a simplicial com-

plex, there is a natural way of putting ∆ complex structures on SPn(X) and SP(X) ,

as follows. A simplicial complex structure on X gives a CW structure on the prod-

uct of n copies of X , with cells n fold products of simplices. Such a product has

a canonical barycentric subdivision as a simplicial complex, with vertices the points

whose coordinates are barycenters of simplices of X . By induction over skeleta, this
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just amounts to coning off a simplicial structure on the boundary of each product

cell. This simplicial structure on the product of n copies of X is in fact a ∆ complex

structure since the vertices of each of its simplices have a natural ordering given by

the dimensions of the cells of which they are barycenters. The action of the symmet-

ric group permuting coordinates respects this ∆ complex structure, taking simplices

homeomorphically to simplices, preserving vertex-orderings, so there is an induced

∆ complex structure on the quotient SPn(X) . With the basepoint of X chosen to

be a vertex, SPn(X) is a subcomplex of SPn+1(X) so there is a natural ∆ complex

structure on the infinite symmetric product SP(X) as well.

As usual with products, the CW topology on SPn(X) and SP(X) is in general

different from the topology arising from the original definition in terms of product

topologies, but one can check that the two topologies have the same compact sets,

so the distinction will not matter for our present purposes. For definiteness, we will

use the CW topology in what follows, which means restricting X to be a simplicial

complex. Since every CW complex is homotopy equivalent to a simplicial complex by

Theorem 2C.5, and SPn and SP are homotopy functors, there is no essential loss of

generality in restricting from CW complexes to simplicial complexes.

Here is the main result of this section, the Dold–Thom theorem:

Theorem 4K.6. The functor X֏ πiSP(X) for i ≥ 1 coincides with the functor

X֏Hi(X;Z) on the category of basepointed connected CW complexes.

In particular this says that SP(Sn) is a K(Z, n) , and more generally that for a

Moore space M(G,n) , SP(M(G,n)) is a K(G,n) .

The fact that SP(X) is a commutative, associative H–space with a strict identity

element limits its weak homotopy type considerably:

Corollary 4K.7. A path-connected, commutative, associative H–space with a strict

identity element has the weak homotopy type of a product of Eilenberg–MacLane

spaces.

In particular, if X is a connected CW complex then SP(X) is path-connected and

has the weak homotopy type of
∏
nK(Hn(X),n) . Thus the functor SP essentially

reduces to Eilenberg–MacLane spaces.

Proof: Let X be a path-connected, commutative, associative H–space with a strict

identity element, and let Gn = πn(X) . By Lemma 4.31 there is a map M(Gn, n)→X
inducing an isomorphism on πn when n > 1 and an isomorphism on H1 when

n = 1. We can take these maps to be basepoint-preserving, and then they com-

bine to give a map
∨
nM(Gn, n)→X . The very special H–space structure on X al-

lows us to extend this to a homomorphism f :SP(
∨
nM

(
Gn, n)

)
→X . In general,

SP(
∨
αXα) can be identified with

∏
αSP(Xα) where this is the ‘weak’ infinite prod-

uct, the union of the finite products. This, together with the general fact that the map
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πi(X)→πiSP(X) = Hi(X;Z) induced by the inclusion X = SP1(X)֓ SP(X) is the

Hurewicz homomorphism, as we will see at the end of the proof of the Dold–Thom the-

orem, implies that the map f induces an isomorphism on all homotopy groups. Thus

we have a weak homotopy equivalence
∏
nSP

(
M(Gn, n)

)
→X , and as we noted above,

SP
(
M(Gn, n)

)
is a K(Gn, n) . Finally, since each factor SP

(
M(Gn, n)

)
has only one

nontrivial homotopy group, the weak infinite product has the same weak homotopy

type as the ordinary infinite product. ⊔⊓

The main step in the proof of the theorem will be to show that for a simplicial

pair (X,A) with both X and A connected, there is a long exact sequence

···→πiSP(A)→πiSP(X)→πiSP(X/A)→πi−1SP(A)→ ···

This would follow if the maps SP(A)→SP(X)→SP(X/A) formed a fiber bundle or

fibration. There is some reason to think this might be true, because all the fibers of

the projection SP(X)→SP(X/A) are homeomorphic to SP(A) . In fact, in terms of

the H–space structure on SP(X) as the free abelian monoid generated by X , the fibers

are exactly the cosets of the submonoid SP(A) . The projection SP(X)→SP(X/A) ,
however, fails to have the homotopy lifting property, even the special case of lifting

paths. For if xt , t ∈ [0,1) , is a path in X −A approaching a point x1 = a ∈ A other

than the basepoint, then regarding xt as a path in SP(X/A) , any lift to SP(X) would

have the form xtαt , αt ∈ SP(A) , ending at x1α1 = aα1 , a point of SP(A) which

is a multiple of a , so in particular there would be no lift ending at the basepoint of

SP(X) .

What we will show is that the projection SP(X)→SP(X/A) has instead the weaker

structure of a quasifibration, which is still good enough to deduce a long exact se-

quence of homotopy groups.

Proof of 4K.6: As we have said, the main step will be to associate a long exact sequence

of homotopy groups to each simplicial pair (X,A) with X and A connected. This

will be the long exact sequence of homotopy groups coming from the quasifibration

SP(A)→SP(X)→SP(X/A) , so the major work will be in verifying the quasifibration

property. Since SP is a homotopy functor, we are free to replace (X,A) by a homotopy

equivalent pair, so let us replace (X,A) by (M,A) where M is the mapping cylinder

of the inclusion A֓ X . This new pair, which we still call (X,A) , has some slight

technical advantages, as we will see later in the proof.

To begin the proof that the projection p :SP(X)→SP(X/A) is a quasifibration,

let Bn = SPn(X/A) and En = p
−1(Bn) . Thus En consists of those points in SP(X)

having at most n coordinates in X − A . By Lemma 4K.3(b) it suffices to show that

p :En→Bn is a quasifibration. The proof of the latter fact will be by induction on

n , starting with the trivial case n = 0 when B0 is a point. The induction step will

consist of showing that p is a quasifibration over a neighborhood of Bn−1 and over
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Bn − Bn−1 , then applying Lemma 4K.3(a). We first tackle the problem of showing the

quasifibration property over a neighborhood of Bn−1 .

Let ft :X→X be a homotopy of the identity map deformation retracting a neigh-

borhood N of A onto A . Since we have replaced the original X by the mapping

cylinder of the inclusion A֓X , we can take ft simply to slide points along the seg-

ments {a}×I in the mapping cylinder, with N = A×[0, 1/2). Let U ⊂ En consist of

those points having at least one coordinate in N , or in other words, products with

at least one factor in N . Thus U is a neighborhood of En−1 in En and p(U) is a

neighborhood of Bn−1 in Bn .

The homotopy ft induces a homotopy Ft :En→En whose restriction to U is a de-

formation of U into En−1 , where by ‘deformation’ we mean deformation retraction in

the weak sense. Since ft is the identity on A , Ft is the lift of a homotopy F t :Bn→Bn
which restricts to a deformation of U = p(U) into Bn−1 . We will deduce that the

projection U→U is a quasifibration by using Lemma 4K.3(c). To apply this to the

case at hand we need to verify that F1 :p−1(b)→p−1(F1(b)
)

is a weak equivalence

for all b . Each point w ∈ p−1(b) is a commuting product of points in X . Let ŵ

be the subproduct whose factors are points in X − A , so we have w = ŵv for v a

product of points in A . Since f1 is the identity on A and F1 is a homomorphism,

we have F1(w) = F1(ŵ)v , which can be written ÆF1(ŵ)v
′v with v ′ also a product

of points in A . If we fix ŵ and let v vary over SP(A) , we get all points of p−1(b)

exactly once, or in other words, we have p−1(b) expressed as the coset ŵSP(A) .

The map F1 , ŵv֏ ÆF1(ŵ)v
′v , takes this coset to the coset ÆF1(ŵ)SP(A) by a map

that would be a homeomorphism if the factor v ′ were not present. Since A is con-

nected, there is a path v ′t from v ′ to the basepoint, and so by replacing v ′ with v ′t
in the product ÆF1(ŵ)v

′v we obtain a homotopy from F1 :p−1(b)→p−1(F1(b)
)

to a

homeomorphism, so this map is a homotopy equivalence, as desired.

It remains to see that p is a quasifibration over Bn−Bn−1 and over the intersection

of this set with U . The argument will be the same in both cases.

Identifying Bn − Bn−1 with SPn(X −A) , the projection p :En − En−1→Bn − Bn−1

is the same as the operator w֏ ŵ . The inclusion SPn(X −A)֓ En − En−1 gives a

section for p :En−En−1→Bn−Bn−1 , so p∗ :πi
(
En−En−1, p

−1(b)
)
→πi(Bn−Bn−1, b)

is surjective. To see that it is also injective, represent an element of its kernel by

a map g : (Di, ∂Di)→
(
En − En−1, p

−1(b)
)
. A nullhomotopy of pg gives a homo-

topy of g changing only its coordinates in X − A . This homotopy is through maps

(Di, ∂Di)→
(
En − En−1, p

−1(b)
)
, and ends with a map to p−1(b) , so the kernel of

p∗ is trivial. Thus the projection En − En−1→Bn − Bn−1 is a quasifibration, at least

if Bn − Bn−1 is path-connected. But by replacing the original X with the mapping

cylinder of the inclusion A֓ X , we guarantee that X − A is path-connected since

it deformation retracts onto X . Hence the space Bn − Bn−1 = SPn(X − A) is also

path-connected.
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This argument works equally well over any open subset of Bn−Bn−1 that is path-

connected, in particular over U ∩ (Bn − Bn−1) , so via Lemma 4K.3(a) this finishes the

proof that SP(A)→SP(X)→SP(X/A) is a quasifibration.

Since the homotopy axiom is obvious, this gives us the first two of the three ax-

ioms needed for the groups hi(X) = πiSP(X) to define a reduced homology theory.

There remains only the wedge sum axiom, hi(
∨
αXα) ≈

⊕
αhi(Xα) , but this is im-

mediate from the evident fact that SP(
∨
αXα) =

∏
αSP(Xα) , where this is the ‘weak’

product, the union of the products of finitely many factors.

The homology theory h∗(X) is defined on the category of connected, basepointed

simplicial complexes, with basepoint-preserving maps. The coefficients of this homol-

ogy theory, the groups hi(S
n) , are the same as for ordinary homology with Z coeffi-

cients since we know this is true for n = 2 by the homeomorphism SP(S2) ≈ CP∞ ,

and there are isomorphisms hi(X) ≈ hi+1(ΣX) in any reduced homology theory.

If the homology theory h∗(X) were defined on the category of all simplicial com-

plexes, without basepoints, then Theorem 4.59 would give natural isomorphisms

hi(X) ≈ Hi(X;Z) for all X , and the proof would be complete. However, it is easy

to achieve this by defining a new homology theory h′i(X) = hi+1(ΣX) , since the sus-

pension of an arbitrary complex is connected and the suspension of an arbitrary map

is basepoint-preserving, taking the basepoint to be one of the suspension points. Since

h′i(X) is naturally isomorphic to hi(X) if X is connected, we are done. ⊔⊓

It is worth noting that the map πi(X)→πiSP(X) = Hi(X;Z) induced by the

inclusion X = SP1(X)֓SP(X) is the Hurewicz homomorphism. For by definition of

the Hurewicz homomorphism and naturality this reduces to the case X = Si , where

the map SP1(S
i)֓ SP(Si) induces on πi a homomorphism Z→Z , which one just

has to check is an isomorphism, the Hurewicz homomorphism being determined only

up to sign. The suspension isomorphism gives a further reduction to the case i = 1,

where the inclusion SP1(S
1)֓ SP(S1) is a homotopy equivalence, hence induces an

isomorphism on π1 .

Exercises

1. Show that Corollary 4K.2 remains valid when X and Y are CW complexes and the

subspaces Ui and Vi are subcomplexes rather than open sets.

2. Show that a simplicial map f :K→L is a homotopy equivalence if f−1(x) is con-

tractible for all x ∈ L . [Consider the cover of L by open stars of simplices and the

cover of K by the preimages of these open stars.]

3. Show that SPn(I) = ∆n .

4. Show that SP2(S
1) is a Möbius band, and that this is consistent with the description

of SP2(S
n) as a mapping cone given in Example 4K.5.
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5. A map p :E→B with B not necessarily path-connected is defined to be a quasifi-

bration if the following equivalent conditions are satisfied:

(i) For all b ∈ B and x0 ∈ p
−1(b) , the map p∗ :πi(E,p

−1(b),x0)→πi(B, b) is an

isomorphism for i > 0 and π0(p
−1(b),x0)→π0(E,x0)→π0(B, b) is exact.

(ii) The inclusion of the fiber p−1(b) into the homotopy fiber Fb of p over b is a

weak homotopy equivalence for all b ∈ B .

(iii) The restriction of p over each path-component of B is a quasifibration according

to the definition in this section.

Show these three conditions are equivalent, and prove Lemma 4K.3 for quasifibrations

over non-pathconnected base spaces.

6. Let X be a complex of spaces over a ∆ complex Γ , as defined in §4.G. Show that

the natural projection ∆X→Γ is a quasifibration if all the maps in X associated to

edges of Γ are weak homotopy equivalences.

The main objects of study in this section are certain homomorphisms called Steen-

rod squares and Steenrod powers:

Sqi :Hn(X;Z2)→H
n+i(X;Z2)

P i :Hn(X;Zp)→H
n+2i(p−1)(X;Zp) for odd primes p

The terms ‘squares’ and ‘powers’ arise from the fact that Sqi and P i are related to

the maps α֏α2 and α֏αp sending a cohomology class α to the 2 fold or p fold

cup product with itself. Unlike cup products, however, the operations Sqi and P i are

stable, that is, invariant under suspension.

The operations Sqi generate an algebra A2 , called the Steenrod algebra, such that

H∗(X;Z2) is a module over A2 for every space X , and maps between spaces induce

homomorphisms of A2 modules. Similarly, for odd primes p , H∗(X;Zp) is a module

over a corresponding Steenrod algebra Ap generated by the P i ’s and Bockstein ho-

momorphisms. Like the ring structure given by cup product, these module structures

impose strong constraints on spaces and maps. For example, we will use them to

show that there do not exist spaces X with H∗(X;Z) a polynomial ring Z[α] unless

α has dimension 2 or 4, where there are the familiar examples of CP∞ and HP∞ .

This rather lengthy section is divided into two main parts. The first part describes

the basic properties of Steenrod squares and powers and gives a number of examples

and applications. The second part is devoted to constructing the squares and powers

and showing they satisfy the basic properties listed in the first part. More extensive
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applications will be given in [SSAT] after spectral sequences have been introduced.

Most applications of Steenrod squares and powers do not depend on how these op-

erations are actually constructed, but only on their basic properties. This is similar

to the situation for ordinary homology and cohomology, where the axioms generally

suffice for most applications. The construction of Steenrod squares and powers and

the verification of their basic properties, or axioms, is rather interesting in its own

way, but does involve a certain amount of work, particularly for the Steenrod powers,

and this is why we delay the work until later in the section.

We begin with a few generalities. A cohomology operation is a transformation

Θ = ΘX :Hm(X;G)→Hn(X;H) defined for all spaces X , with a fixed choice of m , n ,

G , and H , and satisfying the naturality property that

for all maps f :X→Y there is a commuting diagram

as shown at the right. For example, with coefficients in

a ring R the transformation Hm(X;R)→Hmp(X;R) ,

α֏αp , is a cohomology operation since f∗(αp) = (f∗(α))p . Taking R = Z , this ex-

ample shows that cohomology operations need not be homomorphisms. On the other

hand, when R = Zp with p prime, the operation α֏αp is a homomorphism. Other

examples of cohomology operations we have already encountered are the Bockstein

homomorphisms defined in §3.E. As a more trivial example, a homomorphism G→H
induces change-of-coefficient homomorphisms Hm(X;G)→Hm(X;H) which can be

viewed as cohomology operations.

In spite of their rather general definition, cohomology operations can be described

in somewhat more concrete terms:

Proposition 4L.1. For fixed m , n , G , and H there is a bijection between the set of

all cohomology operations Θ :Hm(X;G)→Hn(X;H) and Hn(K(G,m);H) , defined

by Θ֏Θ(ι) where ι ∈ Hm(K(G,m);G) is a fundamental class.

Proof: Via CW approximations to spaces, it suffices to restrict attention to CW com-

plexes, so we can identify Hm(X;G) with 〈X,K(G,m)〉 when m > 0 by Theorem 4.57,

and with [X,K(G,0)] when m = 0. If an element α ∈ Hm(X;G) corresponds to a

map ϕ :X→K(G,m) , so ϕ∗(ι) = α , then Θ(α) = Θ(ϕ∗(ι)) = ϕ∗(Θ(ι)) and Θ is

uniquely determined by Θ(ι) . Thus Θ֏ Θ(ι) is injective. For surjectivity, given

an element α ∈ Hn(K(G,m);H) corresponding to a map θ :K(G,m)→K(H,n) ,
then composing with θ defines a transformation 〈X,K(G,m)〉→〈X,K(H,n)〉 , that

is, Θ :Hm(X;G)→Hn(X;H) , with Θ(ι) = α . The naturality property for Θ amounts

to associativity of the compositions X
f
-----→Y

ϕ
-----→K(G,m)

θ
-----→K(H,n) and so Θ is a

cohomology operation. ⊔⊓

A consequence of the proposition is that cohomology operations that decrease

dimension are all rather trivial since K(G,m) is (m− 1) connected. Moreover, since
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Hm(K(G,m);H) ≈ Hom(G,H) , it follows that the only cohomology operations that

preserve dimension are given by coefficient homomorphisms.

The Steenrod squares Sqi :Hn(X;Z2)→H
n+i(X;Z2) , i ≥ 0, will satisfy the fol-

lowing list of properties, beginning with naturality:

(1) Sqi(f∗(α)) = f∗(Sqi(α)) for f :X→Y .

(2) Sqi(α+ β) = Sqi(α)+ Sqi(β) .

(3) Sqi(α` β) =
∑
j Sq

j(α)` Sqi−j(β) (the Cartan formula).

(4) Sqi(σ(α)) = σ(Sqi(α)) where σ :Hn(X;Z2)→H
n+1(ΣX;Z2) is the suspension

isomorphism given by reduced cross product with a generator of H1(S1;Z2) .

(5) Sqi(α) = α2 if i = |α| , and Sqi(α) = 0 if i > |α| .

(6) Sq0 = 11, the identity.

(7) Sq1 is the Z2 Bockstein homomorphism β associated with the coefficient se-

quence 0→Z2→Z4→Z2→0.

The first part of (5) says that the Steenrod squares extend the squaring operation

α֏ α2 , which has the nice feature of being a homomorphism with Z2 coefficients.

Property (4) says that the Sqi ’s are stable operations, invariant under suspension. The

actual squaring operation α֏α2 does not have this property since in a suspension

ΣX all cup products of positive-dimensional classes are zero, according to an exercise

for §3.2.

The fact that Steenrod squares are stable operations extending the cup product

square yields the following theorem, which implies that the stable homotopy groups

of spheres π s1 , π s3 , and π s7 are nontrivial:

Theorem 4L.2. If f :S2n−1→Sn has Hopf invariant 1 , then [f ] ∈ π sn−1 is nonzero,

so the iterated suspensions Σkf :S2n+k−1→Sn+k are all homotopically nontrivial.

Proof: Associated to a map f :Sℓ→Sm is the mapping cone Cf = S
m∪f e

ℓ+1 with the

cell eℓ+1 attached via f . Assuming f is basepoint-preserving, we have the relation

CΣf = ΣCf where Σ denotes reduced suspension.

If f :S2n−1→Sn has Hopf invariant 1, then by (5), Sqn :Hn(Cf ;Z2)→H
2n(Cf ;Z2)

is nontrivial. By (4) the same is true for Sqn :Hn+k(ΣkCf ;Z2)→H
2n+k(ΣkCf ;Z2) for all

k . If Σkf were homotopically trivial we would have a retraction r :ΣkCf→Sn+k . The

diagram at the right would then commute by

naturality of Sqn , but since the group in the

lower left corner of the diagram is zero, this

gives a contradiction. ⊔⊓

The Steenrod power operations P i :Hn(X;Zp)→H
n+2i(p−1)(X;Zp) for p an odd

prime will satisfy analogous properties:

(1) P i(f∗(α)) = f∗(P i(α)) for f :X→Y .
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(2) P i(α+ β) = P i(α)+ P i(β) .

(3) P i(α` β) =
∑
j P

j(α)` P i−j(β) (the Cartan formula).

(4) P i(σ(α)) = σ(P i(α)) where σ :Hn(X;Zp)→H
n+1(ΣX;Zp) is the suspension iso-

morphism given by reduced cross product with a generator of H1(S1;Zp) .

(5) P i(α) = αp if 2i = |α| , and P i(α) = 0 if 2i > |α| .

(6) P0 = 11, the identity.

The germinal property P i(α) = αp in (5) can only be expected to hold for even-

dimensional classes α since for odd-dimensional α the commutativity property of

cup product implies that α2 = 0 with Zp coefficients if p is odd, and then αp = 0

since α2 = 0. Note that the formula P i(α) = αp for |α| = 2i implies that P i raises

dimension by 2i(p − 1) , explaining the appearance of this number.

The Bockstein homomorphism β :Hn(X;Zp)→H
n+1(X;Zp) is not included as

one of the P i ’s, but this is mainly a matter of notational convenience. As we shall

see later when we discuss Adem relations, the operation Sq2i+1 is the same as the

composition Sq1Sq2i = βSq2i , so the Sq2i ’s can be regarded as the P i ’s for p = 2.

One might ask if there are elements of π s∗ detectable by Steenrod powers in the

same way that the Hopf maps are detected by Steenrod squares. The answer is yes

for the operation P1 , as we show in Example 4L.6. It is a perhaps disappointing fact

that no other squares or powers besides Sq1 , Sq2 , Sq4 , Sq8 , and P1 detect elements

of homotopy groups of spheres. (Sq1 detects a map Sn→Sn of degree 2.) We will

prove this for certain Sqi ’s and P i ’s later in this section. The general case for p = 2

is Adams’ theorem on the Hopf invariant discussed in §4.B, while the case of odd p

is proved in [Adams & Atiyah 1966]; see also [VBKT].

The Cartan formulas can be expressed in a more concise form by defining total

Steenrod square and power operations by Sq = Sq0+Sq1+··· and P = P0+P1+··· .

These act on H∗(X;Zp) since by property (5), only a finite number of Sqi ’s or P i ’s

can be nonzero on a given cohomology class. The Cartan formulas then say that

Sq(α ` β) = Sq(α) ` Sq(β) and P(α ` β) = P(α) ` P(β) , so Sq and P are ring

homomorphisms.

We can use Sq and P to compute the operations Sqi and P i for projective spaces

and lens spaces via the following general formulas:

(∗)
Sqi(αn) =

(
n
i

)
αn+i for α ∈ H1(X;Z2)

P i(αn) =
(
n
i

)
αn+i(p−1) for α ∈ H2(X;Zp)

To derive the first formula, properties (5) and (6) give Sq(α) = α + α2 = α(1 + α) ,

so Sq(αn) = Sq(α)n = αn(1 + α)n =
∑
i

(
n
i

)
αn+i and hence Sqi(αn) =

(
n
i

)
αn+i .

The second formula is obtained in similar fashion: P(α) = α+αp = α(1+αp−1) so

P(αn) = αn(1+αp−1)n =
∑
i

(
n
i

)
αn+i(p−1) .
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In Lemma 3C.6 we described how binomial coefficients can be computed modulo

a prime p :

(
m
n

)
≡
∏
i

(
mi
ni

)
mod p , where m =

∑
imip

i and n =
∑
inip

i are the

p adic expansions of m and n .

When p = 2 for example, the extreme cases of a dyadic

expansion consisting of a single 1 or all 1’s give

Sq(α2k) = α2k +α2k+1

Sq(α2k−1) = α2k−1 +α2k +α2k+1 + ··· +α2k+1−2

for α ∈ H1(X;Z2) . More generally, the coefficients of

Sq(αn) can be read off from the (n + 1)st row of the

mod 2 Pascal triangle, a portion of which is shown in

the figure at the right, where dots denote zeros.

Example 4L.3: Stable Splittings. The formula (∗) tells us how to compute Steen-

rod squares for RP∞ , hence also for any suspension of RP∞ . The explicit formu-

las for Sq(α2k) and Sq(α2k−1) above show that all the powers of the generator

α ∈ H1(RP∞;Z2) are tied together by Steenrod squares since the first formula con-

nects α inductively to all the powers α2k and the second formula connects these

powers to all the other powers. This shows that no suspension ΣkRP∞ has the ho-

motopy type of a wedge sum X ∨ Y with both X and Y having nontrivial cohomol-

ogy. In the case of RP∞ itself we could have deduced this from the ring structure of

H∗(RP∞;Z2) ≈ Z2[α] , but cup products become trivial in a suspension.

The same reasoning shows that CP∞ and HP∞ have no nontrivial stable split-

tings. The Z2 cohomology in these cases is again Z2[α] , though with α no longer

1 dimensional. However, we still have Sq(α) = α + α2 since these spaces have no

nontrivial cohomology in the dimensions between α and α2 , so we have Sq2i(αn) =(
n
i

)
αn+i for CP∞ and Sq4i(αn) =

(
n
i

)
αn+i for HP∞ . Then the arguments from the

real case carry over using the operations Sq2i and Sq4i in place of Sqi .

Suppose we consider the same question for K(Z3,1) instead of RP∞ . Taking

cohomology with Z3 coefficients, the Bockstein β is nonzero on odd-dimensional

classes in H∗(K(Z3,1);Z3) , thus tying them to the even-dimensional classes, so we

only need to see which even-dimensional classes are connected by P i ’s. The even-

dimensional part of H∗(K(Z3,1);Z3) is a polynomial algebra Z3[α] with |α| = 2, so

we have P i(αn) =
(
n
i

)
αn+i(p−1) =

(
n
i

)
αn+2i by our earlier formula. Since P i raises

dimension by 4i when p = 3, there is no chance that all the even-dimensional co-

homology will be connected by the P i ’s. In fact, we showed in Proposition 4I.3 that

ΣK(Z3,1) ≃ X1 ∨ X2 where X1 has the cohomology of ΣK(Z3,1) in dimensions con-

gruent to 2 and 3 mod 4, while X2 has the remaining cohomology. Thus the best one

could hope would be that all the odd powers of α are connected by P i ’s and likewise

all the even powers are connected, since this would imply that neither X1 nor X2 splits
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nontrivially. This is indeed the case, as one sees by an exam-

ination of the coefficients in the formula P i(αn) =
(
n
i

)
αn+2i .

In the Pascal triangle mod 3, shown at the right, P(αn) is

determined by the (n + 1)st row. For example the sixth row

says that P(α5) = α5 + 2α7 + α9 + α11 + 2α13 + α15 . A few

moments’ thought shows that the rows that compute P(αn)

for n = 3km−1 have all nonzero entries, and these rows together with the rows right

after them suffice to connect the powers of α in the desired way, so X1 and X2 have

no stable splittings. One can also see that Σ2X1 and X2 are not homotopy equivalent,

even stably, since the operations P i act differently in the two spaces. For example P2

is trivial on suspensions of α but not on suspensions of α2 .

The situation for K(Zp,1) for larger primes p is entirely similar, with ΣK(Zp ,1)
splitting as a wedge sum of p − 1 spaces. The same arguments work more generally

for K(Zpi ,1) , though for i > 1 the usual Bockstein β is identically zero so one has

to use instead a Bockstein involving Zpi coefficients. We leave the details of these

arguments as exercises.

Example 4L.4: Maps of HP∞ . We can use the operations P i together with a bit

of number theory to demonstrate an interesting distinction between HP∞ and CP∞ ,

namely, we will show that if a map f :HP∞→HP∞ has f∗(γ) = dγ for γ a generator

of H4(HP∞;Z) , then the integer d , which we call the degree of f , must be a square.

By contrast, since CP∞ is a K(Z,2) , there are maps CP∞→CP∞ carrying a generator

α ∈ H2(CP∞;Z) onto any given multiple of itself. Explicitly, the map z֏ zd , z ∈ C ,

induces a map f of CP∞ with f∗(α) = dα , but commutativity of C is needed for this

construction so it does not extend to the quaternionic case.

We shall deduce the action of Steenrod powers on H∗(HP∞;Zp) from their ac-

tion on H∗(CP∞;Zp) , given by the earlier formula (∗) which says that P i(αn) =(
n
i

)
αn+i(p−1) for α a generator of H2(CP∞;Zp) . There is a natural quotient map

CP∞→HP∞ arising from the definition of both spaces as quotients of S∞ . This map

takes the 4 cell of CP∞ homeomorphically onto the 4 cell of HP∞ , so the induced

map on cohomology sends a generator γ ∈ H4(HP∞;Zp) to α2 , hence γn to α2n .

Thus the formula P i(α2n) =
(

2n
i

)
α2n+i(p−1) implies that P i(γn) =

(
2n
i

)
γn+i(p−1)/2 .

For example, P1(γ) = 2γ(p+1)/2 .

Now let f :HP∞→HP∞ be any map. Applying the formula P1(γ) = 2γ(p+1)/2 in

two ways, we get

P1f∗(γ) = f∗P1(γ) = f∗(2γ(p+1)/2) = 2d(p+1)/2γ(p+1)/2

and P1f∗(γ) = P1(dγ) = 2dγ(p+1)/2

Hence the degree d satisfies d(p+1)/2 ≡ d mod p for all odd primes p . Thus either

d ≡ 0 mod p or d(p−1)/2 ≡ 1 mod p . In both cases d is a square mod p since the
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congruence d(p−1)/2 ≡ 1 mod p is equivalent to d being a nonzero square mod p , the

multiplicative group of nonzero elements of the field Zp being cyclic of order p − 1.

The argument is completed by appealing to the number theory fact that an integer

which is a square mod p for all sufficiently large primes p must be a square. This can

be deduced from quadratic reciprocity and Dirichlet’s theorem on primes in arithmetic

progressions as follows. Suppose on the contrary that the result is false for the integer

d . Consider primes p not dividing d . Since the product of two squares in Zp is again

a square, we may assume that d is a product of distinct primes q1, ··· , qn , where one

of these primes is allowed to be −1 if d is negative. In terms of the Legendre symbol(d
p

)
which is defined to be +1 if d is a square mod p and −1 otherwise, we have

(
d

p

)
=

(
q1

p

)
···

(
qn
p

)

The left side is +1 for all large p by hypothesis, so it will suffice to see that p can be

chosen to give each term on the right an arbitrary preassigned value. The values of(−1
p

)
and

( 2
p

)
depend only on p mod 8, and the four combinations of values are real-

ized by the four residues 1,3,5,7 mod 8. Having specified the value of p mod 8, the

quadratic reciprocity law then says that for odd primes q , specifying
( q
p

)
is equiva-

lent to specifying
(p
q

)
. Thus we need only choose p in the appropriate residue classes

mod 8 and mod qi for each odd qi . By the Chinese remainder theorem, this means

specifying p modulo 8 times a product of odd primes. Dirichlet’s theorem guarantees

that in fact infinitely many primes p exist satisfying this congruence condition.

It is known that the integers realizable as degrees of maps HP∞→HP∞ are exactly

the odd squares and zero. The construction of maps of odd square degree will be given

in [SSAT] using localization techniques, following [Sullivan 1974]. Ruling out nonzero

even squares can be done using K–theory; see [Feder & Gitler 1978], which also treats

maps HPn→HPn .

The preceding calculations can also be used to show that every map HPn→HPn

must have a fixed point if n > 1. For, taking p = 3, the element P1(γ) lies in

H8(HPn;Z3) which is nonzero if n > 1, so, when the earlier argument is specialized

to the case p = 3, the congruence d(p+1)/2 ≡ d mod p becomes d2 = d in Z3 , which

is satisfied only by 0 and 1 in Z3 . In particular, d is not equal to −1. The Lefschetz

number λ(f) = 1+ d+ ··· + dn = (dn+1 − 1)/(d− 1) is therefore nonzero since the

only integer roots of unity are ±1. The Lefschetz fixed point theorem then gives the

result.

Example 4L.5: Vector Fields on Spheres. Let us now apply Steenrod squares to

determine the maximum number of orthonormal tangent vector fields on a sphere

in all cases except when the dimension of the sphere is congruent to −1 mod 16.

The first step is to rephrase the question in terms of Stiefel manifolds. Recall from

the end of §3.D and Example 4.53 the space Vn,k of orthonormal k frames in R
n .

Projection of a k frame onto its first vector gives a map p :Vn,k→S
n−1 , and a section
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for this projection, that is, a map f :Sn−1→Vn,k such that pf = 11, is exactly a set of

k−1 orthonormal tangent vector fields v1, ··· , vk−1 on Sn−1 since f assigns to each

x ∈ Sn−1 an orthonormal k frame (x,v1(x), ··· , vk−1(x)) .

We described a cell structure on Vn,k at the end of §3.D, and we claim that the

(n − 1) skeleton of this cell structure is RPn−1/RPn−k−1 if 2k − 1 ≤ n . The cells of

Vn,k were products ei1× ··· ×eim with n > i1 > ··· > im ≥ n − k , so the products

with a single factor account for all of the (2n− 2k) skeleton, hence they account for

all of the (n−1) skeleton if n−1 ≤ 2n−2k , that is, if 2k−1 ≤ n . The cells that are

products with a single factor are the homeomorphic images of cells of RPn−1 under

a map RPn−1→SO(n)→SO(n)/SO(n− k) = Vn,k . This map collapses RPn−k−1 to a

point, so we get the desired conclusion that RPn−1/RPn−k−1 is the (n − 1) skeleton

of Vn,k if 2k− 1 ≤ n .

Now suppose we have f :Sn−1→Vn,k with pf = 11. In particular, f∗ is surjective

on Hn−1(−;Z2) . If we deform f to a cellular map, with image in the (n−1) skeleton,

then by the preceding paragraph this will give a map g :Sn−1→RPn−1/RPn−k−1 if

2k − 1 ≤ n , and this map will still induce a surjection on Hn−1(−;Z2) , hence an

isomorphism. If the number k happens to be such that
(
n−k
k−1

)
≡ 1 mod 2, then by the

earlier formula (∗) the operation

Sqk−1 :Hn−k(RPn−1/RPn−k−1;Z2)→H
n−1(RPn−1/RPn−k−1;Z2)

will be nonzero, contradicting the existence of the map g since obviously the opera-

tion Sqk−1 :Hn−k(Sn−1;Z2)→H
n−1(Sn−1;Z2) is zero.

In order to guarantee that
(
n−k
k−1

)
≡ 1 mod 2, write n = 2r(2s + 1) and choose

k = 2r + 1. Assume for the moment that s ≥ 1. Then
(
n−k
k−1

)
=
(

2r+1s−1
2r

)
, and in view

of the rule for computing binomial coefficients in Z2 , this is nonzero since the dyadic

expansion of 2r+1s−1 ends with a string of 1’s including a 1 in the single digit where

the expansion of 2r is nonzero. Note that the earlier condition 2k−1 ≤ n is satisfied

since it becomes 2r+1 + 1 ≤ 2r+1s + 2r and we assume s ≥ 1.

Summarizing, we have shown that for n = 2r (2s + 1) , the sphere Sn−1 cannot

have 2r orthonormal tangent vector fields if s ≥ 1. This is also trivially true for s = 0

since Sn−1 cannot have n orthonormal tangent vector fields.

It is easy to see that this result is best possible when r ≤ 3 by explicitly construct-

ing 2r − 1 orthonormal tangent vector fields on Sn−1 when n = 2rm . When r = 1,

view Sn−1 as the unit sphere in Cm , and then x֏ ix defines a tangent vector field

since the unit complex numbers 1 and i are orthogonal and multiplication by a unit

complex number is an isometry of C , so x and ix are orthogonal in each coordinate

of Cm , hence are orthogonal. When r = 2 the same construction works with H in

place of C , using the maps x֏ix , x֏jx , and x֏kx to define three orthonormal

tangent vector fields on the unit sphere in Hm . When r = 3 we can follow the same
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procedure with the octonions, constructing seven orthonormal tangent vector fields

to the unit sphere in Om via an orthonormal basis 1, i, j, k, ··· for O .

The upper bound of 2r − 1 for the number of orthonormal vector fields on Sn−1

is not best possible in the remaining case n ≡ 0 mod 16. The optimal upper bound is

obtained instead using K–theory; see [VBKT] or [Husemoller 1966]. The construction

of the requisite number of vector fields is again algebraic, this time using Clifford

algebras.

Example 4L.6: A Map of mod p Hopf Invariant One. Let us describe a construction

for a map f :S2p→S3 such that in the mapping cone Cf = S
3∪f e

2p+1 , the first Steen-

rod power P1 :H3(Cf ;Zp)→H
2p+1(Cf ;Zp) is nonzero, hence f is nonzero in π s2p−3 .

The construction starts with the fact that a generator of H2(K(Zp,1);Zp) has nontriv-

ial p th power, so the operation P1 :H2(K(Zp ,1);Zp)→H
2p(K(Zp ,1);Zp) is nontrivial

by property (5). This remains true after we suspend to ΣK(Zp,1) , and we showed in

Proposition 4I.3 that ΣK(Zp ,1) has the homotopy type of a wedge sum of CW com-

plexes Xi , 1 ≤ i ≤ p − 1, with H̃∗(Xi;Z) consisting only of a Zp in each dimension

congruent to 2i mod 2p − 2. We are interested here in the space X = X1 , which has

nontrivial Zp cohomology in dimensions 2,3,2p,2p+1, ··· . Since X is, up to homo-

topy, a wedge summand of ΣK(Zp,1) , the operation P1 :H3(X;Zp)→H
2p+1(X;Zp) is

nontrivial. Since X is simply-connected, the construction in §4.C shows that we may

take X to have (2p + 1) skeleton of the form S2 ∪ e3 ∪ e2p ∪ e2p+1 . In fact, using

the notion of homology decomposition in §4.H, we can take this skeleton to be the

reduced mapping cone Cg of a map of Moore spaces g :M(Zp,2p − 1)→M(Zp,2) .
It follows that the quotient Cg/S

2 is the reduced mapping cone of the composition

h :M(Zp,2p − 1)
g
-----→M(Zp ,2)→M(Zp,2)/S

2 = S3 . The restriction h||S
2p−1 repre-

sents an element of π2p−1(S
3) that is either trivial or has order p since this restriction

extends over the 2p cell of M(Zp,2p− 1) which is attached by a map S2p−1→S2p−1

of degree p . In fact, h||S
2p−1 is nullhomotopic since, as we will see in [SSAT] using

the Serre spectral sequence, πi(S
3) contains no elements of order p if i ≤ 2p − 1.

This implies that the space Ch = Cg/S
2 is homotopy equivalent to a CW complex Y

obtained from S3 ∨ S2p by attaching a cell e2p+1 . The quotient Y/S2p then has the

form S3 ∪ e2p+1 , so it is the mapping cone of a map f :S2p→S3 . By construction

there is a map Cg→Cf inducing an isomorphism on Zp cohomology in dimensions

3 and 2p + 1, so the operation P1 is nontrivial in H∗(Cf ;Zp) since this was true for

Cg , the (2p + 1) skeleton of X .

Example 4L.7: Moore Spaces. Let us use the operation Sq2 to show that for n ≥ 2,

the identity map of M(Z2, n) has order 4 in the group of basepoint-preserving homo-

topy classes of maps M(Z2, n)→M(Z2, n) , with addition defined via the suspension

structure on M(Z2, n) = ΣM(Z2, n− 1) . According to Proposition 4H.2, this group is

the middle term of a short exact sequence, the remaining terms of which contain only
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elements of order 2. Hence if the identity map of M(Z2, n) has order 4, this short

exact sequence cannot split.

In view of the short exact sequence just referred to, it will suffice to show that

twice the identity map of M(Z2, n) is not nullhomotopic. If twice the identity were

nullhomotopic, then the mapping cone C of this map would have the homotopy type

of M(Z2, n)∨ΣM(Z2, n) . This would force Sq2 :Hn(C ;Z2)→H
n+2(C ;Z2) to be trivial

since the source and target groups would come from different wedge summands.

However, we will now show that this Sq2 operation is nontrivial. Twice the identity

map of M(Z2, n) can be regarded as the smash product of the degree 2 map S1→S1 ,

z֏ z2 , with the identity map of M(Z2, n− 1) . If we smash the cofibration sequence

S1→S1→RP2 for this degree 2 map with M(Z2, n − 1) we get the cofiber sequence

M(Z2, n)→M(Z2, n)→C , in view of the identity (X/A)∧ Y = (X ∧ Y)/(A∧ Y) . This

means we can view C as RP2 ∧M(Z2, n− 1) . The Cartan formula translated to cross

products gives Sq2(α×β) = Sq0α×Sq2β+Sq1α×Sq1β+Sq2α×Sq0β . This holds for

smash products as well as ordinary products, by naturality. Taking α to be a generator

of H1(RP2;Z2) and β a generator of Hn−1(M(Z2, n − 1);Z2) , we have Sq2α = 0 =

Sq2β , but Sq1α and Sq1β are nonzero since Sq1 is the Bockstein. By the Künneth

formula, Sq1α×Sq1β then generates Hn+2(RP2 ∧M(Z2, n− 1);Z2) and we are done.

Adem Relations and the Steenrod Algebra

When Steenrod squares or powers are composed, the compositions satisfy certain

relations, unfortunately rather complicated, known as Adem relations:

SqaSqb =
∑
j

(
b−j−1
a−2j

)
Sqa+b−jSqj if a < 2b

PaPb =
∑
j
(−1)a+j

(
(p−1)(b−j)−1

a−pj

)
Pa+b−jP j if a < pb

PaβPb =
∑
j
(−1)a+j

(
(p−1)(b−j)
a−pj

)
βPa+b−jP j

−
∑
j
(−1)a+j

(
(p−1)(b−j)−1
a−pj−1

)
Pa+b−jβP j if a ≤ pb

By convention, the binomial coefficient
(
m
n

)
is taken to be zero if m or n is negative

or if m < n . Also
(
m
0

)
= 1 for m ≥ 0.

For example, taking a = 1 in the Adem relation for the Steenrod squares we have

Sq1Sqb = (b − 1)Sqb+1 , so Sq1Sq2i = Sq2i+1 and Sq1Sq2i+1 = 0. The relations

Sq1Sq2i = Sq2i+1 and Sq1 = β explain the earlier comment that Sq2i is the analog

of P i for p = 2.

The Steenrod algebra A2 is defined to be the algebra over Z2 that is the quotient

of the algebra of polynomials in the noncommuting variables Sq1, Sq2, ··· by the two-

sided ideal generated by the Adem relations, that is, by the polynomials given by the

differences between the left and right sides of the Adem relations. In similar fashion,

Ap for odd p is defined to be the algebra over Zp formed by polynomials in the

noncommuting variables β, P1, P2, ··· modulo the Adem relations and the relation
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β2 = 0. Thus for every space X , H∗(X;Zp) is a module over Ap , for all primes p .

The Steenrod algebra is a graded algebra, the elements of degree k being those that

map Hn(X;Zp) to Hn+k(X;Zp) for all n .

The next proposition implies that A2 is generated as an algebra by the elements

Sq2k , while Ap for p odd is generated by β and the elements Pp
k

.

Proposition 4L.8. There is a relation Sqi =
∑

0<j<i ajSq
i−jSqj with coefficients

aj ∈ Z2 whenever i is not a power of 2 . Similarly, if i is not a power of p there is a

relation P i =
∑

0<j<iajP
i−jP j with aj ∈ Zp .

Proof: The argument is the same for p = 2 and p odd, so we describe the latter case.

The idea is to write i as the sum a + b of integers a > 0 and b > 0 with a < pb ,

such that the coefficient of the j = 0 term in the Adem relation for PaPb is nonzero.

Then one can solve this relation for Pa+b = P i .

Let the p adic representation of i be i = i0 + i1p + ··· + ikp
k with ik ≠ 0.

Let b = pk and a = i − pk , so b > 0 and a > 0 if i is not a power of p . The

claim is that
(
(p−1)b−1

a

)
is nonzero in Zp . The p adic expansion of (p − 1)b − 1 =

(pk+1 − 1)− pk is (p − 1)+ (p − 1)p + ··· + (p − 2)pk , and the p adic expansion of

a is i0+ i1p+···+ (ik−1)pk . Hence
(
(p−1)b−1

a

)
≡
(
p−1
i0

)
···

(
p−2
ik−1

)
and in each factor

of the latter product the numerator is nonzero in Zp so the product is nonzero in Zp .

When p = 2 the last factor is omitted, and the product is still nonzero in Z2 . ⊔⊓

This proposition says that most of the Sqi ’s and P i ’s are decomposable, where an

element a of a graded algebra such as Ap is decomposable if it can be expressed in

the form
∑
i aibi with each ai and bi having lower degree than a . The operation Sq2k

is indecomposable since for α a generator of H1(RP∞;Z2) we saw that Sq2k(α2k) =

α2k+1

but Sqi(α2k) = 0 for 0 < i < 2k . Similarly Pp
k

is indecomposable since if

α ∈ H2(CP∞;Zp) is a generator then Pp
k

(αp
k

) = αp
k+1

but P i(αp
k

) = 0 for 0 < i < pk

and also β(αp
k

) = 0.

Here is an application of the preceding proposition:

Theorem 4L.9. Suppose H∗(X;Zp) is the polynomial algebra Zp[α] on a generator

α of dimension n , possibly truncated by the relation αm = 0 for m > p . Then if

p = 2 , n must be a power of 2 , and if p is an odd prime, n must be of the form pkℓ

where ℓ is an even divisor of 2(p − 1) .

As we mentioned in §3.2, there is a stronger theorem that n must be 1, 2, 4, or

8 when p = 2, and n must be an even divisor of 2(p − 1) when p is an odd prime.

We also gave examples showing the necessity of the hypothesis m > p in the case of

a truncated polynomial algebra.

Proof: In the case p = 2, Sqn(α) = α2
≠ 0. If n is not a power of 2 then Sqn

decomposes into compositions Sqn−jSqj with 0 < j < n . Such compositions must

be zero since they pass through the group Hn+j(X;Z2) which is zero for 0 < j < n .
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For odd p , the fact that α2 is nonzero implies that n is even, say n = 2k . Then

Pk(α) = αp ≠ 0. Since Pk can be expressed in terms of Pp
i

’s, some Pp
i

must be

nonzero in H∗(X;Zp) . This implies that 2pi(p− 1) , the amount by which Pp
i

raises

dimension, must be a multiple of n since H∗(X;Zp) is concentrated in dimensions

that are multiples of n . Since n divides 2pi(p − 1) , it must be a power of p times a

divisor of 2(p − 1) , and this divisor must be even since n is even and p is odd. ⊔⊓

Corollary 4L.10. If H∗(X;Z) is a polynomial algebra Z[α] , possibly truncated by

αm = 0 with m > 3 , then |α| = 2 or 4 .

Proof: Passing from Z to Z2 coefficients, the theorem implies that |α| is a power

of 2, and taking Z3 coefficients we see that |α| is a power of 3 times a divisor of

2(3− 1) = 4. ⊔⊓

In particular, the octonionic projective plane OP2 , constructed in Example 4.47

by attaching a 16 cell to S8 via the Hopf map S15→S8 , does not generalize to an

octonionic projective n space OPn with n ≥ 3.

In a similar vein, decomposability implies that if an element of π s∗ is detected by

a Sqi or P i then i must be a power of 2 for Sqi and a power of p for P i . For if Sqi is

decomposable, then the map Sqi :Hn(Cf :Z2)→H
n+i(Cf ;Z2) must be trivial since it

is a sum of compositions that pass through trivial cohomology groups, and similarly

for P i .

Interestingly enough, the Adem relations can also be used in a positive way to

detect elements of π s∗ , as the proof of the following result will show.

Proposition 4L.11. If η ∈ π s1 is represented by the Hopf map S3→S2 , then η2 is

nonzero in π s2 . Similarly, the other two Hopf maps represent elements ν ∈ π s3 and

σ ∈ π s7 whose squares are nontrivial in π s6 and π s14 .

Proof: Let η :Sn+1→Sn be a suspension of the Hopf map, with mapping cone Cη
obtained from Sn by attaching a cell en+2 via η . If we assume the composition

(Ση)η is nullhomotopic, then we can define a map f :Sn+3→Cη in the following

way. Decompose Sn+3 as the union of two cones CSn+2 . On one of these cones

let f be a nullhomotopy of (Ση)η . On the other cone let f be the composition

CSn+2→CSn+1→Cη where the first map is obtained by coning Ση and the second

map is a characteristic map for the cell en+2 .
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We use the map f to attach a cell en+4 to Cη , forming a space X . This has Cη
as its (n + 2) skeleton, so Sq2 :Hn(X;Z2)→H

n+2(X;Z2) is an isomorphism. The

map Sq2 :Hn+2(X;Z2)→H
n+4(X;Z2) is also an isomorphism since the quotient map

X→X/Sn induces an isomorphism on cohomology groups above dimension n and

X/Sn is homotopy equivalent to the mapping cone of Σ2η . Thus the composition

Sq2Sq2 :Hn(X;Z2)→H
n+4(X;Z2) is an isomorphism. But this is impossible in view

of the Adem relation Sq2Sq2 = Sq3Sq1 , since Sq1 is trivial on Hn(X;Z2) .

The same argument shows that ν2 and σ 2 are nontrivial using the relations

Sq4Sq4 = Sq7Sq1 + Sq6Sq2 and Sq8Sq8 = Sq15Sq1 + Sq14Sq2 + Sq12Sq4 . ⊔⊓

This line of reasoning does not work for odd primes and the element α ∈ π s2p−3

detected by P1 since the Adem relation for P1P1 is P1P1 = 2P2 , which is not helpful.

And in fact α2 = 0 by the commutativity property of the product in π s∗ .

When dealing with A2 it is often convenient to abbreviate notation by writing a

monomial Sqi1Sqi2 ··· as SqI where I is the finite sequence of nonnegative integers

i1, i2, ··· . Call SqI admissible if no Adem relation can be applied to it, that is, if

ij ≥ 2ij+1 for all j . The Adem relations imply that every monomial SqI can be

written as a sum of admissible monomials. For if SqI is not admissible, it contains

a pair SqaSqb to which an Adem relation can be applied, yielding a sum of terms

SqJ for which J > I with respect to the lexicographic ordering on finite sequences

of integers. These SqJ ’s have the same degree i1 + ··· + ik as SqI , and since the

number of monomials SqI of a fixed degree is finite, successive applications of the

Adem relations eventually reduce any SqI to a sum of admissible monomials.

For odd p , elements of Ap are linear combinations of monomials βε1P i1βε2P i2 ···

with each εj = 0 or 1. Such a monomial is admissible if ij ≥ εj+1 + pij+1 for all j ,

which again means that no Adem relation can be applied to the monomial. As with A2 ,

the Adem relations suffice to reduce every monomial to a linear combination of ad-

missible monomials, by the same argument as before but now using the lexicographic

ordering on tuples (ε1 + pi1, ε2 + pi2, ···) .

Define the excess of the admissible monomial SqI to be
∑
j(ij − 2ij+1) , the

amount by which SqI exceeds being admissible. For odd p one might expect the ex-

cess of an admissible monomial βε1P i1βε2P i2 ··· to be defined as
∑
j(ij−pij+1−εj+1) ,

but instead it is defined to be
∑
j(2ij −2pij+1− εj+1) , for reasons which will become

clear below.

As we explained at the beginning of this section, cohomology operations corre-

spond to elements in the cohomology of Eilenberg–MacLane spaces. Here is a rather

important theorem which will be proved in [SSAT] since the proof makes heavy use of

spectral sequences:
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Theorem. For each prime p , H∗(K(Zp , n);Zp) is the free commutative algebra on

the generators Θ(ιn) where ιn ∈ H
n(K(Zp , n);Zp) is a generator and Θ ranges over

all admissible monomials of excess less than n .

Here ‘free commutative algebra’ means ‘polynomial algebra’ when p = 2 and

‘polynomial algebra on even-dimensional generators tensor exterior algebra on odd-

dimensional generators’ when p is odd. We will say something about the rationale

behind the ‘excess less than n ’ condition in a moment.

Specializing the theorem to the first two cases n = 1,2, we have the following

cohomology algebras:

K(Z2,1) : Z2[ι]

K(Zp,1) : ΛZp[ι]⊗Zp[βι]
K(Z2,2) : Z2[ι, Sq

1ι, Sq2Sq1ι, Sq4Sq2Sq1ι, ···]

K(Zp,2) : Zp[ι, βP
1βι, βPpP1βι, βPp

2

PpP1βι, ···]

⊗ ΛZp[βι, P
1βι, PpP1βι, Pp

2

PpP1βι, ···]

The theorem implies that the admissible monomials in Ap are linearly indepen-

dent, hence form a basis for Ap as a vector space over Zp . For if some linear com-

bination of admissible monomials were zero, then it would be zero when applied to

the class ιn , but if we choose n larger than the excess of each monomial in the lin-

ear combination, this would contradict the freeness of the algebra H∗(K(Zp, n);Zp) .

Even though the multiplicative structure of the Steenrod algebra is rather complicated,

the Adem relations provide a way of performing calculations algorithmically by sys-

tematically reducing all products to sums of admissible monomials. A proof of the

linear independence of admissible monomials using more elementary techniques can

be found in [Steenrod & Epstein 1962].

Another consequence of the theorem is that all cohomology operations with Zp

coefficients are polynomials in the Sqi ’s when p = 2 and polynomials in the P i ’s and

β when p is odd, in view of Proposition 4L.1. We can also conclude that Ap con-

sists precisely of all the Zp cohomology operations that are stable, commuting with

suspension. For consider the map ΣK(Zp , n)→K(Zp, n + 1) that pulls ιn+1 back to

the suspension of ιn . This map induces an isomorphism on homotopy groups πi for

i ≤ 2n and a surjection for i = 2n+ 1 by Corollary 4.24, hence the same is true for

homology and cohomology. Letting n go to infinity, the limit lim
←-- H̃

∗(K(Zp, n);Zp)

then exists in a strong sense. On the one hand, this limit is exactly the stable opera-

tions by Proposition 4L.1 and the definition of a stable operation. On the other hand,

the preceding theorem implies that this limit is Ap since it says that all elements of

H∗(K(Zp , n);Zp) below dimension 2n are uniquely expressible as sums of admissible

monomials applied to ιn .

Now let us explain why the condition ‘excess less than n ’ in the theorem is natural.

For a monomial SqI = Sqi1Sqi2 ··· the definition of the excess e(I) can be rewritten as
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an equation i1 = e(I)+i2+i3+··· . Thus if e(I) > n , we have i1 > |Sq
i2Sqi3 ··· (ιn)| ,

hence SqI(ιn) = 0. And if e(I) = n then SqI(ιn) = (Sq
i2Sqi3 ··· (ιn))

2 and either

Sqi2Sqi3 ··· has excess less than n or it has excess equal to n and we can repeat

the process to write Sqi2Sqi3 ··· (ιn) = (Sq
i3 ··· (ιn))

2 , and so on, until we obtain

an equation SqI(ιn) =
(
SqJ(ιn)

)2k
with e(J) < n , so that SqI(ιn) is already in the

algebra generated by the elements SqJ(ιn) with e(J) < n . The situation for odd p

is similar. For an admissible monomial P I = βε1P i1βε2P i2 ··· the definition of excess

gives 2i1 = e(I)+ε2+2(p−1)i2+··· , so if e(I) > n we must have P I(ιn) = 0, and if

e(I) = n then either P I(ιn) is a power
(
P J(ιn)

)pk
with e(J) < n , or, if P I begins with

β , then P I(ιn) = β
(
(P J(ιn))

pk) = 0 by the formula β(xm) = mxm−1β(x) , which is

valid when |x| is even, as we may assume is the case here, otherwise (P J(ιn))
pk = 0

by commutativity of cup product.

There is another set of relations among Steenrod squares equivalent to the Adem

relations and somewhat easier to remember:

∑
j

(
k
j

)
Sq2n−k+j−1Sqn−j = 0

When k = 0 this is simply the relation Sq2n−1Sqn = 0, and the cases k > 0 are

obtained from this via Pascal’s triangle. For example, from Sq7Sq4 = 0 we obtain the

following table of relations:
Sq7Sq4 = 0

Sq6Sq4 + Sq7Sq3 = 0

Sq5Sq4 + Sq7Sq2 = 0

Sq4Sq4 + Sq5Sq3 + Sq6Sq2 + Sq7Sq1 = 0

Sq3Sq4 + Sq7Sq0 = 0

Sq2Sq4 + Sq3Sq3 + Sq6Sq0 = 0

Sq1Sq4 + Sq3Sq2 + Sq5Sq0 = 0

Sq0Sq4 + Sq1Sq3 + Sq2Sq2 + Sq3Sq1 + Sq4Sq0 = 0

These relations are not in simplest possible form. For example, Sq5Sq3 = 0 in the

fourth row and Sq3Sq2 = 0 in the seventh row, instances of Sq2n−1Sqn = 0. For

Steenrod powers there are similar relations
∑
j

(
k
j

)
Ppn−k+j−1Pn−j = 0 derived from

the basic relation Ppn−1Pn = 0. We leave it to the interested reader to show that these

relations follow from the Adem relations.

Constructing the Squares and Powers

Now we turn to the construction of the Steenrod squares and powers, and the

proof of their basic properties including the Adem relations. As will be seen, this

all hinges on the fact that cohomology is maps into Eilenberg–MacLane spaces. The

case p = 2 is in some ways simpler than the case p odd, so in the first part of

the development we will specialize p to 2 whenever there is a significant difference

between the two cases.
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Before giving the construction in detail, let us describe the idea in the case p = 2.

The cup product square α2 of an element α ∈ Hn(X;Z2) can be viewed as a com-

position X→X×X→K(Z2,2n) , with the first map the diagonal map and the second

map representing the cross product α×α . Since we have Z2 coefficients, cup prod-

uct and cross product are strictly commutative, so if T :X×X→X×X is the map

T(x1, x2) = (x2, x1) transposing the two factors, then T∗(α×α) = α×α . Thinking

of α×α as a map X×X→K(Z2,2n) , this says there is a homotopy ft from α×α to

(α×α)T . If we follow the homotopy ft by the homotopy ftT , we obtain a homotopy

from α×α to (α×α)T and then to (α×α)T 2 = α×α , in other words a loop of maps

X×X→K(Z2,2n) . We can view this loop as a map S1×X×X→K(Z2,2n) . As we

will see, if the homotopy ft is chosen appropriately, the loop of maps will be null-

homotopic, extending to a map D2×X×X→K(Z2,2n) . Regarding D2 as the upper

hemisphere of S2 , this gives half of a map S2×X×X→K(Z2,2n) , and once again we

obtain the other half by composition with T . This process can in fact be repeated in-

finitely often to yield a map S∞×X×X→K(Z2,2n) with the property that each pair of

points (s, x1, x2) and (−s, x2, x1) is sent to the same point in K(Z2,2n) . This means

that when we compose with the diagonal map S∞×X→S∞×X×X , (s, x)֏(s, x,x) ,

there is an induced quotient map RP∞×X→K(Z2,2n) extending α2 :X→K(Z2,2n) .

This extended map represents a class in H2n(RP∞×X;Z2) . By the Künneth formula

and the fact that H∗(RP∞;Z2) is the polynomial ring Z2[ω] , this cohomology class

in H2n(RP∞×X;Z2) can be written in the form
∑
iω

n−i×ai with ai ∈ H
n+i(X;Z2) .

Then we define Sqi(α) = ai .

The construction of the map S∞×X×X→K(Z2,2n) will proceed cell by cell, so it

will be convenient to eliminate any unnecessary cells. This is done by replacing X×X

by the smash product X∧X and factoring out a cross-sectional slice S∞ in S∞×X∧X .

A further simplification will be to use naturality to reduce to the case X = K(Z2, n) .

Now we begin the actual construction. For a space X with basepoint x0 , let X∧p

denote the smash product X∧···∧X of p copies of X . There is a map T :X∧p→X∧p ,

T(x1, ··· , xp) = (x2, ··· , xp, x1) , permuting the factors cyclically. Note that when

p = 2 this is just the transposition (x1, x2)֏(x2, x1) . The map T generates an action

of Zp on X∧p . There is also the standard action of Zp on S∞ viewed as the union of the

unit spheres S2n−1 in Cn , a generator of Zp rotating each C factor through an angle

2π/p , with quotient space an infinite-dimensional lens space L∞ , or RP∞ when p = 2.

On the product S∞×X∧p there is then the diagonal action g(s,x) = (g(s), g(x)) for

g ∈ Zp . Let ΓX denote the orbit space (S∞×X∧p)/Zp of this diagonal action. This

is the same as the Borel construction S∞×ZpX
∧p described in §3.G. The projection

S∞×X∧p→S∞ induces a projection π : ΓX→L∞ with π−1(z) = X∧p for all z ∈ L∞

since the action of Zp on S∞ is free. This projection ΓX→L∞ is in fact a fiber bundle,

though we shall not need this fact and so we leave the proof as an exercise. The Zp

action on X∧p fixes the basepoint x0 ∈ X
∧p , so the inclusion S∞×{x0}֓ S∞×X∧p
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induces an inclusion L∞֓ ΓX . The composition L∞֓ ΓX→L∞ is the identity, so in

fiber bundle terminology this subspace L∞ ⊂ ΓX is a section of the bundle. Let ΛX
denote the quotient ΓX/L∞ obtained by collapsing the section L∞ to a point. Note

that the fibers X∧p in ΓX are still embedded in the quotient ΛX since each fiber meets

the section L∞ in a single point.

If we replace S∞ by S1 in these definitions, we get subspaces Γ 1X ⊂ ΓX and

Λ1X ⊂ ΛX . All these spaces have natural CW structures if X is a CW complex having

x0 as a 0 cell. To see this, let L∞ be given its standard CW structure with one cell in

each dimension. This lifts to a CW structure on S∞ with p cells in each dimension,

and then T freely permutes the product cells of S∞×X∧p so there is an induced

quotient CW structure on ΓX . The section L∞ ⊂ ΓX is a subcomplex, so the quotient

ΛX inherits a CW structure from ΓX . In particular, note that if the n skeleton of X

is Sn with its usual CW structure, then the pn skeleton of ΛX is Spn with its usual

CW structure.

We remark also that Γ , Γ 1 , Λ , and Λ1 are functors: A map f : (X,x0)→(Y ,y0)

induces maps Γf : ΓX→ΓY , etc., in the evident way.

For brevity we write H∗(−;Zp) simply as H∗(−) . For n > 0 let Kn denote a CW

complex K(Zp , n) with (n−1) skeleton a point and n skeleton Sn . Let ι ∈ Hn(Kn) be

the canonical fundamental class described in the discussion following Theorem 4.57.

It will be notationally convenient to regard an element α ∈ Hn(X) also as a map

α :X→Kn such that α∗(ι) = α . Here we are assuming X is a CW complex.

From §3.2 we have a reduced p fold cross product H̃∗(X)⊗p→H̃∗(X∧p) where

H̃∗(X)⊗p denotes the p fold tensor product of H̃∗(X) with itself. This cross prod-

uct map H̃∗(X)⊗p→H̃∗(X∧p) is an isomorphism since we are using Zp coefficients.

With this isomorphism in mind, we will use the notation α1 ⊗ ··· ⊗αp rather than

α1× ··· ×αp for p fold cross products in H̃∗(X∧p) . In particular, for each element

α ∈ Hn(X) , n > 0, we have its p fold cross product α⊗p ∈ H̃pn(X∧p) . Our first

task will be to construct an element λ(α) ∈ Hpn(ΛX) restricting to α⊗p in each fiber

X∧p ⊂ ΛX . By naturality it will suffice to construct λ(ι) ∈ Hpn(ΛKn) .
The key point in the construction of λ(ι) is the fact that T∗(ι⊗p) = ι⊗p . In terms

of maps K∧pn →Kpn , this says the composition ι⊗p T is homotopic to ι⊗p , preserving

basepoints. Such a homotopy can be constructed as follows. The pn skeleton of K∧pn
is (Sn)∧p = Spn , with T permuting the factors cyclically. Thinking of Sn as (S1)∧n ,

the permutation T is a product of (p− 1)n2 transpositions of adjacent factors, so T

has degree (−1)(p−1)n2

on Spn . If p is odd, this degree is +1, so the restriction of T

to this skeleton is homotopic to the identity, hence ι⊗p T is homotopic to ι⊗p on this

skeleton. This conclusion also holds when p = 2, signs being irrelevant in this case

since we are dealing with maps S2n→K2n and π2n(K2n) = Z2 . Having a homotopy

ι⊗p T ≃ ι⊗p on the pn skeleton, there are no obstructions to extending the homotopy

over all higher-dimensional cells ei×(0,1) since πi(Kpn) = 0 for i > pn .
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The homotopy ι⊗p T ≃ ι⊗p :K∧pn →Kpn defines a map Γ 1Kn→Kpn since Γ 1X

is the quotient of I×X∧p under the identifications (0, x) ∼ (1, T (x)) . The homo-

topy is basepoint-preserving, so the map Γ 1Kn→Kpn passes down to a quotient map

λ1 :Λ1Kn→Kpn . Since Kn is obtained from Sn by attaching cells of dimension greater

than n , ΛKn is obtained from Λ1Kn by attaching cells of dimension greater than

pn+1. There are then no obstructions to extending λ1 to a map λ :ΛKn→Kpn since

πi(Kpn) = 0 for i > pn .

The map λ gives the desired element λ(ι) ∈ Hpn(ΛKn) since the restriction of λ

to each fiber K∧pn is homotopic to ι⊗p . Note that this property determines λ uniquely

up to homotopy since the restriction map Hpn(ΛKn)→Hpn(K∧pn ) is injective, the

pn skeleton of ΛKn being contained in K∧pn . We shall have occasion to use this

argument again in the proof, so we refer to it as ‘the uniqueness argument’.

For any α ∈ Hn(X) let λ(α) be the composition ΛX Λα
-----→ ΛKn

λ
-----→ Kpn . This

restricts to α⊗p in each fiber X∧p since Λα restricts to α⊗p in each fiber.

Now we are ready to define some cohomology operations. There is an inclu-

sion L∞×X֓ ΓX as the quotient of the diagonal embedding S∞×X֓ S∞×X∧p ,

(s, x)֏ (s, x, ··· , x) . Composing with the quotient map ΓX→ΛX , we get a map

∇ :L∞×X→ΛX inducing ∇∗ :H∗(ΛX)→H∗(L∞×X) ≈ H∗(L∞)⊗H∗(X) . For each

α ∈ Hn(X) the element ∇∗(λ(α)) ∈ Hpn(L∞×X) may be written in the form

∇∗(λ(α)) =
∑
i
ω(p−1)n−i ⊗θi(α)

where ωj is a generator of Hj(L∞) and θi(α) ∈ H
n+i(X) . Thus θi increases dimen-

sion by i . When p = 2 there is no ambiguity about ωj . For odd p we choose ω1 to

be the class dual to the 1 cell of L∞ in its standard cell structure, then we take ω2 to

be the Bockstein βω1 and we set ω2j =ω
j
2 and ω2j+1 =ω1ω

j
2 .

It is clear that θi is a cohomology operation since θi(α) = α
∗(θi(ι)) . Note that

θi = 0 for i < 0 since Hn+i(Kn) = 0 for i < 0 except for i = −n , and in this special

case θi = 0 since ∇ :L∞×X→ΛX sends L∞×{x0} to a point.

For p = 2 we set Sqi(α) = θi(α) . For odd p we will show that θi = 0 unless

i = 2k(p − 1) or 2k(p − 1) + 1. The operation Pk will be defined to be a certain

constant times θ2k(p−1) , and θ2k(p−1)+1 will be a constant times βPk , for β the mod

p Bockstein.

Theorem 4L.12. The operations Sqi satisfy the properties (1)–(7).

Proof: We have already observed that the θi ’s are cohomology operations, so property

(1) holds. The basic property that λ(α) restricts to α⊗p in each fiber implies that

θ(p−1)n(α) = α
p since ω0 = 1. This gives the first half of property (5) for Sqi .

The second half follows from the fact that θi = 0 for i > (p − 1)n since the factor

ω(p−1)n−i vanishes in this case.

Next we turn to the Cartan formula. For any prime p we will show that λ(α`β) =

(−1)p(p−1)mn/2λ(α) ` λ(β) for m = |α| and n = |β| . This implies (3) when p = 2
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since if we let ω =ω1 , hence ωj =ω
j , then

∑
i
Sqi(α` β)⊗ωn+m−i = ∇∗

(
λ(α` β)

)
= ∇∗

(
λ(α)` λ(β)

)

= ∇∗
(
λ(α)

)
`∇∗

(
λ(β)

)

=
∑
j
Sqj(α)⊗ωn−j `

∑
k
Sqk(β)⊗ωm−k

=
∑
i

(∑
j+k=i

Sqj(α)` Sqk(β)
)
⊗ωn+m−i

To show that λ(α` β) = (−1)p(p−1)mn/2λ(α)` λ(β) we use the following diagram:

Here ∆ is a generic symbol for diagonal maps x֏ (x,x) . These relate cross prod-

uct to cup product via ∆∗(ϕ⊗ψ) = ϕ ` ψ . The two unlabeled vertical maps are

induced by (s, x1, y1, ··· , xp, yp)֏ (s, x1, ··· , xp, s, y1, ··· , yp) . The composition

ΛX→Kpm+pn going across the top of the diagram is λ(α`β) since the composition

ΛX→ΛKm+n is Λ(α ` β) . The composition ΛX ∧ ΛX→Kpm+pn is λ(α)⊗λ(β) so

the composition ΛX→Kpm+pn across the bottom of the diagram is λ(α)`λ(β) . The

triangle on the left, the square, and the upper triangle on the right obviously commute

from the definitions. It remains to see that the third triangle commutes up to the sign

(−1)p(p−1)mn/2 . Since (Km∧Kn)
∧p includes the (pm+pn) skeleton of Λ(Km∧Kn) ,

restriction to this fiber is injective on Hpm+pn . On this fiber the two routes around

the triangle give (ιm ⊗ ιn)
⊗p and ι⊗pm ⊗ ι⊗pn . These differ by a permutation that is the

product of (p − 1) + (p − 2) + ··· + 1 = p(p − 1)/2 transpositions of adjacent fac-

tors. Since ιm and ιn have dimensions m and n , this permutation introduces a

sign (−1)p(p−1)mn/2 by the commutativity property of cup product. This finishes the

verification of the Cartan formula when p = 2.

Before proceeding further we need to make an explicit calculation to show that

Sq0 is the identity on H1(S1) . Viewing S1 as the one-point compactification of R ,

with the point at infinity as the basepoint, the 2 sphere S1∧S1 becomes the one-point

compactification of R2 . The map T :S1∧ S1→S1∧ S1 then corresponds to reflecting

R
2 across the line x = y , so after a rotation of coordinates

this becomes reflection of S2 across the equator. Hence Γ 1S1

is obtained from the shell I×S2 by identifying its inner and

outer boundary spheres via a reflection across the equator. The

diagonal RP1×S1 ⊂ Γ 1S1 is a torus, obtained from the equato-

rial annulus I×S1 ⊂ I×S2 by identifying the two ends via the

identity map since the equator is fixed by the reflection. This RP1×S1 represents the

same element of H2(Γ 1S1;Z2) as the fiber sphere S1 ∧ S1 since the upper half of the

shell is a 3 cell whose mod 2 boundary in Γ 1S1 is the union of these two surfaces.



506 Chapter 4 Homotopy Theory

For a generator α ∈ H1(S1) , consider the element ∇∗(λ(α)) in H2(RP∞×S1) ≈

Hom(H2(RP∞×S1;Z2),Z2) . A basis for H2(RP∞×S1;Z2) is represented by RP2×{x0}

and RP1×S1 . A cocycle representing ∇∗(λ(α)) takes the value 0 on RP2×{x0}

since RP∞×{x0} collapses to a point in ΛS1 and λ(α) lies in H2(ΛS1) . On RP1×S1 ,

∇∗(λ(α)) takes the value 1 since when λ(α) is pulled back to ΓS1 it takes the same

value on the homologous cycles RP1×S1 and S1∧S1 , namely 1 by the defining prop-

erty of λ(α) since α⊗α ∈ H2(S1 ∧ S1) is a generator. Thus ∇∗(λ(α)) =ω1 ⊗α and

hence Sq0(α) = α by the definition of Sq0 .

We use this calculation to prove that Sqi commutes with the suspension σ ,

where σ is defined by σ(α) = ε⊗α ∈ H∗(S1 ∧ X) for ε a generator of H1(S1)

and α ∈ H∗(X) . We have just seen that Sq0(ε) = ε . By (5), Sq1(ε) = ε2 = 0 and

Sqi(ε) = 0 for i > 1. The Cartan formula then gives Sqi(σ(α)) = Sqi(ε⊗α) =∑
j Sq

j(ε)⊗Sqi−j(α) = ε⊗Sqi(α) = σ(Sqi(α)) .

From this it follows that Sq0 is the identity on Hn(Sn) for all n > 0. Since Sn is

the n skeleton of Kn , this implies that Sq0 is the identity on the fundamental class

ιn , hence Sq0 is the identity on all positive-dimensional classes.

Property (7) is proved similarly: Sq1 coincides with the Bockstein β on the gener-

ator ω ∈ H1(RP2) since both equal ω2 . Hence Sq1 = β on the iterated suspensions

of ω , and the n fold suspension of RP2 is the (n+ 2) skeleton of Kn+1 .

Finally we have the additivity property (2). This holds in fact for any cohomology

operation that commutes with suspension. For such operations, it suffices to prove

additivity in spaces that are suspensions. Consider a composition

ΣX c
-----→ΣX ∨ ΣX α∨β

------------→Kn
θ
-----→Km

where c is the map that collapses an equatorial copy of X in ΣX to a point. The

composition of the first two maps is α + β , as in Lemma 4.60. Composing with the

third map then gives θ(α + β) . On the other hand, if we first compose the second

and third maps we get θ(α) ∨ θ(β) , and then composing with the first map gives

θ(α)+ θ(β) . The two ways of composing are equal, so θ(α+β) = θ(α)+ θ(β) . ⊔⊓

Theorem 4L.13. The Adem relations hold for Steenrod squares.

Proof: The idea is to imitate the construction of ΛX using Zp×Zp in place of Zp . The

Adem relations will come from the symmetry of Zp×Zp interchanging the factors.

The group Zp×Zp acts on S∞×S∞ via (g,h)(s, t) = (g(s),h(t)) , with quotient

L∞×L∞ . There is also an action of Zp×Zp on X∧p
2

, obtained by writing points of X∧p
2

as p2 tuples (xij) with subscripts i and j varying from 1 to p , and then letting the

first Zp act on the first subscript and the second Zp act on the second. Factoring

out the diagonal action of Zp×Zp on S∞×S∞×X∧p
2

gives a quotient space Γ2X . This

projects to L∞×L∞ with a section, and collapsing the section gives Λ2X . The fibers

of the projection Λ2X→L
∞×L∞ are X∧p

2

since the action of Zp×Zp on S∞×S∞ is
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free. We could also obtain Λ2X from the product S∞×S∞×Xp
2

by first collapsing the

subspace of points having at least one X coordinate equal to the basepoint x0 and

then factoring out the Zp×Zp action.

It will be useful to compare Λ2X with Λ(ΛX) . The latter space is the quotient of

S∞×(S∞×Xp)p in which one first identifies all points having at least one X coordi-

nate equal to x0 and then one factors out by an action of the wreath product Zp ≀Zp ,

the group of order pp+1 defined by a split exact sequence 0→Z
p
p→Zp ≀ Zp→Zp→0

with conjugation by the quotient group Zp given by cyclic permutations of the p

Zp factors of Zpp . In the coordinates (s, t1, x11, ··· , x1p, ··· , tp, xp1, ··· , xpp) the

ith factor Zp of Zpp acts in the block (ti, xi1, ··· , xip) , and the quotient Zp acts

by cyclic permutation of the index i and by rotation in the s coordinate. There

is a natural map Λ2X→Λ(ΛX) induced by (s, t, x11, ··· , x1p, ··· , xp1, ··· , xpp)֏
(s, t, x11, ··· , x1p, ··· , t, xp1, ··· , xpp) . In Λ2X one is factoring out by the action of

Zp×Zp . This is the subgroup of Zp ≀Zp obtained by restricting the action of the quo-

tient Zp on Zpp to the diagonal subgroup Zp ⊂ Z
p
p , where this action becomes trivial

so that one has the direct product Zp×Zp .

Since it suffices to prove that the Adem relations hold on the class ι ∈ Hn(Kn) ,

we take X = Kn . There is a map λ2 :Λ2Kn→Kp2n restricting to ι⊗p
2

in each fiber.

This is constructed by the same method used to construct λ . One starts with a map

representing ι⊗p
2

in a fiber, then extends this over the part of Λ2Kn projecting to the

1 skeleton of L∞×L∞ , and finally one extends inductively over higher-dimensional

cells of Λ2Kn using the fact that Kp2n is an Eilenberg–MacLane space. The map λ2 fits

into the diagram at the right, where ∇2 is in-

duced by the map (s, t, x)֏(s, t, x, ··· , x)

and the unlabeled map is the one defined

above. It is clear that the square commutes.

Commutativity of the triangle up to homotopy follows from the fact that λ2 is uniquely

determined, up to homotopy, by its restrictions to fibers.

The element ∇∗2λ
∗
2 (ι) may be written in the form

∑
r ,sωr ⊗ωs ⊗ϕrs , and we

claim that the elements ϕrs satisfy the symmetry rela-

tion ϕrs = (−1)rs+p(p−1)n/2ϕsr . To verify this we use

the commutative diagram at the right where the map τ

on the left switches the two L∞ factors and the τ on

the right is induced by switching the two S∞ factors of S∞×S∞×K∧p
2

n and permuting

the Kn factors of the smash product by interchanging the two subscripts in p2 tuples

(xij) . This permutation is a product of p(p − 1)/2 transpositions, one for each pair

(i, j) with 1 ≤ i < j ≤ p , so in a fiber the class ι⊗p
2

is sent to (−1)p(p−1)n/2ι⊗p
2

.

By the uniqueness property of λ2 this means that τ∗λ∗2 (ι) = (−1)p(p−1)n/2λ∗2 (ι) .

Commutativity of the square then gives

(−1)p(p−1)n/2∇∗2λ
∗
2 (ι) = ∇

∗
2 τ
∗λ∗2 (ι) = τ

∗∇∗2λ
∗
2 (ι) =

∑
r ,s
(−1)rsωs ⊗ωr ⊗ϕrs
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where the last equality follows from the commutativity property of cross products.

The symmetry relation ϕrs = (−1)rs+p(p−1)n/2ϕsr follows by interchanging the in-

dices r and s in the last summation.

If we compute ∇∗2λ
∗
2 (ι) using the lower route across the earlier diagram contain-

ing the map λ2 , we obtain

∇∗2λ
∗
2 (ι) =

∑
i
ω(p−1)pn−i ⊗θi

(∑
j
ω(p−1)n−j ⊗θj(ι)

)

=
∑
i,j
ω(p−1)pn−i ⊗θi

(
ω(p−1)n−j ⊗θj(ι)

)

Now we specialize to p = 2, so θi = Sq
i for all i . The Cartan formula converts the

last summation above into
∑
i,j,kω

2n−i
⊗Sqk(ωn−j)⊗Sqi−kSqj(ι) . Plugging in the

value for Sqk(ωn−j) computed in the discussion preceding Example 4L.3, we obtain∑
i,j,k

(
n−j
k

)
ω2n−i

⊗ωn−j+k ⊗Sqi−kSqj(ι) . To write this summation more symmetri-

cally with respect to the two ω terms, let n− j + k = 2n− ℓ . Then we get

∑
i,j,ℓ

(
n−j
n+j−ℓ

)
ω2n−i

⊗ω2n−ℓ
⊗Sqi+ℓ−n−jSqj(ι)

In view of the symmetry property of ϕrs , which becomes ϕrs = ϕsr for p = 2,

switching i and ℓ in this formula leaves it unchanged. Hence we get the relation

(∗)
∑
j

(
n−j
n+j−ℓ

)
Sqi+ℓ−n−jSqj(ι) =

∑
j

(
n−j
n+j−i

)
Sqi+ℓ−n−jSqj(ι)

This holds for all n , i , and ℓ , and the idea is to choose these numbers so that the

left side of this equation has only one nonzero term. Given integers r and s , let

n = 2r − 1+ s and ℓ = n+ s , so that
(
n−j
n+j−ℓ

)
=
(

2r−1−(j−s)
j−s

)
. If r is sufficiently large,

this will be 0 unless j = s . This is because the dyadic expansion of 2r − 1 consists

entirely of 1’s, so the expansion of 2r −1−(j−s) will have 0’s in the positions where

the expansion of j− s has 1’s, hence these positions contribute factors of
(

0
1

)
= 0 to(

2r−1−(j−s)
j−s

)
. Thus with n and ℓ chosen as above, the relation (∗) becomes

SqiSqs(ι) =
∑
j

(
2r−1+s−j

2r−1+s+j−i

)
Sqi+s−jSqj(ι) =

∑
j

(
2r+s−j−1
i−2j

)
Sqi+s−jSqj(ι)

where the latter equality comes from the general relation
(
x
y

)
=
(
x
x−y

)
.

The final step is to show that
(

2r+s−j−1
i−2j

)
=
(
s−j−1
i−2j

)
if i < 2s . Both of these

binomial coefficients are zero if i < 2j . If i ≥ 2j then we have 2j ≤ i < 2s , so j < s ,

hence s − j − 1 ≥ 0. The term 2r then makes no difference in
(

2r+s−j−1
i−2j

)
if r is large

since this 2r contributes only a single 1 to the dyadic expansion of 2r + s− j−1, far

to the left of all the nonzero entries in the dyadic expansions of s − j − 1 and i− 2j .

This gives the Adem relations for the classes ι of dimension n = 2r −1+s with r

large. This implies the relations hold for all classes of these dimensions, by naturality.

Since we can suspend repeatedly to make any class have dimension of this form, the

Adem relations must hold for all cohomology classes. ⊔⊓
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Steenrod Powers

Our remaining task is to verify the axioms and Adem relations for the Steenrod

powers for an odd prime p . Unfortunately this is quite a bit more complicated than

the p = 2 case, largely because one has to be very careful in computing the many

coefficients in Zp that arise. Even for the innocent-looking axiom P0 = 11 it will take

three pages to calculate the normalization constants needed to make the axiom hold.

One could wish that the whole process was a lot cleaner.

Lemma 4L.14. θi = 0 unless i = 2k(p − 1) or 2k(p − 1)+ 1 .

Proof: The group of automorphisms of Zp is the multiplicative group Z∗p of nonzero

elements of Zp . Since p is prime, Zp is a field and Z∗p is cyclic of order p − 1. Let r

be a generator of Z∗p . Define a map ϕ :S∞×X∧p→S∞×X∧p permuting the factors Xj
of X∧p by ϕ(s,Xj) = (s

r , Xrj) where subscripts are taken mod p and sr means raise

each coordinate of s , regarded as a unit vector in C
∞ , to the r th power and renor-

malize the resulting vector to have unit length. Then if γ is a generator of the Zp

action on S∞×X∧p , we have ϕ(γ(s,Xj)) = ϕ(e
2πi/ps,Xj−1) = (e

2rπi/psr , Xrj−r ) =

γr (ϕ(s,Xj)) . This says that ϕ takes orbits to orbits, so ϕ induces maps ϕ : ΓX→ΓX
and ϕ :ΛX→ΛX . Restricting to the first coordinate, there is also an induced map

ϕ :L∞→L∞ . Taking X = Kn , these maps fit into

the diagram at the right. The square obviously

commutes. The triangle commutes up to homo-

topy and a sign of (−1)n since it suffices to verify

this on the pn skeleton (Sn)∧p , and here the map ϕ is an odd permutation of the Sn

factors since it is a cyclic permutation of order p−1, which is even, and a transposition

of two Sn factors has degree 1 if n is even and degree −1 if n is odd.

Suppose first that n is even. Then commutativity of the diagram means that∑
iω(p−1)n−i ⊗θi(ι) is invariant under ϕ∗ ⊗11, hence ϕ∗(ω(p−1)n−i) = ω(p−1)n−i if

θi(ι) is nonzero. The map ϕ induces multiplication by r in π1(L
∞) , hence also

in H1(L
∞) and H1(L∞;Zp) , sending ω1 to rω1 . Since ω2 was chosen to be the

Bockstein of ω1 , it is also multiplied by r . We chose r to have order p − 1 in Z
∗
p ,

so ϕ∗(ωℓ) = ωℓ only when the total number of ω1 and ω2 factors in ωℓ is a

multiple of p − 1. For ωℓ = ω
k
2 this means ℓ = (p − 1)n− i = 2k(p − 1) , while for

ωℓ =ω1ω
k−1
2 it means ℓ is 1 less than this, 2k(p − 1)− 1. Solving these equations

for i gives i = (n− 2k)(p − 1) or i = (n− 2k)(p − 1)+ 1. Since n is even this says

that i is congruent to 0 or 1 mod 2(p − 1) , which is what the lemma asserts.

When n is odd the condition ϕ∗(ωℓ) = ωℓ becomes ϕ∗(ωℓ) = −ωℓ . In the

cyclic group Z
∗
p the element −1 is the only element of order 2, and this element

is (p − 1)/2 times a generator, so the total number of ω1 and ω2 factors in ωℓ
must be (2k+ 1)(p − 1)/2 for some integer k . This implies that ℓ = (p − 1)n− i =
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2(2k+1)(p−1)/2 or 1 less than this, hence i = (n−2k−1)(p−1) or 1 greater than

this. As n is odd, this again says that i is congruent to 0 or 1 mod 2(p − 1) . ⊔⊓

Since θ0 :Hn(X)→Hn(X) is a cohomology operation that preserves dimension,

it must be defined by a coefficient homomorphism Zp→Zp , multiplication by some

an ∈ Zp . We claim that these an ’s satisfy

am+n = (−1)p(p−1)mn/2aman and an = (−1)p(p−1)n(n−1)/4an1

To see this, recall the formula λ(α ` β) = (−1)p(p−1)mn/2λ(α)λ(β) for |α| = m

and |β| = n . From the definition of the θi ’s it then follows that θ0(α ` β) =

(−1)p(p−1)mn/2θ0(α)θ0(β) , which gives the first part of the claim. The second part

follows from this by induction on n .

Lemma 4L.15. a1 = ±m! for m = (p − 1)/2 , so p = 2m+ 1 .

Proof: It suffices to compute θ0(α) where α is any nonzero 1 dimensional class, so

the simplest thing is to choose α to be a generator of H1(S1) , say a generator coming

from a generator of H1(S1;Z) . This determines α up to a sign. Since Hi(S1) = 0 for

i > 1, we have θi(α) = 0 for i > 0, so the defining formula for θ0(α) has the form

∇∗(λ(α)) = ωp−1 ⊗θ0(α) = a1ωp−1 ⊗α in Hp(L∞×S1) . To compute a1 there is no

harm in replacing L∞ by a finite-dimensional lens space, say Lp , the p skeleton of L∞ .

Thus we may restrict the bundle ΛS1→L∞ to a bundle ΛpS1→Lp with the same fibers

(S1)∧p = Sp . We regard S1 as the one-point compactification of R with basepoint the

added point at infinity, and then (S1)∧p becomes the one-point compactification of Rp

with Zp acting by permuting the coordinates of Rp cyclically, preserving the origin

and the point at infinity. This action defines the bundle ΓpS1→Lp with fibers Sp ,

containing a zero section and a section at infinity, and ΛpS1 is obtained by collapsing

the section at infinity. We can also describe ΛpS1 as the one-point compactification of

the complement of the section at infinity in ΓpS1 , since the base space Lp is compact.

The complement of the section at infinity is a bundle E→Lp with fibers Rp . In general,

the one-point compactification of a fiber bundle E over a compact base space with

fibers Rn is called the Thom space T(E) of the bundle, and a class in Hn(T(E)) that

restricts to a generator of Hn of the one-point compactification of each fiber Rn is

called a Thom class. In our situation, λ(α) is such a Thom class.

Our first task is to construct subbundles E0, E1, ··· , Em of E , where E0 has fiber R

and the other Ej ’s have fiber R2 , so p = 2m+1. The bundle E comes from the linear

transformation T :Rp→R
p permuting the coordinates cyclically. We claim there is

a decomposition Rp = V0⊕V1⊕ ··· ⊕Vm with V0 1 dimensional and the other Vj ’s

2 dimensional, such that T(Vj) = Vj for all j , with T ||V0 the identity and T ||Vj a

rotation by the angle 2πj/p for j > 0. Thus T defines an action of Zp on Vj and we

can define Ej just as E was defined, as the quotient (Sp×Vj)/Zp with respect to the

diagonal action.
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An easy way to get the decomposition R
p = V0⊕V1⊕ ··· ⊕Vm is to regard

R
p as a module over the principal ideal domain R[t] by setting tv = T(v) for

v ∈ R
p . Then R

p is isomorphic as a module to the module R[t]/(tp − 1) since

T permutes coordinates cyclically; this amounts to identifying the standard basis

vectors v1, ··· , vp in R
p with 1, t, ··· , tp−1 . The polynomial tp − 1 factors over C

into the linear factors t− e2πij/p for j = 0, ··· , p− 1. Combining complex conjugate

factors, this gives a factorization over R , tp−1 = (t−1)
∏

1≤j≤m(t
2−2(cosϕj)t+1) ,

where ϕj = 2πj/p . These are distinct monic irreducible factors, so the module

R[t]/(tp − 1) splits as R[t]/(t − 1)
⊕

1≤j≤mR[t]/(t
2 − 2(cosϕj)t + 1) by the basic

structure theory of modules over a principal ideal domain. This translates into a

decomposition R
p = V0⊕V1⊕ ··· ⊕Vm with T(Vj) ⊂ Vj . Here V0 corresponds to

R[t]/(t − 1) ≈ R with t acting as the identity, and Vj for j > 0 corresponds to

R[t]/(t2 − 2(cosϕj)t + 1) . The latter module is isomorphic to R2 with t acting as

rotation by the angle ϕj since the characteristic polynomial of this rotation is readily

computed to be t2−2(cosϕj)t+1, hence this rotation satisfies t2−2(cosϕj)t+1 = 0

so there is a module homomorphism R[t]/(t2 − 2(cosϕj)t + 1)→R
2 which is obvi-

ously an isomorphism.

From the decomposition R
p = V0⊕V1⊕ ··· ⊕Vm and the action of T on each

factor we can see that the only vectors fixed by T are those in the line V0 . The vectors

(x, ··· , x) are fixed by T , so V0 must be this diagonal line.

Next we compute Thom classes for the bundles Ej . This is easy for E0 which is the

product Lp×R , so the projection E0→R one-point compactifies to a map T(E0)→S
1

and we can pull back the chosen generator α ∈ H1(S1) to a Thom class for E0 . The

other Ej ’s have 2 dimensional fibers, which we now view as C rather than R
2 . Just

as Ej is the quotient of Sp×C via the identifications (v, z) ∼ (e2πi/pv, e2πij/pz) , we

can define a bundle Ej→CPm with fiber C by the identifications (v, z) ∼ (λv,λjz)

for λ ∈ S1 ⊂ C . We then have the left half of the commu-

tative diagram shown at the right, where the quotient map

q̃ restricts to a homeomorphism on each fiber. The maps

f̃ and f are induced by the map Sp×C→Sp×C sending

(v, z) to (vj , z) where vj means raise each coordinate of v to the j th power and

then rescale to get a vector of unit length. The map f̃ is well-defined since equivalent

pairs (v, z) ∼ (λv,λjz) in Ej are carried to pairs (vj, z) and (λjvj, λjz) that are

equivalent in E1 .

Since both q̃ and f̃ restrict to homeomorphisms in each fiber, they extend to

maps of Thom spaces that pull a Thom class for E1 back to Thom classes for Ej
and Ej . To construct a Thom class for E1 , observe that the Thom space T(E1) is

homeomorphic to CPm+1 , namely, view the sphere Sp = S2m+1 as the unit sphere in

C
m+1 , and then the inclusion Sp×C֓C

m+1×C = Cm+2 induces a map g :E1→CPm+1

since the equivalence relation defining E1 is (v, z) ∼ (λv,λz) for λ ∈ S1 . It is
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evident that g is a homeomorphism onto the complement of the point [0, ··· ,0,1]

in CPm+1 , so sending the point at infinity in T(E1) to [0, ··· ,0,1] gives an extension

of g to a homeomorphism T(E1) ≈ CPm+1 . Under this homeomorphism the one-point

compactifications of the fibers of E1 correspond to the 2 spheres S2
v consisting of

[0, ··· ,0,1] and the points [v, z] ∈ CPm+1 with fixed v ∈ Sp and varying z ∈ C .

Each S2
v is a CP1 in CPm+1 equivalent to the standard CP1 under a homeomorphism

of CPm+1 coming from a linear isomorphism of Cm+2 , so a generator γ of H2(CPm+1)

is a Thom class, restricting to a generator of H2(S2
v) for each v . We choose γ to be

the Zp reduction of a generator of H2(CPm+1;Z) , so γ is determined up to a sign.

A slightly different view of Thom classes will be useful. For the bundle E→Lp ,

for example, we have isomorphisms

H̃∗(T(E)) ≈ H∗(T(E),∞) where ∞ is the compactification point

≈ H∗(T(E), T(E)− Lp) where Lp is embedded in T(E) as the zero

section, so T(E)− Lp deformation retracts onto ∞

≈ H∗(E, E − Lp) by excision

Thus we can view a Thom class as lying in H∗(E, E − Lp) , and similarly for the bun-

dles Ej .

We have projections πj :E→Ej via the projections V0⊕V1⊕ ··· ⊕Vm→Vj in

fibers. If τj ∈ H
∗(Ej , Ej − L

p) denotes the Thom class constructed above, then we

have the pullback π∗j (τj) ∈ H
∗(E, E − π−1

j (L
p)
)
, and the cup product

∏
jπ

∗
j (τj) in

H∗(E, E−Lp) is a Thom class for E , as one sees by applying the calculation at the end

of Example 3.11 in each fiber. Under the isomorphism H∗(E, E−Lp) ≈ H̃∗(T(E)) , the

class
∏
jπ

∗
j (τj) corresponds to ±λ(α) since both classes restrict to ±α⊗p in each

fiber Sp ⊂ T(E) and λ(α) is uniquely determined by its restriction to fibers.

Now we can finish the proof of the lemma. The class ∇∗(λ(α)) is obtained by

restricting λ(α) ∈ Hp(T(E)) to the diagonal T(E0) , then pulling back to Lp×S1 via

the quotient map Lp×S1→T(E0) which collapses the section at infinity to a point.

Restricting
∏
jπ

∗
j (τj) to Hp(E0, E0−L

p) ≈ Hp(T(E0)) gives τ0 `e1 ` ···`em where

ej ∈ H
2(E0) is the image of τj under H2(Ej , Ej − L

p)→H2(Ej) ≈ H
2(Lp) ≈ H2(E0) ,

these last two isomorphisms coming from including Lp in Ej and E0 as the zero

section, to which they deformation retract. To compute ej , we use the diagram

The Thom class for E1 lies in the upper right group. Following this class across the

top of the diagram and then down to the lower left corner gives the element ej . To
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compute ej we take the alternate route through the lower right corner of the diagram.

The image of the Thom class for E1 in the lower right H2(CPm) is the generator γ

since T(E1) = CPm+1 . The map f∗ is multiplication by j since f has degree j

on CP1 ⊂ CPm . And q∗(γ) = ±ω2 since q restricts to a homeomorphism on the

2 cell of Lp in the CW structure defined in Example 2.43. Thus ej = ±jω2 , and so

τ0 ` e1 ` ···` em = ±m!τ0 `ωm2 = ±m!τ0 `ωp−1 . Since τ0 was the pullback of α

via the projection T(E0)→S
1 , when we pull τ0 back to Lp×S1 via ∇ we get 1⊗α ,

so τ0 ` e1 ` ···` em pulls back to ±m!ωp−1 ⊗α . Hence a1 = ±m! . ⊔⊓

The lemma implies in particular that an is not zero in Zp , so an has a multi-

plicative inverse a−1
n in Zp . We then define

P i(α) = (−1)ia−1
n θ2i(p−1)(α) for α ∈ Hn(X)

The factor a−1
n guarantees that P0 is the identity. The factor (−1)i is inserted in order

to make P i(α) = αp if |α| = 2i , as we show next. We know that θ2i(p−1)(α) = α
p , so

what must be shown is that (−1)ia−1
2i = 1, or equivalently, a2i = (−1)i .

To do this we need a number theory fact:
(
(p − 1)/2

)
!2 ≡ (−1)(p+1)/2 mod p .

To derive this, note first that the product of all the elements ±1,±2, ··· ,±(p − 1)/2

of Z∗p is
(
(p − 1)/2

)
!2(−1)(p−1)/2 . On the other hand, this group is cyclic of even

order, so the product of all its elements is the unique element of order 2, which is

−1, since all the other nontrivial elements cancel their inverses in this product. Thus(
(p − 1)/2

)
!2(−1)(p−1)/2 ≡ −1 and hence

(
(p − 1)/2

)
!2 ≡ (−1)(p+1)/2 mod p .

Using the formulas an = (−1)p(p−1)n(n−1)/4an1 and a1 = ±
(
(p − 1)/2

)
! we then

have
a2i = (−1)p(p−1)2i(2i−1)/4((p − 1)/2

)
!2i

= (−1)p[(p−1)/2]i(2i−1)(−1)i(p+1)/2

= (−1)i(p−1)/2(−1)i(p+1)/2 since p and 2i− 1 are odd

= (−1)ip = (−1)i since p is odd.

Theorem 4L.16. The operations P i satisfy the properties (1)–(6) and the Adem rela-

tions.

Proof: Naturality and the fact that P i(α) = 0 if 2i > |α| are inherited from the θi ’s.

Property (6) and the other half of (5) have just been shown above. For the Cartan

formula we have, for α ∈ Hm and β ∈ Hn , λ(α` β) = (−1)p(p−1)mn/2λ(α)λ(β) and

hence
∑
i
ω(p−1)(m+n)−i ⊗θi(α` β) =

(−1)p(p−1)mn/2
(∑

j
ω(p−1)m−j ⊗θj(α)

)(∑
k
ω(p−1)n−k ⊗θk(β)

)

Recall that ω2r =ω
r
2 and ω2r+1 =ω1ω

r
2 , with ω2

1 = 0. Therefore terms with i even

on the left side of the equation can only come from terms with j and k even on the
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right side. This leads to the second equality in the following sequence:

P i(α` β) = (−1)ia−1
m+nθ2i(p−1)(α` β)

= (−1)ia−1
m+n(−1)p(p−1)mn/2

∑
j
θ2(i−j)(p−1)(α)θ2j(p−1)(β)

=
∑
j
(−1)i−ja−1

m θ2(i−j)(p−1)(α)(−1)ja−1
n θ2j(p−1)(β)

=
∑
j
P i−j(α)P j(β)

Property (4), the invariance of P i under suspension, follows from the Cartan formula

just as in the case p = 2, using the fact that P0 is the only P i that can be nonzero on

1 dimensional classes, by (5). The additivity property follows just as before.

It remains to prove the Adem relations for Steenrod powers. We will need a

Bockstein calculation:

Lemma 4L.17. βθ2k = −θ2k+1 .

Proof: Let us first reduce the problem to showing that β∇∗(λ(ι)) = 0. If we compute

β∇∗(λ(ι)) using the product formula for β , we get

β
(∑

i
ω(p−1)n−i ⊗θi(ι)

)
=
∑
i

(
βω(p−1)n−i ⊗θi(ι)+ (−1)iω(p−1)n−i ⊗βθi(ι)

)

Since βω2j−1 = ω2j and βω2j = 0, the terms with i = 2k and i = 2k + 1 give∑
kω(p−1)n−2k ⊗βθ2k(ι) and

∑
kω(p−1)n−2k ⊗θ2k+1(ι) −

∑
kω(p−1)n−2k−1 ⊗βθ2k+1(ι) ,

respectively. Thus the coefficient of ω(p−1)n−2k in β∇∗(λ(ι)) is βθ2k(ι)+θ2k+1(ι) , so

if we assume that β∇∗(λ(ι)) = 0, this coefficient must vanish since we are in the ten-

sor product H∗(L∞)⊗H∗(Kn) . So we get βθ2k(ι) = −θ2k+1(ι) and hence βθ2k(α) =

−θ2k+1(α) for all α . Note that βθ2k+1 = 0 from the coefficient of ω(p−1)n−2k−1 . This

also follows from the formula βθ2k = −θ2k+1 since β2 = 0.

In order to show that β∇∗(λ(ι)) = 0 we first compute βλ(ι) . We may assume Kn
has a single n cell and a single (n + 1) cell, attached by a map of degree p . Let ϕ

and ψ be the cellular cochains assigning the value 1 to the n cell and the (n+1) cell,

respectively, so δϕ = pψ . In K∧pn we then have

(∗) δ(ϕ⊗p) =
∑
i
(−1)inϕ⊗i ⊗δϕ⊗ϕ⊗(p−i−1) = p

∑
i
(−1)inϕ⊗i ⊗ψ⊗ϕ⊗(p−i−1)

where the tensor notation means cellular cross product, so for example ϕ⊗p is the

cellular cochain dual to the np cell en× ··· ×en of K∧pn . The formula (∗) holds also

in ΛKn since the latter space has only one (np + 1) cell not in K∧pn , with cellular

boundary zero. Namely, this cell is the product of the 1 cell of L∞ and the np cell of

K∧pn with one end of this product attached to the np cell by the identity map and the

other end by the cyclic permutation T , which has degree +1 since p is odd, so these

two terms in the boundary of this cell cancel, and there are no other terms since the

rest of the attachment of this cell is at the basepoint.

Bockstein homomorphisms can be computed using cellular cochain complexes,

so the formula (∗) says that
∑
i(−1)inϕ⊗i ⊗ψ⊗ϕ⊗(p−i−1) represents βλ(ι) . Via the
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quotient map ΓKn→ΛKn , the class λ(ι) pulls back to a class γ(ι) with βγ(ι) also rep-

resented by
∑
i(−1)inϕ⊗i ⊗ψ⊗ϕ⊗(p−i−1) . To see what happens when we pull βγ(ι)

back to β∇∗(λ(ι)) via the inclusion L∞×Kn֓ ΓKn , consider the commutative di-

agram at the right. In the left-

hand square the maps π∗ are

induced by the covering space

projections π :S∞×K∧pn →ΓKn
and π :S∞×Kn→L

∞×Kn arising from the free Zp actions. The vertical maps are in-

duced by the diagonal inclusion S∞×K֓ S∞×K∧pn . The maps τ are the transfer

homomorphisms defined in §3.G. Recall the definition: If π : X̃→X is a p sheeted

covering space, a chain map C∗(X)→C∗(X̃) is defined by sending a singular simplex

σ :∆k→X to the sum of its p lifts to X̃ , and τ is the induced map on cohomology.

The key property of τ is that τπ∗ :H∗(X)→H∗(X) is multiplication by p , for any

choice of coefficient group, since when we project the p lifts of σ :∆k→X back to X

we get pσ . When X is a CW complex and X̃ is given the lifted CW structure, then τ

can also be defined in cellular cohomology by the same procedure.

Let us compute the value of the upper τ in the diagram on 1⊗ψ⊗ϕ⊗(p−1) where

‘1’ is the cellular cocycle assigning the value 1 to each 0 cell of S∞ . By the definition

of τ we have τ(1⊗ψ⊗ϕ⊗(p−1)) =
∑
i T

i(ψ⊗ϕ⊗(p−1)) where T :K∧pn →K
∧p
n permutes

the factors cyclically. It does not matter whether T moves coordinates one unit left-

wards or one unit rightwards since we are summing over all the powers of T , so let

us say T moves coordinates rightward. Then T(ψ⊗ϕ⊗(p−1)) = ϕ⊗ψ⊗ϕ⊗(p−2) , with

the last ϕ moved into the first position. This move is achieved by transposing this ϕ

with each of the preceding p − 2 ϕ ’s and with ψ . Transposing two ϕ ’s introduces

a sign (−1)n
2

, and transposing ϕ with ψ introduces a sign (−1)n(n+1) = +1, by

the commutativity property of cross product. Thus the total sign introduced by T is

(−1)n
2(p−2) , which equals (−1)n since p is odd. Each successive iterate of T also

introduces a sign of (−1)n , so T i introduces a sign (−1)in for 0 ≤ i ≤ p − 1. Thus

τ(1⊗ψ⊗ϕ⊗(p−1)) =
∑
i
T i(ψ⊗ϕ⊗(p−1)) =

∑
i
(−1)inϕ⊗i ⊗ψ⊗ϕ⊗(p−i−1)

As observed earlier, this last cocycle represents the class βγ(ι) .

Since βγ(ι) is in the image of the upper τ in the diagram, the image of βγ(ι)

in H∗(L∞×Kn) , which is ∇∗(βλ(ι)) , is in the image of the lower τ since the right-

hand square commutes. The map π∗ in the lower row is obviously onto since S∞ is

contractible, so ∇∗(βλ(ι)) is in the image of the composition τπ∗ across the bottom

of the diagram. But this composition is multiplication by p , which is zero for Zp

coefficients, so β∇∗(λ(ι)) = ∇∗(βλ(ι)) = 0. ⊔⊓

The derivation of the Adem relations now follows the pattern for the case p = 2.

We had the formula ∇∗2λ
∗
2 (ι) =

∑
i,jω(p−1)pn−i ⊗θi

(
ω(p−1)n−j ⊗θj(ι)

)
. Since we are
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letting p = 2m + 1, this can be rewritten as
∑
i,jω2mpn−i ⊗θi

(
ω2mn−j ⊗θj(ι)

)
. The

only nonzero θi ’s are θ2i(p−1) = (−1)ianP
i and θ2i(p−1)+1 = −βθ2i(p−1) so we have

∑
i,j
ω2mpn−i ⊗θi

(
ω2mn−j ⊗θj(ι)

)
=

∑
i,j
(−1)i+ja2mnanω2m(pn−2i) ⊗P

i(ω2m(n−2j) ⊗P
j(ι)

)

−
∑
i,j
(−1)i+ja2mnanω2m(pn−2i) ⊗P

i(ω2m(n−2j)−1 ⊗βP
j(ι)

)

−
∑
i,j
(−1)i+ja2mnanω2m(pn−2i)−1 ⊗βP

i(ω2m(n−2j) ⊗P
j(ι)

)

+
∑
i,j
(−1)i+ja2mnanω2m(pn−2i)−1 ⊗βP

i(ω2m(n−2j)−1 ⊗βP
j(ι)

)

Since m and n will be fixed throughout the discussion, we may factor out the nonzero

constant a2mnan . Then applying the Cartan formula to expand the P i terms, using

also the formulas Pk(ω2r ) =
(
r
k

)
ω2r+2k(p−1) and Pk(ω2r+1) =

(
r
k

)
ω2r+2k(p−1)+1 de-

rived earlier in the section, we obtain
∑
i,j,k
(−1)i+j

(
m(n−2j)

k

)
ω2m(pn−2i) ⊗ω2m(n−2j+2k) ⊗P

i−kP j(ι)

−
∑
i,j,k
(−1)i+j

(
m(n−2j)−1

k

)
ω2m(pn−2i) ⊗ω2m(n−2j+2k)−1 ⊗P

i−kβP j(ι)

−
∑
i,j,k
(−1)i+j

(
m(n−2j)

k

)
ω2m(pn−2i)−1 ⊗ω2m(n−2j+2k) ⊗βP

i−kP j(ι)

+
∑
i,j,k
(−1)i+j

(
m(n−2j)−1

k

)
ω2m(pn−2i)−1 ⊗ω2m(n−2j+2k) ⊗P

i−kβP j(ι)

−
∑
i,j,k
(−1)i+j

(
m(n−2j)−1

k

)
ω2m(pn−2i)−1 ⊗ω2m(n−2j+2k)−1 ⊗βP

i−kβP j(ι)

Letting ℓ =mn+j−k , so that n−2j+2k = pn−2ℓ , the first of these five summations

becomes

∑
i,j,ℓ
(−1)i+j

(
m(n−2j)
mn+j−ℓ

)
ω2m(pn−2i) ⊗ω2m(pn−2ℓ) ⊗P

i+ℓ−mn−jP j(ι)

and similarly for the other four summations.

Now we bring in the symmetry property ϕrs = (−1)rs+mnpϕsr , where, as before,

∇∗2λ
∗
2 (ι) =

∑
r ,sωr ⊗ωs ⊗ϕrs . Of the five summations, only the first has both ω

terms with even subscripts, namely r = 2m(pn− 2i) and s = 2m(pn− 2ℓ) , so the

coefficient of ωr ⊗ωs in this summation must be symmetric with respect to switching

i and ℓ , up to a sign which will be + if we choose n to be even, as we will do. This

gives the relation

(1)
∑
j
(−1)i+j

(
m(n−2j)
mn+j−ℓ

)
P i+ℓ−mn−jP j(ι) =

∑
j
(−1)ℓ+j

(
m(n−2j)
mn+j−i

)
P i+ℓ−mn−jP j(ι)

Similarly, the second, third, and fourth summations involve ω ’s with subscripts of

opposite parity, yielding the relation

∑
j
(−1)i+j

(
m(n−2j)−1

mn+j−ℓ

)
P i+ℓ−mn−jβP j(ι) =(2)

∑
j
(−1)ℓ+j

(
m(n−2j)
mn+j−i

)
βP i+ℓ−mn−jP j(ι)−

∑
j
(−1)ℓ+j

(
m(n−2j)−1
mn+j−i

)
P i+ℓ−mn−jβP j(ι)

The relations (1) and (2) will yield the two Adem relations, so we will not need to

consider the relation arising from the fifth summation.
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To get the first Adem relation from (1) we choose n and ℓ so that the left side of

(1) has only one term, namely we take n = 2(1+p+···+pr−1)+2s and ℓ =mn+ s

for given integers r and s . Then
(
m(n−2j)
mn+j−ℓ

)
=
(
pr−1−(p−1)(j−s)

j−s

)

and if r is large, this binomial coefficient is 1 if j = s and 0 otherwise since if the

rightmost nonzero digit in the p adic expansion of the ‘denominator’ j− s is x , then

the corresponding digit of the ‘numerator’ (p − 1)[(1+ p + ··· + pr−1) − (j − s)] is

obtained by reducing (p − 1)(1 − x) mod p , giving x − 1, and
(
x−1
x

)
= 0. Then (1)

becomes

(−1)i+sP iP s(ι) =
∑
j
(−1)ℓ+j

(
m(n−2j)
mn+j−i

)
P i+s−jP j(ι)

or P iP s(ι) =
∑
j
(−1)i+j

(
m(n−2j)
mn+j−i

)
P i+s−jP j(ι) since ℓ ≡ s mod 2

=
∑
j
(−1)i+j

(
m(n−2j)
i−pj

)
P i+s−jP j(ι) since

(
x
y

)
=
(
x
x−y

)

=
∑
j
(−1)i+j

(
pr+(p−1)(s−j)−1

i−pj

)
P i+s−jP j(ι)

If r is large and i < ps , the term pr in the binomial coefficient can be omitted since

we may assume i ≥ pj , hence j < s , so −1 + (p − 1)(s − j) ≥ 0 and the pr has

no effect on the binomial coefficient if r is large. This shows the first Adem relation

holds for the class ι , and the general case follows as in the case p = 2.

To get the second Adem relation we choose n = 2pr + 2s and ℓ =mn+ s . Rea-

soning as before, the left side of (2) then reduces to (−1)i+sP iβP s(ι) and (2) becomes

P iβP s(ι) =
∑
j
(−1)i+j

(
(p−1)(pr+s−j)

i−pj

)
βP i+s−jP j(ι)

−
∑
j
(−1)i+j

(
(p−1)(pr+s−j)−1

i−pj−1

)
P i+s−jβP j(ι)

This time the term pr can be omitted if r is large and i ≤ ps . ⊔⊓

Exercises

1. Determine all cohomology operations H1(X;Z)→Hn(X;Z) , H2(X;Z)→Hn(X;Z),

and H1(X;Zp)→H
n(X;Zp) for p prime.

2. Use cohomology operations to show that the spaces (S1×CP∞)/(S1×{x0}) and

S3×CP∞ are not homotopy equivalent.

3. Since there is a fiber bundle S2→CP5→HP2 by Exercise 35 in §4.2, one might ask

whether there is an analogous bundle S4→HP5→OP2 . Use Steenrod powers for the

prime 3 to show that such a bundle cannot exist. [The Gysin sequence can be used to

determine the map on cohomology induced by the bundle projection HP5→OP2 .]

4. Show there is no fiber bundle S7→S23→OP2 . [Compute the cohomology ring

of the mapping cone of the projection S23→OP2 via Poincaré duality or the Thom

isomorphism.]
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5. Show that the subalgebra of A2 generated by Sqi for i ≤ 2 has dimension 8 as a

vector space over Z2 , with multiplicative structure encoded in the following diagram,

where diagonal lines indicate left-multiplication by Sq1 and horizontal lines indicate

left-multiplication by Sq2 .


