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CONCORDANCE SPACES, HIGHER SIMPLE-

HOMOTOPY THEORY, AND APPLICATIONS 

A. E. HATCHER 

While much is now known, through surgery theory, about the classification 
problem for manifolds of dimension at least five, information about the automor-
phism groups of such manifolds is as yet rather sparse. In fact, it seems that there is 
not a single closed manifold M of dimension greater than three for which the homo-
topy type of the automorphism space Diff(M), PL(M), or TOP(M) in the smooth, 
PL, or topological category, respectively, is in any sense known. (As usual, Diff(M) 
is given the C°° topology, PL(M) is a simplicial group, and TOP(M) is the singular 
complex of the homeomorphism group with the compact-open topology.) Besides 
surgery theory, the principal tool in studying homotopy properties of these auto-
morphism spaces is the concordance space functor C(M) = {automorphisms of 
M x /fixed on M x 0}. This paper is a survey of some of the main results to date 
on concordance spaces. 

Here is an outline of the contents. In §1 we describe how, in a certain stable 
dimension range, C{M) is a homotopy functor of M, which we denote by ^(M). 
The application to automorphism spaces is outlined in §2. In §3 we recall the 
explicit calculations which have been made for %$?(M) and %{g(M), along the lines 
pioneered by Cerf, and apply them in §4 to compute the group of isotopy classes 
of automorphisms of the «-torus, n ^ 5. §5 is concerned with a stabilized version 
of #(Af), defined roughly as Q^iS^M), together with the curious equivalence of 
D ^ P L O S ^ M ) with ^PL(M)/^Dif f(M), due to Burghelea-Lashof (based on earlier 
fundamental work of Morlet). In §6, ^P L(M) is "reduced" to higher simple-
homotopy theory. This has some interest in its own right, e.g., it provides a fibered 
form of Wall's obstruction to finiteness. The important new work of Waldhausen 
relating <^PL(M) to algebraic AT-theory is outlined, very briefly and imperfectly, in 
§7. This seems to be the most promising area for future developments in the sub-
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4 A. E. HATCHER 

ject. §8 describes how the expected extension of Waldhausen's work to #Diff(^0 
leads to an apparent contradiction with the known calculation of K3(Z), using 
Igusa's work on ^i^Diff(M). The only way out of this dilemma seems to be the 
rather unlikely prospect that Waldhausen's and Igusa's definitions of a certain 
K3-type invariant, though both quite natural, do not agree. 

Finally, two short appendices provide a product formula and iterated deloopings 
for concordance spaces. 

1. The concordance functor ^ . Let M be a compact manifold, and let C(M) be 
the space of concordances of M, i.e., automorphisms of M x / fixed on M x 0. 
According to the category, these will be diffeomorphisms, PL homeomorphisms, 
or topological homeomorphisms, and we write CDiff(M), CPL(M), or CTOp(M) 
when we wish to specify the category. It is known that when M is a PL manifold of 
dimension ^ 5, the natural map CPL(M) -> CT0P(M) is a homotopy equivalence 
[3], [18] (essentially because Top(n)/PL(n) ^ TOP/PL for n ^ 5). So we shall 
restrict our attention primarily to CDiff and CPL. 

It is sometimes useful to replace C(M) by the subspace C(M rel dM) consisting 
of concordances fixed on dM x /. For example if M -> N is a codimension-zero 
embedding, then there is induced C(M rel dM) -> C(N rel dN) by extending con-
cordances via the identity on (N — M) x /. Of course, C(M) can be identified with 
C(M rel dM) since (M x /, M x 0) is isomorphic to (M x /, M x 0 U dM x J) 
by "bending around the corners". (This involves the usual smoothing of corners in 
Diff.) We will usually not distinguish between C(M) and C(M rel dM), leaving the 
reader to determine by context which is meant. 

Concordance spaces satisfy an important stability property: 

THEOREM 1.1. The inclusion C(M) -» C(M x 7 ) , / i -> / x id7, is k-connected pro-
vided dim M > k. 

This is proved in [12] for CPL, in the range dim M ^ 3 A: + 10. With more care 
the same methods could probably be improved to yield dim M ^ 2k 4- 8. Burghe-
lea-Lashof [4] reduced the theorem for CDiff to the PL case, but with the dimension 
estimate doubled. Quite probably these stable dimension ranges can be consider-
ably improved. 

COROLLARY 1.2. C(M) -» C(M x /) -> C(M x I2) -> ••• is eventually an iso-
morphism on any %{. 

DEFINITION. ^(M) = \Jn C(M x /*). 

In the remainder of this section we shall show: 

PROPOSITION 1.3. ^(—) is a homotopy functor. 

The proof utilizes a transfer map for concordance spaces, which we now define. 
Let p: E -> M be a locally trivial bundle in the category of compact (smooth or PL) 
manifolds. The transfer map will be/?*: C(M) -> C(E). Observe first that a concor-
dance Fe C(M) determines (1) a function/ = (proj) o F: M x (/, 0, 1) -> (/, 0, 1) 
and (2) a one-dimensional foliation $F = F~l (product foliation on M x /) such 
that /restricts to a homeomorphism from each leaf of & to /. And conversely, a 
function/and a foliation ZF related in this way determine a concordance F e C(M). 
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CONCORDANCE SPACES 5 

So to define p* we set/?*(/) = f°(p x idj), and/?*(^) we define via a local triviali-
zation M x I x (fiber of p) of p x id7, setting p*(?F) — ^ x (point foliation). 
Any other local trivialization is related to this one by a transformation of the form 
(m, t, x) -» (ra, t, $m(x)), preserving/?*^), so p*(3?) is well defined. This defines 
p*: C(M) -• COE1)- It clearly commutes with the stabilization M -> M x I, E -> 
£ x /, and so defines also /?*: #(Af) -> #(£) . 

PROOF OF 1.3. Let/ : M -> TV be a map. Replacing Nby N x Ik,k large, we may 
assume / is an embedding, with a neighborhood of its image in N a disc bundle 
p: E -* M. Then/*: ^(M) -» < (̂A0 is defined as the composition /*/?*, where /*: 
^CE) -> < (̂A0 is induced by the inclusion i\ E -+ N. With this definition of/*, it is 
clear that ^(—) becomes a homotopy functor on the category of compact mani-
folds (and continuous maps), or equivalently, on the category of finite complexes. 
One can trivially extend the domain of ^ to infinite (but locally finite) complexes 
by simply taking the direct limit over finite subcomplexes. (On a noncompact 
manifold this would amount to taking compactly supported concordances.) 

2. Relation with automorphism groups. We will let A(M) stand for one of the auto-
morphism spaces DirT(M), PL(M), TOP(M) of diffeomorphisms, PL, or topological 
homeomorphisms of M. For convenience we assume M closed, though the results 
in this section hold also for compact M provided everything is taken rel dM. 

The idea in trying to say something about the homotopy type of A(M) is to 
compare it with G(M), the //-space of self-homotopy equivalences of M, about 
which much more is currently known. For example, if M is a K{%, 1), then as an 
easy application of obstruction theory, G(M) ~ Out(^r) x ^(Center(7r), 1), where 
Out (ft) is the outer automorphism group of ft = 7TiM, i.e., automorphisms modulo 
inner automorphisms. 

One can interpolate between A(M) and G(M) the space A(M) of block auto-
morphisms of M. This is the simplicial group whose fc-simplices are automorphisms 
of M x Ak which leave invariant each M x (face of Ak). A(M) contains A(M) 
as the automorphisms of M x Ak preserving projection to Ak. Similarly, one can 
define G(M), but clearly G(M) ~ G(M), and we shall regard A(M) as contained 
in G(M). 

According to surgery theory, there is a fibration (see §17A of [29]) G(M)/A(M)-> 
(GjA)M -• D(M) where D(M) is Quinn's surgery space, G/A is G/O, G/PL, or 
G/TOP, and dim M ^ 5. This fits into a braid of fibrations 

OD(M) 

QLf(M) G(M)/A(M) 

' \ / * 
A(M)IA(M) G(M)/A(M) {GjAY 

where QU(M), the homotopy fiber of G(M)/A(M) —• (G/A)u, can be regarded as a 
fibered-surgery form of QD(M). (See [15]. In this paper we will make no use of 
QLf(M).) 
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6 A. E. HATCHER 

So information about G(M)/A(M) can be derived from surgery theory and in-
formation about A(M)/A(M). The latter is intimately related to concordance spaces, 
as the following shows: 

PROPOSITION 2.1. There is a spectral sequence with E\q = %qC(M x IP) converg-
ing to xp+g+l(A(M)/A(M)). 

We outline the construction of this spectral sequence. An element of 
%kA(M)jA(M) = 7tk{A(M), A(M)) is represented by an automorphism ofMxP 
which preserves projection to P over dP. Let A(M x P) be the group of all such 
automorphisms, modulo the subgroup of those which preserve projection to P 
over all of P. Let C(M x P) be the group of all automorphisms of M x P x I 
which preserve projection to P x I over P x 0 U dP x I, modulo the subgroup 
of those preserving projection over all ofP x I. It is easy to verify that the natural 
map C(M x P) -• C(M x P) is a homotopy equivalence. There are fibrations 
A(M x P+l) -+ C(M x P) -> A(M x P) which give an exact couple 

2 Ttj A(M x P)- - 2 7CjA(M x /*+i) 

2 TCJ C(M x P) 

and hence a spectral sequence. The chain of homomorphisms 

0 = nk A(M x /0) X %k_x A(M x P) X 

>7rk(A(M),A(M)) 

. TCOA(M x P) 

gives a filtration of 7rk(A(M), A(M)), according to how far back a given element can 
be pulled; successive obstructions to pulling back lie in 7T,C(M X P~*~l), i = 0, 
1, •••, k — 1. The E°° term of the spectral sequence is associated to this filtration of 
7tk(A(M\ A(M)). 

The first differential is induced from 8: C(M x P) -+ C(M x P~^\ where 8(f) = 
f\ M x IP x 1, regarded as lying in C(M x //>-i). (C(X) means C(X rel dX) here.) 
Now suppose /= 2g9 where I: C(M x IP~l) -> C(M x IP) is stabilization. Note 
that in C(XTQ\ dX), stabilization looks like: 

A^ 

g 

W: 
g 

M 
Xxl XxP 

FIGURE 1 

Thus S(2g) = g + g, where the duality involution " — " on C(X) is induced by 
reflecting / through its midpoint. We shall show in Appendix I that " — " anti-
commutes with 2 (up to homotopy), so we may define a Z2-action on iz*<$(M), 
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CONCORDANCE SPACES 7 

[/] -• Ifh by letting it be [f] -+ ( -1)*[/] on %*C(M x /*). (The sign of this involution 
on %^(M) depends on the parity of dim M.) These arguments yield: 

PROPOSITION 2.2. In the stable rangep + dim M > q, Ejq = Hp(Z2; izq<g(M)). 

3. The brute force calculations of %$?(M) and %$>(M). The first major result 
about concordance spaces was Cerf 's theorem that 7ToCDiff(M) = 0 if %XM = 0 
and dim M ^ 5 [6]. (In the PL category this is a much easier theorem, due to 
Rourke [24].) A refinement of Cerf's techniques yielded: 

THEOREM 3.1 (DifT, PL, OR TOP). For dim M ^ 5 there is a natural exact sequence 

H0(7txM; (iz2M) foMJ/feMXl]) > 7r0C(M) 

> Wh2(itxM) ® HoiTdM; Z2[7ulM]/Z2{l]) > 0. 

If the first k-invariant of M (in H3(7U\M; %2M)) vanishes, this is a split short exact 
sequence (but the splitting is not natural). 

For a ^-module A, H$(%\ A) is just A modulo the ^-action. In the present case, 
%XM acts in the usual way on %{M (hence by conjugation on itself) and trivially on 
Z2. Wh2(%iM) is a certain quotient of K2Z[K\M]. 

In the smooth category this theorem is proved in [14] for dim M ^ 6. (The case 
dim M — 5 is due to K. Igusa.) However, when I wrote Part II of [14], I was not 
aware that I was using the vanishing of the A>invariant in Lemma 3.7, p. 262. 
(Igusa pointed out the error.) The lemma is actually false without the A>invariant 
hypothesis, but as far as I know the theorem may not require it. Volodin [27] 
announced the result without any restriction on ^-invariants. 

For the PL and TOP categories, one can show (see [23]) that TCQC(M) depends 
only on a neighborhood of the 3-skeleton of M, which can be smoothed, and then 
appeal to the equivalence CFL(M) ^ CT0P(M) for M PL, mentioned in § 1, and to 
the results on CPL(M)/Cmi(M) in § 5 below. (Alternatively, the methods of [12] 
allow the DifT proof to be translated into PL.) 

Igusa has gone much deeper with Cerf theory to obtain: 

THEOREM 3.2 [16]. Suppose the first two k-invariants of M vanish, and dim M is 
sufficiently large ( ^ 10 certainly suffices). Then there is an exact sequence 

0 >/f1(^1M;(Z2 x iz2M)[%lM]l(Z2 x %2M)[Y\) ® HfoiM\Q{'{QM)faM) 

> 7tx Cmi(M) > Whz(7cxM) • 0. 

Here Whz(7i) is defined as a certain quotient of K^Z[%\. In particular, Wh3(0) is 
the cokernel of ^f -• K3Z which is Z24 c; Z48 according to [20]. Thus Whz(0) « Z2. 

COROLLARY 3.3. n\Cm{(D
n) has order 4 (n large). 

R. Lee has shown independently that 7r1CDiff(Z>)maps onto Wh3(0) for large 
enough n. 

The mere fact that %\Cm{(D
n) is nonzero is in many respects a striking result. It 

gives a new kind of difference between the smooth and PL categories, not traceable 
to exotic spheres. (Note that CPL(Dn) ~ * by the Alexander trick.) It follows that 
there are really two kinds of higher Whitehead groups, Wh¥m(7z) and Wh^L(iz\ 
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5 A. E. HATCHER 

which coincide for i ^ 2 only "by accident". For i = 3, Whp
3
L(0) = 0, but WhfH($) 

is the Wh3(0) above, which is Z2. More generally, it follows from 5.5 and 5.6 
below that 7UiCFL (Mn) « 7CiCDii{(M

n)/7CiCDifi(D
n)9 n large, so one would expect 

that WtiPin) « ^ /# i f f (7r ) /^ i f f (0) for any %. 
The calculations of TTOC(M) and nxC(M) suggest that the w-type of ^(M) depends 

only on the (n + 2)-type of M. This is indeed true; see 5.2 below. Igusa [17] has 
shown this is best possible, in general: If in the Postnikov tower {Mk} of M, 
the fibration K{7tn+2M, n + 2) -> Mn+2 -> Mw+1 has a homotopy-section, then 
HQ{U\M\ {7zn+2M)[niM]l(7cn+2M)[\]) is a direct summand of 7rM^(M). 

4. The isotopy classification of automorphisms of the «-torus. A good example for 
the preceding machinery is the calculation of %QA{Tn), n ^ 5, for A = Diff, PL, 
or TOP. The steps go as follows. 

(1) G(Tn) ~ Tn x GL(«, Z), and the map A(Tn) -> G(Tn) has a section up to 
homotopy. Hence there is a split exact sequence 

0 > TTi G(T»)/A(T«) > 7U0 A{T») > GL(n, Z) > 0. 

(2) G(Tn)/TOP(Tn) c* *. For n ^ 5 this is a result in surgery theory, see, e.g., 
[25]. However there is an elementary proof, using only the local contractibility of 
TOP(M), which works for all n [19]. Hence 

7riG(r*)/TOP(r»)«7nfop(r«)/TOP(r«). 

(3) Using 2.2 (this is almost overkill), %xA{Tn)\A(T») « 7u0C(T»)/{x ± x}, n^5. 
Then by 3.1, since Wh^ic\Tn) = 0, we have 

7r0C(T») « z 2 [ / b tr\ - , *„ ^ ] / z 2 [ i ] 

where the t/s generate %{Tn. According to [14], the involution "—" on %QC{Tn) is 
induced by t{ *-+ tf\ Hence %x A(T»)/A(T») « Z2[th •••, tn]jZ2[\\ n ^ 5, independent 
of^. 

(4) The preceding steps give the case A = TOP. For A = PL or Diff we consider 
the diagram 

• TTi A(T»)/A(T») > m G(T»)/A(T») > TZX G(T»)/A(T") > 

0 > 7u{TOP(T»)/TOP(T») —^- TCI G(T«)/TOP(T") > 0 

This shows %x G(T»)/A(T») « %x A(T»)/A(T») ® %x G(T»)/A(T«). 
(5) Again from surgery theory [25], 

%x G(r«)/Diff(r«) « hS(T» x /rel 9) « [2T«, TOP/O] 

* t^n-ATn; n.+l TOP/O) * S @ A+i 0 (J)Z2. 

Similarly, 

;nG(^)/PL(r«)«Qz2. 

Thus we have: 
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CONCORDANCE SPACES 9 

THEOREM 4.1. Ifn ^ 5 there are split exact sequences 

0 >Z2°° > 7t0 TOP(r«) >GL(n, Z) > 0, 

0 > Z2°° 0 Q Z2 > 7U0 PL(r-) > GL(«, Z) > 0, 

o —> z? e Q z 2 e | (J) /v+i —> TUO Diff(r«) —> GL(«, Z ) —> o. 

REMARKS. (1) This result was obtained also by Hsiang-Sharpe [15]. 
(2) The same analysis allows one to compute %$ A(Tn x Dk rel 3), n + k ^ 5, 

with no extra work. We leave this to the reader. 
(3) The split extensions in 4.1 are nontrivial. The conjugation action of GL(w, Z) 

on 

Z r « Z2[th tY\ .-., tn, t-1]/Z2[ti + tT\ - , * „ + t-1] 

is induced by the usual action of GL(«, Z) on Zw, the monomials. The action on 
(g)Z2 * Hn-£T»; Z2) and 2(?)/Vn « 2Hn^(T»; ri+i) just comes from the 
action on 7X 

(4) The automorphisms in the subgroup Z?? a %$ A(Tn) are diffeomorphisms 
which are concordant (smoothly) but not isotopic (even topologically) to the iden-
tity. These are rather delicate creatures, (a) They are annihilated by lifting to 2-fold 
covers (an observation of Laudenbach), hence by covers of any even order; also 
by certain odd order covers (depending on the diffeomorphism). (b) The product 
map #0 A(Tn)-+7to A{Tn+v), [/] - » [ / x idsi], kills Zf as we shall show in Appendix I. 
(c) On Tn # Si x Sn~* (3 ^ / g n — 3) any automorphism concordant to the identity 
is isotopic to the identity [13]. Thus Z ^ c 7Z0 A(Tn) dies in TT0 A(T» % Sl x S"-*). 

(5) The subgroups ri+i c %$ A(Tn) are represented by diffeomorphisms of D{ 

rel 3Z> cross the identity on a factor Tn~l of Tn. The elements of (£)Z2 are repre-
sented by diffeomorphisms whose mapping tori are fake tori (homeomorphic but 
not PL homeomorphic to Tn+1). 

To finish this section we will describe an explicit construction due to Farrell 
(unpublished), of a diffeomorphism/: S1 x Dn~l -• S1 x Dn~l rel 3 (n large) which 
is concordant to the identity but not obviously isotopic to the identity (everything 
rel 3 here). To show that / i s in fact not isotopic to the identity seems to require 
most of the machinery of [14]. A simpler proof of this would be quite welcome. 

Embedding S1 x Dn~l in Tn to represent an element a e %\Tn, one extends/ 
on S1 x Dn~l to a diffeomorphism/,: Tn -> Tn via the identity outside S1 x Dn~l. 
We leave it as an exercise to check that, in the subgroup Z?° « Z2[^1? •••, tn]/Z2[l] 
of TTO A(Tn),fa represents the monomial generator a = t{1 ••• ^«. 

To construct / we will perform two embedded surgeries on the interior of the 
codimension one slice ZJg-1 = * x 2>_1, producing a new disc D\~x a Sl x Z>-1 

withSZ)?-1 = SDg-^and S1 x D"~l -D?-1 still an «-ball, so that Df~l = /(Dfi-1) 
for some homeomorphism (in fact, diffeomorphism)/of Sl x Dn~l rel 3. 

In a neighborhood of^g-1 label the two sides of jDg-1 as + and —.In the + side, 
attach an embedded /-handle D{ x Dn~l to Dg-1 in the trivial way. This effects a 
surgery on D%~1 to #C£)g_1), say. We could undo the effect of this surgery by now 
attaching an embedded (/ 4- l)-handle Di+l x Dn~{~1 on the + side of x(Z>g_1), 
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10 A. E. HATCHER 

in the trivial way so that the surgered %(I>o_1) would be an (n — l)-disc isotopic 
to Dg-1. (AH of this would occur near Dg-1.) The Farrell construction is to take 
instead a new embedding of the (/ 4- l)-handle, but attached to %(Z>g-1) m t n e same 
way so that %(i)g_1) is again surgered to a disc, this time the desired DJ-1. The new 
(/ + l)-handle is obtained from the old by replacing the old core Di+l by Di+l 

# Si+l, the (interior) connected sum with a certain Si+l c (Sl x Dn~l) - ^(Dg-1). 
This Si+l is constructed as follows. The core Di of the /-handle can be completed to 
a sphere S* by adding another /-disc on the — side of Dg_1. In a neighborhood of 
this S\ embed Si+l so as to represent the Hopf map Si+l -> S*. For this we must 
assume / ^ 2 and n large enough to get Si+l actually embedded. Finally, to form 
the connected sum of Di+l, which is on the + side of %(£>g-1), with Si+l, which is 
on the — side, we must connect Z>m to Si+l by an arc which circles around the 
^fac tor of Sl x Dn~K 

FIGURE 2 

The construction actually gives a concordance from Dg-1 to D"1, namely the 
trace of the two surgeries, that is, 

{DV x [0,11) U (# x i ) U {l(DV) x [h *]) U (A'+i x *) (J W - 1 x [*, 1]) 

in S1 x Dn~l x /, where h{ and / z m are the /- and (/ 4- l)-handles, respectively. 

5. The functor <g stabilized. Besides the stability Theorem 1.1, the other funda-
mental general result about concordance spaces is Morlet's Lemma of Disjunction. 
This is stated in terms of spaces of concordances of embeddings, defined as follows: 

DEFINITION. Let i V c M b e a proper submanifold (N f] dM = dN). Then 
CE(N9 M) is the space of (proper) concordances F: N x I <^ M x I VQ\ N x 0 \J 
3N x 7withF(7V x 1) c M x 1. 

LEMMA OF DISJUNCTION (Diff OR PL). Let DP c Vn, D^ c Vn be disjoint prop-
erly embedded discs, n — p ^ 3,« — q ^ 3. Then 

nx{CE{DP, V), CE(DP, V - D<)) = 0 for i £ 2n - p - q - 5. 
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CONCORDANCE SPACES 11 

For published proofs see [5] or [22]. 
The lemma of disjunction can be reformulated in terms of relative concordance 

spaces C(M, N) = C(M)/C(N), where N c M is a codimension zero submanifold. 
(The relative <$ is defined similarly.) These give fibrations C (N) -> C(M) -> C(M, N). 

PROPOSITION 5.1 (EXCISION). The lemma of disjunction is equivalent to: 
C(A, A fl B) -+ C(A U B, B) is (k + I - ^-connected if {A, A f| B) is k-con-
nected(k > 1) and(B, A f] B) is ^connected(I > 1). 

PROOF. It suffices to consider the case that A = Mn U (Dk+l x Dn~k~l) 
and B = Mn U {Dl+l x D"-'"1), i.e., disjoint (A: 4- 1)- and (/ + l)-handles are 
attached to M = A fl B. Then C(A, A f| B) can be regarded as the space 
CE(Dk+l x D»-*-i, ^ ) of concordances of £>*+1 x D»-*-i in A rel 3Z)*+1 x D»-*-i. 
Similarly, C(A [j B, B) = CE(Dk+1 x Z)»-*-i, ^ U B). Consider the fibrations 

CE(D"+1 x D--*-1, ,4 rel 0 x D""*-1) -> CE(Dk+1 x D""*"1, y4) — C£(0 x D""*"1, ^ ) 

CE(Dk+1 x D"-*-1, ̂  U Bre\ 0 x D"-"-1 -> CE(Dk+l x Z)"-*-1, ,4 U B) -> CE(0 x Z)""*"1, A [J B) 

The two fibers are homotopy equivalent, essentially because one can shrink con-
cordances of Dk+l x Dn~k~l rel 0 x Dn~k~l to their germ near 0 x Dn~k~l. Choosing 
DP = 0 x Dn~k~l and D? = O x Dn~l~l, the result now follows. 

COROLLARY 5.2. If X ^ Y is k-connected, the induced map <g(X) -» ^ ( 7 ) w 
(/: — 2)-connected. 

PROOF. We may take Y = X [j ek+l with A: ^ 2. Splitting ek+l down the middle, 
we get ek+l = ek U ^i+1 U ^2+1 > hence a fibration 

*(J5T U e*, X) • <^(Z U ek U ^ + \ JQ • *(jr U e* U ^+ 1 , * U ek) 

with contractible total space. By induction on k, ^{X U ek, X) is (k — 3)-connected, 
and therefore <g{X U e* U ^i+1, ^ U «*) is (A:-2)-connected. By excision (5.1) 

^ ( Z U ek U ^ + 1 , JT U ek) > ^ ( Z U e*+\ X [j ek U ^ + 1 ) ^ ^ U e*+1, X) 

is (2/: — 3)-connected, and so ^{X U e*+1, X) is (A: — 2)-connected, as desired. 
(This argument is lifted from [17].) 

A purely formal consequence of 5.1, obtained by choosing A and B to be cones 
onX = A fl B, is: 

COROLLARY 5.3. 77ze natural suspension map %>{X, *) -• Q ^(SX, *) w (2« — 2)-
connected ifX is n-connected. 

This allows us to make the following: 

DEFINITION. <gs(X, *) = limw Q» <g(SnX, *). 

LEMMA 5.4. ^giff(Z, *) is contractible for all X. 
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12 A. E. HATCHER 

PROOF. %^S{X, *) is a homology theory, since by 5.1 it satisfies the ex-
cision axiom. So it suffices to prove 5.4 when X = Sn

9 * = Dn. We claim: 
CDiit(S

n x Dk, Dn x Dk) is {In — 4)-connected, for any k. For, an application of 
5.1 gives 

iCiC(S» x D\ D» x Dk) « 7T,+IC(5'W+1 x £*-i, D»+l x Z)*"1), i ^ In - 4. 

Iterating, we eventually get to %i+kC(Sn+k, Dn+k). But in the smooth category, 
Cmi{Sn+k, Dn+k) c* CEDiH{D°, Sn+k); and the latter space is contractible, by an 
amusing elementary argument which we leave to the reader. {Hint. Cap off Sn+k x I 
with an {n + k + l)-ball attached to Sn+k x 1.) 

The main result of this section is due to Burghelea-Lashof [4]: 

THEOREM 5.5. ^Dm{X, *) -> <g?L(X, *) -• <g§L(X, *) w a fibration, up to homo-
topy. 

This is quite an amazing result. In the older approach to smooth concordance 
spaces, begun by Cerf, one studies /^-parameter families of C°° functions M x I 
-+ I, and the first problem one encounters is the local one of understanding the 
singularities of codimension ^ k. For example, when k ^ 4 one encounters Thorn's 
seven "elementary" catastrophes (these are all actually used in Igusa's work on 
TTIC(M) mentioned in §3). The complexity of these singularities increases rapidly 
with k, and they have only been completely classified (by Arnold) for relatively 
small values of k. So as an approach to smooth concordance spaces, this seems 
hopeless in general. Fortunately, the theorem gives an alternative approach in terms 
of PL concordance spaces, which are considerably more tractable as we shall see in 
§§6 and 7 below. 

Theorem 5.5 is proved by considering the diagram 

Vm{(X, *) • ̂ PL(X, *) • VFL(X9 *WDiff(X, *) 

<^iff(x, *) —• v$h{x9 *) -^-> ^ L ( z , *W§iff(X *). 
The horizontal arrow labelled a homotopy equivalence is such because ^^miX, *) 
~ * by 5.4. The other homotopy equivalence follows from the fact that 
7£* ^PLOC *)/̂ Diff(X> *) is a homology theory (hence already stable), which comes 
from fibered smoothing theory—see [4] for details. 

COROLLARY 5.6. The homology theory %^�%^{X, *) has coefficients 7r*-i^Diff(*)-

This follows by choosing X = S°, since ^pL(S0, *) = ^PL(*) = limnCPL(Z)») 
is contractible by the Alexander trick. 

Recall from §3 that ^o^ffC*) = ®> but l̂̂ DiffC*) *s a group of order four. 
Nothing is yet known about 7r^Diff(*) for / > 1. A very interesting question is 
whether or not TZ* ^Diff(*) *s a ^ torsion.1 

REMARK. According to [4], 7C^pL{X, *) can also be described as the homology 
theory associated to the spectrum 

*See note added in proof, below. 
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CONCORDANCE SPACES 13 

TopQz + 1) / Top(n) 
0(n 4- 1) / 0(n). 

6. Higher simple-homotopy theory. According to the usual pattern, one takes a 
geometric problem, reduces it to a homotopy problem, then tries to attack the 
homotopy problem by the big algebraic topology machine. In this section we 
describe part of the reduction of < P̂L to homotopy theory, though the homotopy 
theory which arises is not of the usual sort: It is a higher simple-homotopy theory, 
generalizing J. H. C. Whitehead [30]. In the following section (§7) this higher 
simple-homotopy theory is then related to more usual constructions in homotopy 
theory. One can anticipate that within a few years the algebraic topologists will 
have done something with this homotopy theory to make the whole program worth-
while. 

As a motivation for higher simple-homotopy theory, we pose the following: 
Problem 6.1 (fibered obstruction to finiteness). Let %\ E-+Bbe a fibration, with 

B a finite polyhedron and with fibers homotopy equivalent to a finite polyhedron 
X. Is 7i fiber-homotopy equivalent to a fibration %': E' -> B such that 

(a) E' is a finite polyhedron and %' is PL? 
(b) %' is the projection of a locally trivial bundle with fiber a compact PL mani-

fold M and structure group PL(M)? 
(c) E' is a compact ANR and % is a proper map? 
It can be shown that (a), (b), (c) are equivalent (see [7], [8] for (c)); we will focus 

on (a). 
By a polyhedral version of the path space construction, one could easily con-

struct a PL fibration % \ E' -» B fiber-homotopy equivalent to the given %, with 
E' an infinite polyhedron. On the other hand, if % is required only to be a quasi-
fibration, then E' can be taken to be a finite polyhedron (and in fact, one can take 
all fibers to be PL homeomorphic to X). The problem is to have both E' finite and 
% satisfying the covering homotopy property. 

Problem 6.1 can be reformulated as a lifting problem. As is well known, % is 
classified by a map B -> BG(X), where G(X) is the //-space of self-homotopy 
equivalences of X. One can construct a universal space B(X) for PL fibrations of 
finite polyhedra, as follows. B{X) is the simplicial set whose &-simplices are the PL 
maps TZ: E -> Ak satisfying the covering homotopy property, with E a finite poly-
hedron and fibers ^ X. There is a natural forgetful map B(X) -> BG(X), and 
Problem 6.1 becomes the lifting problem: 

B(X) 

(6.2) 

B- >BG(X) 

B(X) has an amusing heuristic interpretation, as "the space of all finite polyhedra 
of the homotopy type of X'\ or more precisely as the singular complex of this 
"space". For the fibers of a /c-simplex %\ E-* Ak in B(X) form a "continuous" 
A>parameter family of finite polyhedra, the "continuity" being expressed in the 
covering homotopy property for %. 
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14 A. E. HATCHER 

The space B{X) can be related to Whitehead's simple-homotopy theory. Recall 
the basic notion of an elementary collapse, sometimes written L0 \ e Lh where L0 

is Li with a ball attached along one of its faces. Collapsing (projecting) the ball to 
this face induces the map LQ -» Lx. The equivalence relation on finite complexes 
generated by elementary collapses is, by definition, simple homotopy equivalence. 

A nice generalization of elementary collapse is given in the following definition 
(in the polyhedral category, for convenience): 

DEFINITION. A PL map of finite polyhedra/: L0 -• Lx is a simple map if f~l(x) 
^ jcfor al lxeLx. 

The definition is due to M. M. Cohen [9], who used the term "contractible map-
ping". (In a somewhat more general setting the terminology "CE map" or "cell-
like map" is also used.) Cohen proved that a simple map is a simple homotopy 
equivalence. 

Let S be the category of finite polyhedra, with morphisms the simple maps. (It 
is easy to verify that simple maps are closed under composition.) The classifying 
space BS is then defined; it is the simplicial set whose A>simplices are the chains 
LQ -• Lx - » . . . - » Lk in S. Note that TZQBS is just the set of simple homotopy 
types of finite complexes, since simple maps generate the relation of simple homo-
topy equivalence. 

Let BSX denote those components of BS containing polyhedra of the homotopy 
type of the given X. 

THEOREM 6.3 [12]. BSX ^ B(X). 

The map BSX -* B(X) can be defined as follows. A /^-simplex of BSX is a chain 
L0 A LI -> ••• A ^ . One forms its iterated mapping cylinder Af(/l9 •••,/*), 
which is defined inductively as the ordinary mapping cylinder of the composition 
M(/ i , --,fk-i) -* £*-i ^ Lk. (M(./i) is the usual mapping cylinder.) Then 
one proves that the natural projection M(fl9 •••, fk) -> Ak is a fibration if and 
only if the maps f{ are simple maps. The map BSX -> B(X) sends LQ A Lx -* • • • 
A L, to M ( / b . - . , / , ) -+J*. 

In view of the lifting problem (6.2), one is interested in the homotopy-theoretic 
fiber of B(X) -> BG(X). This will be described using the following: 

FUNDAMENTAL DEFINITION. S(X) is the category whose objects are finite poly-
hedra containing the given finite subpolyhedron J a s a deformation retract, and 
whose morphisms are the simple maps restricting to the identity on X. 

THEOREM 6.4 [12]. BS(X) -* B(X) -+ BG(X) is a fibration, up to homotopy. 

Thus obstructions to solving Problem 6.1 come from %* BS(X). Whitehead's 
fundamental theorem can be reformulated (much along the lines of [10]) as the cal-
culation %QBS(X) « Wh^iX), the algebraic Whitehead torsion group, a quotient 
of KiZ\%xX\ As an example, l e t / : X-» Xbe a homotopy equivalence with non-
zero torsion, inducing the identity on %XX. Let T(f) be the mapping torus, and 
7c: E-* S1 the path space construction applied to the obvious projection T(f) -> 
S1, so that % is a fibration with fibers ^ X. Then the answer to 6.1 is negative; 
the torsion of/is the obstruction (see [7] for more details). 

Now to relate BS(X) with concordance spaces, let I b e a compact PL mani-
fold. 
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CONCORDANCE SPACES 15 

Then there is a natural map of BC?L(X) to the homotopy-fiber of B(X) -• BG(X), 
since BCFL(X) classifies PL bundles with fiber X x /, trivialized on the subfiber 
X x 0 (so, projection X x J -» X x 0 induces a fiber-homotopy trivialization). 
Stabilizing, one obtains a map of B<gVL{X) to the homotopy-fiber of B(X)-+ BG(X). 

THEOREM 6.5 [12]. The natural map of B<gPL(X) to the homotopy-fiber BS(X) of 
B(X) -+ BG(X) is a homotopy equivalence onto the identity component of BS{X). 

The other components of BS(X) correspond to nontrivial /z-cobordisms on X. 
Indeed, 6.5 can be regarded as a parametrized /z-cobordism theorem, in the PL 
category. 

A natural question is, does B<gDiH(X) also have a categorical description? One 
obvious candidate is the category E(X) whose objects are the same as those of S(X), 
but whose morphisms are the finite compositions of elementary collapses. Then is 
B<gDiii(X) homotopy equivalent to the identity component of BE(X)1 

7. Waldhausen's "Quillenization" of #P L. Waldhausen's basic idea is to imitate 
the exact sequence defining Whi(7u), 

0 -* KX{Z) 0 Hfa) -> KXZ{%\ -+ Whx{%) -» 0 

by constructing a diagram of fibrations 

h(X;K(*)) > K(X) >Wh{X) 

(7.1) % = %\X 

Hfi%\ K(Z)) >K(Z[icJ) >Wh{7i) 

where: 
(a) Wh(X) is a delooping of BS(X), hence a double delooping of <gPL(X). (This 

differs from the notation of [12], where "Wh{X)" was equal to BS(X).) 
(b) K(X) is "the algebraic ^-theory of the topological space X " Waldhausen de-

fines this (he calls it A(X), but we have already used the letter A for automorphism 
spaces) using a very nice generalization of the Quillen g-construction, but it seems 
that a plus-construction is also possible, and we give this definition. Let GL(Xn) 
be the //-space of homotopy equivalences Xn VJ=i S) -• Xn Vy=i S) rel Xn, 
stabilized over k and /, where {Xn} is the Postnikov tower of X (One needs / > n 
in order to get canonical retractions Xn \Jk

j=\ S) -• Xn by means of which the 
stabilization with respect to / is defined.) We would like now to let GL(X) = 
limM GL(Xn), though strictly speaking, inverse limits are not generally defined. 
Nonetheless, there is an //-space GL(X) which is the inverse limit of the system 
{GL(Xn)} in the same sense that a space is the inverse limit of its Postnikov tower. 
For all practical purposes one can just choose large finite values / > n > 0, and 
only let k -> oo, which is no problem. As an important special case, GL(*) is 
(exactly) the //-space of base pointed homotopy equivalences of V/=i S'j, stabilized 
over k and / in the obvious way. 

PROPOSITION 7.2.7r0 GL(X) « GL{Z%XX\ and for i > 0, 

%fiL(X) » M(Q{r(OX)) = lim Mn(Q{' {QX)\ 
n 

where Mnis the additive group of n x n matrices andMn a Mn+X by adjoining zeros. 

Licensed to Cornell Univ.  Prepared on Mon Mar  4 11:41:17 EST 2013 for download from IP 128.84.127.172.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



16 A. E. HATCHER 

DEFINITION. K{X) = BGL{X)+ x K^(Z%XX)9 where " + " is with respect to the 
commutator subgroup of TZXBGL{X). 

(c) %*h{—; K(*)) is the homology theory associated to K{*) (all the spaces in 7.1 
are infinite loopspaces). 

(d) K{Z%) = BGL(ZTT)+ x K^Ziz). 
(e) %*h{—; K{Z)) is the homology theory associated to K{Z). 
(f) Wh{%) is by definition a delooping of the homotopy-fiber of a natural map 

h{Bn\ K{Z))-+K{ZTZ). See [28]. Waldhausen defines the higher Whitehead 
group Wht{%) as %iWh{%). For f ^ 2 this agrees with earlier definitions. For / = 3 
it is the Wh\\%) of §3. According to the main result of [28], Wh{%) is contractible 
for a large class of groups, e.g., free abelian groups. 

(g) The map K(X) -> K{Z%XX) is induced from BGL(X) -> BGL{Z%XX\ the 
first stage in the Postnikov tower for BGL{X). 

REMARK. The map 2U -• GL(Z) factors through GL(*), as permutations of the 
spheres in VyLi $*;• Hence n* -» K*{Z) factors through 7r*K{*). 

An immediate consequence of the definitions and 7.2 is: 

COROLLARY 7.3. K{Bit) -> K{ZTC) is a Q-equivalence. In particular, K{*) ->K{Z) 
is a Q-equivalence; hence also Wh(B%) -> Wh(jz). 

Thus if 7r is in Waldhausen's class of groups for which Wh{n) ^ *, Wh{B%) is a 
torsion space, in both senses! Going back to §§2 and 4, we can conclude from 
7.3 as a very special case: 

COROLLARY 7.4. ?r/rOP(rM) -> %iG(Tri) is an isomorphism mod torsion, for 
i <4 n. {And likewise for PL.) 

One good potential application of Waldhausen's work depends on the follow-
ing: 

CONJECTURE. For any simply-connected X, H{{BGL{X)) is finitely generated 
{fig)for alii. 

More generally, one might hope this is true if TTi^is finite. 

PROPOSITION 1.5. If the conjecture is true, then 
(a) #,-PL(Af w) and 7rfTOP{Mn) are fig. for i <̂  n and M a simply-connected PL 

manifold. 
(b) 7r,Diff(Mw) is f.g. for i <^ n and%xM = 0. 

PROOF. H*{BGL{M)) = H*BGL{M)+^ f.g. => %*K{M) f.g. => TT* Wh{M) f.g. 
=> fff-CPL(M) f.g., i <̂  n (by_6.2) => TT,PL(M)/PL(M) f.g. (by 2.1) => ;r,G(M)/ 
PL(M) f.g. (since TT*G(M)/PL(M) f.g. by surgery theory) => TZ-PL(M) f.g. (since 
iz*G{M) f.g.). And similarly for TOP. To go from PL to Diff, one uses 5.5. 

One approach to studying K{X) might be to take the Postnikov tower {BGL{X)n} 
for BGL{X) and apply the plus construction. Thus one would have fibrations 

K{M{Qf/{QX)), /i + 1) _ > BGL{X)n+l > BGL{X)n 

Fn+l{X) > {BGL{X)n+ly > BGL{X)ny 

Licensed to Cornell Univ.  Prepared on Mon Mar  4 11:41:17 EST 2013 for download from IP 128.84.127.172.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CONCORDANCE SPACES 17 

and the question would be, what is the relation of the new fiber Fn+i(X) to the old 
one K(M(Qlr(QX))9 n + 1)? It is not hard to see that Fn+i(X) is ^-connected, and 
that 7un+iFn+i(X) is just M(Qfr(QX)) modulo the conjugation action of G1U{ZTZXX). 

This in turn is computable as H0(TUIX; Qlr(QX)), that is, Qfr(QX) modulo the con-
jugation action of 7t\X(see [26]). In view of 3.2, one might guess that 7rw+2 Fn+i(X)« 
Hi(nxX\ Qfn

r(QX)). More generally, does Fn+l(X) depend only on M(Qfr(QX)) and 
the conjugation action by GL(ZKIX), at least in some stable range (below dimen-
sion 2n, say)? 

8. A hypothetical splitting. The following would seem to be a reasonable thing 
to hope for, and Waldhausen asserts in [31] that it is true : 

Hypothesis. The map K(X) -• Wh{X) of 7.1 factors through Whmi(X), a double 
delooping of <^Diff(Z). (Recall that Wh(X) is a double delooping of <gvl{X).) 

The hypothesis implies that there is a diagram of fibrations 

h(X, *;&(*)) K(X, *) WhDiH(X, *) 

h(X,*;K(*)) 

h(X,*;KS(*)) 

K(X, *) 

K*(X, *) 

KX,*;K(*)) 

Wh(X, *) 

Whlii{(X, *) 

'{X, *) Whs(X, *) 

The fibration containing Whs(X, *) is obtained by stabilizing the one containing 
Wh(X, *). The fiber h(X, *; K(*)) is the same for both since n*h(—; K(*)) is a 
homology theory, and so is already stable. Similarly, #* of the fiber of K(X, *) -> 
WhDi{{(X, *) is a homology theory (since this is true for the PL analog K(X, *) -• 
Wh(X, *) and T T ^ P L I X *)/^Diff(^ *) *s a homology theory, as mentioned after 
5.5), so the fiber of K(X, *) -> WhDiH(X, *) is the same as the fiber of KS(X, *) -» 
^%Diff( ĵ *) — *• Hence this fiber is KS(X, *), for which we are also using the 
notation h(X9 *; Ks(*)). 

The diagram yields: 

COROLLARY OF THE HYPOTHESIS. K(X, *) ~ KS(X, *) x WhDiH(X, *). 

However, this seems to lead to a contradiction. Let X = S°, and consider the 
diagram 

7l3K(*) > 7Ti^DIff(*) 

^3(Z) > W ( 0 ) 

where the maps to W7#iff (0) are those defined by Igusa (see §3). It seems reason-
able to suppose that the diagram commutes. By the preceding corollary, Corollary 
3.3, and [20], we then get a commutative diagram 
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18 A. E. HATCHER 

' ffl^DiffOO 

11 
^ 4 8 

Wh%iH(0) >0 

>Whfi((0) 

Z2 

which is impossible. Can it be that the trouble is in the commutativity of the 
diagram? 

Appendix I. A product formula for concordances. Let M and N be compact mani-
folds. The product map p: C(M) -+ C(M x N) is given by p(F) = F x idN. 
For Dn c= Nn there is also the inclusion-induced map i: C(M) 
C(M x N). 

z» C(M x Dn) 

PROPOSITION (DifToR PL), p ^ %(N) • /, where ^(JV) is the Euler characteristic of 
N. 

For the proof it will be convenient to replace C(X) by the space C\X) consisting 
of automorphisms of (X x /, X x 0, X x 1) which preserve projection to / over 
dX, modulo the subgroup of automorphisms preserving projection to / over all 
of X. It is easy to see that the natural map C(X) « C(X rel dX) -> C'{X) is a 
homotopy equivalence. In C'(X) the duality involution "—" is easily defined as con-
jugation by idx x r, where r: I -> I is reflection through the midpoint. The 
stabilization map 2: C'(X) -• C\X x / ) looks just like it does in Q T r e l dX); 
see Figure 1 in §2. 

LEMMA. 2 anticommutes with —, up to homotopy. 

A proof is suggested by the following pictures: 

*g 

Xxl ( a ) I x / 2 ( b ) I x / 2 

FIGURE 3 

The two large rectangles in (a) represent 2g and 2g; the two smaller squares are 
isotopies (level preserving), hence trivial in C'{X x / ) . The whole of (a) is clearly 
isotopic to (b), itself an isotopy, hence trivial in C'{X x / ) . Thus 2g + 2g ^ 0. 

PROOF OF THE PROPOSITION. For convenience we choose the smooth category and 
assume N is closed. Let g e C'{M). As in Figure 4 below, first deform g x id^ to 
G in C\M x N) by shrinking vertically the support of g on each slice M x {x} x 
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[<f>(x) — e, <fi(x) + e], where $: N -> (0, 1) is a Morse function. Then deform G 
to G' by tilting the slices M x {x} x [(f>(x) - e9 <j>(x) + e] so that they are hori-
zontal away from the critical points of $, and so that near a critical point of index 
p, G' is just (T~y (2)n-i> (g).By the lemma, this equals ( - 1)̂  i (g). Summing over 
all critical points of ^ gives the result. 

8 x *<W G 

FIGURE 4 

Appendix n. An infinite delooping of <^(M). First, we mention the purely formal 
infinite delooping of <g(M) coming from the obvious fc-fold little cubes structure 
on C(M x /*). This seems however not to have much geometric significance. More 
interesting is a delooping in terms of the spaces Cb(M x Rk) of concordances 
MxRkxI^MxRkxI of bounded distance from the identity, given by 
the following: 

PROPOSITION. There are natural equivalences Cb(M x Rk x I) ~ QCb(M x Rk+1) 
compatible with stabilization and hence inducing ^b(M x Rk) ~ Q^b(M x Rk+l). 
In particular, <g(M) ^ Qk<gb(M x Rk). ' 

PROOF. Let N = M x RK A map A: Cb(N x I) -> QCb(N x R) can be 
defined as follows. Let /: Cb(N x I) -> Cb(N x R) be induced by / c= R. Two 
null-homotopies of i are obtained by translating / to 4- oo and — oo in R. This 
defines for each /e Cb(N x 7)the loop 1(f) of concordances in Cb(N x R).To see 
that X is a homotopy equivalence we consider the fibrations 

Cb(N x R rel N x 0) > Cb(N x R) — -̂> CEb(N, N x R) 

Cb(N x [ - oo, 0] rel d) > g — -̂> CEb(N, N x ( - oo, oo)) 

where CE denotes concordances of embeddings, 

i = CEb(N x [-oo, 0], N x [-oo, oo]relN x -oo) , 

and the two maps r are restriction to N x 0. (The boundedness condition assures 
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20 A. E. HATCHER 

the covering homotopy property for r.) Clearly Cb(N x R rel N x 0) and g are 
contractible, and Cb(Nx [— oo, 0] rel 3) ^ Cb(NxI). It is not hard to check that 
the resulting equivalence Cb(N x I) ~ QCb(N x R) is given by X. 

THEOREM [2]. The first k homotopy groups of Cb{Mn x Rk),for n + k ^ 5, are 
K-MiZxiAf), •••, K^(Z%XM\ K^Z%XM\ Wh^M). 

Anderson and Hsiang have shown in [1] that the functors K^{ have an interesting 
geometric application to the problem of existence and uniqueness of triangulations 
of locally triangulable spaces. Roughly speaking, what they show is that, away 
from dimension 4 and apart from obstructions which arise already in the case of 
closed manifolds, the only other obstructions to the existence and uniqueness of 
triangulations are K-{ obstructions. It seems that this phenomenon should persist 
in the automorphism spaces of a polyhedron, namely that the differences between 
PL and TOP stem from the manifold case and from K-{ obstructions. 

ADDED IN PROOF. Farrell and Hsiang, using Waldhausen's work, have now 
shown that 7r/^Diff(*) ® Q « Ki+2{Z) ® Q, which is now to be Q for / = 3, 
7, 11, • • • and zero otherwise. From this they can compute the rank of 7r,Diff (Sn) and 
7CiDiS(Tn)9 i <c n. In particular, for odd n ^ 37, neither 0(n + 1) -> DifT^) nor 
Diff(r«) -> G (Tn) is a ^-equivalence ! 
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