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THE CENTRAL objects of study in this paper are collections {C,, . . . , C,} of g disjoint 
circles on a closed orientable surface M of genus g, whose complement M-(C, u 
. . . U C,) is a 2g-punctured sphere. We call an isotopy class of such collections a cut 
system. Of course, any two cut systems are related by a diffeomorphism of M, by the 
classification of surfaces. We show that any two cut systems are also joined by a finite 
sequence of simple moues, in which just one Cj changes at a time, to a circle 
intersecting it transversely in one point and disjoint from the other Ci’s. Furthermore, 
we find a short list of relations between sequences of simple moves, sufficient to pass 
between any two sequences of simple moves joining the same pair of cut systems. 

From these properties of cut systems it is a routine matter to read off a finite 
presentation for the mapping class group of M, the group of isotopy classes of 
orientation preserving self-diffeomorphisms of M. Unfortunately, the presentation so 
obtained is rather complicated, and stands in need of considerable simplification 
before much light will be shed on the structure of the mapping class group. Qualitatively, 
one can at least deduce from the presentation that all relations follow from relations 
supported in certain subsurfaces of M, finite in number, of genus at most two. This may 
be compared with the result of Dehn [3] and Lickorish [4] that the mapping class group is 
generated by diffeomorphisms supported in finitely many annuli. 

A finite presentation in genus two was obtained by Birman-Hilden[2], completing 
a program begun by Bergau-Mennicke [l]. For higher genus the existence of finite 
presentations was shown by McCool[ lo], using more algebraic techniques. For 
another approach to finite presentations, see [12], and for general background on 
mapping class groups, see [ 111. 

Our methods apply also to maximal systems of disjoint, non-contractible, non- 
isotopic circles on M. This is discussed briefly in an appendix. 

81. CUT SYSTEMS 

Let M be a closed orientable surface of genus g. We shall be considering 
unordered collections of g disjoint smoothly embedded circles C,, . . . , C, in M, 
whose complement M-(Cl U . . . U C,) is a 2g-punctured sphere. Equivalently, 

{C,, . . . , C,) is a maximal non-separating system of disjoint circles on M. (In other 
contexts, {C,, . . . , C,} is termed a Heegaard diagram.) An isotopy class of such 
systems {C,, . . . , C,} we call a cut system (C,, . . . , C,). 

Let (C,, . . . , C,) be a cut system, and suppose that for some i, C{ is a circle in M 
intersecting Ci transversely in one point and disjoint from Cj for j# i. Then if Ci is 
replaced by C’: in (C,, . . . , C,), we obtain another cut system. The replacement 
(C,,. . . . c;,. . .) C,>+(C,,. . . , c:,. . . , C,) is called a simple moue. For brevity we will 
often drop the symbols for unchanging circles, e.g. writing (Ci)+(C{> for a simple move. 
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Certain sequences of simple moves are cycles, ending at the same cut system they 
began with. The simplest of these cycles are the following: 

(I) ( Ci> -<c,b 

\/ 
<c,“> 

(II) <c&j) ----cc; ,Cj’ 

I I 
I t 

tc,,c;>-c;,c;‘> 

C; 5 C;. 

W 

In each case, the only assumption on the circles involved is that the cut systems 

and simple moves written down are defined. 
Let X,’ be the graph whose vertices are the cut systems on M, two vertices being 

joined by an (unoriented) edge if the corresponding cut systems are related by a 
simple move. (Thus the two arrows in (0) above determine a single edge of X,‘.) Form 
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a two-dimensional cell complex X, from X,’ by attaching a 3-, 4- or S-gon to each cycle 

of type (I), (II) or (III) above, respectively. For example, if A4 is the torus, then XI 
can be drawn as an open disc with its “rational” boundary points (Fig. 1). 

Our main result is: 

THEOREM 1.1. X, is connected and simply-connected. 

Remark. Without the pentagons, there would be a map of r,X, onto the per- 
mutation group of a fixed cut system (C,, . . . , CR), since the cycle in (III) transposes 
Ci and Cj while the cycles in (I) and (II) do not permute Cl,. . . C, 

The proof of the Theorem will occupy the remainder of this section. 
Let F: A4 +R be a C” function. Define an equivalence relation, -f, on A4 by x - Iy 

if x and y lie in the same component of a level set f-‘(a) for some a ER. The quotient 
space M/ - , we denote by rCf>, with quotient map f: A4 * rCf). If f is generic, that is, 
if all the critical points of f are nondegenerate with distinct critical values, then r(f) is 
a finite graph, whose vertices correspond to the critical points of f, as the pictures in 
Fig. 2 show. 

Fig. 1. 

index 2 

index I index I 

Fig. 2. 
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For generic f, A4 can be recovered from r(f) as the boundary of an oriented 
3-dimensional regular neighborhood of rCf). This can be seen abstractly, by glueing 
together copies of the local pictures in Fig. 2 according to the edges of r(f). Or more 
concretely, M can be embedded in R3 so that f becomes the height function. 

Now choose a maximal tree T in r(f), and label the edges of r(f)-T, e,, . . . , e,, 

with interior points Q E ei. If we cut M open along all the circles f-‘(ii) we obtain a 
sphere with 2g holes, since this corresponds to cutting open the regular neighborhood 
of rcf) along 2-discs until it becomes a regular neighborhood of T, hence a 3-ball. 
Thus to the pair (f, T C I’(f)) there is associated the cut system (f-‘(C,), . . . ,f’(2g)). 

Every cut system (C,, . . . , C,) arises in this fashion, for suitable f and T C I’(f). 
Just let f be any generic function on M having C,, . . . , C, as non-critical level curves, 
and choose T C r(f) to be the complement of the edges containing the points 

f(G), . . . , W,). 
Now let (fO, T,, c T(fO)) and cf,, T, C rCf,)) have as their associated cut systems 

any two preassigned cut systems. Let f,: M+R, 0 5 t I 1 be a generic path of C” 
functions joining f,, to f,. Then for each t, f, is generic with the following’isolated 
exceptions: 

(a) f,,, has exactly one degenerate critical point, of the form f,(x, y) = 
x3 -c (t - t,,)x 2 y’. As t passes t,,, a pair of non-degenerate critical points of adjacent 
indices are born or die (birth-death point). 

(b) fi has two non-degenerate critical points whose critical values reverse order as 
t passes to (crossing point). 

A helpful picture is the graphic of fi, {(f,(x), tllx is a critical point of fi}. For 
example, see Fig. 3. At a birth-death point, r(f,) changes as in Fig. 4. 

It is not hard to see that r(ft) changes at a crossing point only if both critical points 
are of index one, and they belong to the same component of the level set of f,O which 
contains them. There are five essentially distinct possibilities, corresponding to the 
various ways of performing two surgeries on a collection of circles so that the 
resulting 2-dimensional cobordism (the trace of the surgeries) is connected. These are 
pictured in Figs. 5 and 6, along with the relevant portions of the graphs I’(f,) for t < t,,, 

t = to, and t > to. It will turn out that only the case of Fig. 6 is really interesting, so we 
call this an essential crossing. 

LEMMA 1.2. Let t = to be the paramettr value of a birth-death or crossing point. 
Then maximal trees T, C rCfi) can be chosen for t near to so that, as t passes to, the 

I 
r 

Fig. 3. 

7 
Fig. 4. 
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Fig. 5. 
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circles f’ (&;) vary only by isotopy in M, except in the case of an essential crossing, 
when just one f=’ (2;) is replaced by a circle intersecting it transversely in one point. 

Proof. Near a birth point, we can choose T, so that the edge of rCf,) where the 
new branch grows belongs to T,. For t > to, the new branch is added to T,. A death 
point is similar. Near a crossing point, we need consider only the cases in Figs. 5 and 
6. For inessential crossings ru,J is obtained from rcf,) for nearby t by collapsing one 
edge to a point. In these cases, we first choose an arbitrary tree Tb at time to, and pull 
it back to T, for nearby t by adding the collapsed edge. In the case of an essential 
crossing, rCf,J is obtained from rcfi) for nearby t be collapsing two edges to a point. 
We choose an arbitrary tree T,O, and then to obtain Tt for t on either side of to we 
adjoin either one of the collapsed edges. The assertion about the circles f-r (pi) is 
then clear. 0 

Now we consider what happens in a t-interval between two successive birth-death 
or crossing points. The graph rcf,) is unchanged in this interval, but the maximal trees 
T, chosen near the two ends of the interval may not be the same. 

Definition. Let T and T’ be maximal trees in a graph r, such that T’ - T is an edge 
a and T - T’ is an edge b. Then we say T’ is obtained from T by an eiementary move, 
and we write T’ = T + a - b. 

TOP Vol. 19. No. 3-B 
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LEMMA 1.3. Let Tand T’ bemaximal trees in afinitegrapk r. Then we can pass from T 
to T’ by a finite sequence of elementary moves, T’ = T + 2 (ai - bi). 

j=l 

Proof. Let a be an edge of T’- T. Then T + a contains a closed loop. This loop 
cannot be contained in T’, so there exists an edge b in this loop, with b C T - T’. 
Thus T + a -b is a maximal tree, and T + T + a -b is an elementary move which 
lessens the difference between T and T’. cl 

An elementary move T -+ T + a - b changes the associated cut system 

CC,, * * . , C,) to one of the form (C,, . . . , C:, . . . , C,), where f(Ci) and f(C) are interior 
points of b and a respectively. The unique circuit in T + a lifts to a “linking” circle 
Cy on M which intersects each of Ci and C{ transversely in one point and is disjoint 
from the other Cj’s. So we have a pair of simple move (Ci) +(Cy) +(C:) realizing the 
elementary move T --, T + a - b. 

Summarizing, we have associated an edge-path in X, to a generic one-parameter 
family f, together with appropriate choices of maximal trees T, C lTjt>. Since the cut 
systems associated to cfo, T,, C (f,,)) and cf,, T1 C r(f,)) were arbitrary, this shows that 
X, is connected. 

LEMMA 1.4. For each edge-path in X, there is a one-parameter family cf,, T, C 
17fi>> whose associated edge-path is the given edge-path, each edge (simple move) 
arising from an essential crossing. 

Proof. Let cf,-,, To C rcfo>> be associated with the cut system (C,, . . . , C,). It 
suffices to realize the simple move (Ci)+(C$ by a path cf,, T, C rCfi)) with a single 
essential crossing and no elementary moves in the maximal trees T,. First deform 
f,, to f,,*, changing it only in a neighborhood of C: (but staying fixed near Ci) so that 
f1,2jC: has one local maximum and one local minimum, both at saddles of fllZ, and so 
that f1j2 has no other critical points between the levels of these two saddles. For the 
resulting (generic) path ft from f,, to fllz there is a natural choice of maximal trees 
Tt C lYj,>, namely the complement of the edges containing the points 

ECCi), * * . , f(C,). Thus no essential crossings or elementary moves are involved. Now 
deform flit to f, by simply interchanging the levels of the two saddles on C:, an essential 
crossing realizing the simple move (Ci)+(C:). cl 

LEMMA 1.5. All relations between sequences of elementary moves are consequences of 
the relations (l)-(4), below. (Boxes represent subgraphs in which the maximal tree is 
unchanged.) 

(1) (a-b)+(c-d)=(c-_)+(a-b) (2) (a-b)+(c-a)=(c-b) 
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U-C b-c 
(4) (a-b)+(b-a)=0 

CJ 

(3) (a-b)+(b-c)=(a-c) 

Proof, Since (4) provides inverses, it suffices to show a relation (a, - 6,) + . . . + 

(a, - b,) = 0 follows from (1) to (4). In such a relation the hi’s are a permutation of the 
ai’s. Let m = min{lp - 41: a, = b,} and suppose Uj = bk realizes this minimum, m = 
/j - k(. If m > 1 and j < k, then applying Lemma 1.6 below to (Uj - bj) + (uj+l - bj+l) 
produces a new relation of length n with smaller m. Similarly, if k <j apply the 
lemma to (ai- - bj_1) + (uj - bj) to decrease M. Eventually we reach m 7 1 where by 
using (2), (3) or (4) we can reduce to a smaller n. So by induction on n the lemma is 
proved. 0 

LEMMA 1.6. A pair of elementary moves (a - b) + (c - d) with u, b, c, d distinct can 
be transformed into one of the pairs of elementary moves (c -d)+ (a -b), or 
(c - b) + (a - d), using relations (1) to (4). 

Proof. There are two possible configurations, the one in relation (1) and the one 
pictured below. 

According to how the four edges are labelled, (a - b) + (c - d) corresponds to 
going from one corner to the diagonally opposite corner, via any of the three 
intermediate stages. It is easy to verify in all three cases that one of the other two 
routes is a pair of elementary moves (c - d)+(u - b) or (c - b)+(u -d). cl 

LEMMA 1.7. Let T, C rcf,) and T: C r(f,) be maximal trees for the generic one- 
parameter family f,, chosen according to the rules given above. Then the edge-paths 
associated to cf,. T, C rCf,)) and cfi, T; C Tcf,)) are homotopic in X, 

Proof. The choices were: (a) The choice of “linking” circle for an elementary 
move; (b) The choice of representation of a change of maximal trees (in a fixed FCf,)) 
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as a sequence of elementary moves; (c) The choice of maximal trees T, C I(f,)) in f-slices 
near birth-death and crossing points. 

(a) Let C’/ and C’l be two circles linking C’i and C{, and intersecting each other 
transversely in n points. If n = 1 there are simple moves so the two ways of going from C; 
to C: are homotopic via type (I) 2-cells of X,. If n = 0 we may find a linking circle Cl”’ 

which intersects both C’: and @I in one point transversely (see Fig. 7), so this case 

reduces to the previous case. If n > 1, we can find a linking circle Cl”’ meeting C’; in one 
point and C’: in fewer than n points (transversely). See Fig. 8. So by induction on n we are 
done. 

(b) We check what homotopies between associated edge-paths are induced by 
relations (l)-(4) of Lemma 1.5. 

(1) Here we can choose the linking circles for the two elementary moves to be 
disjoint. So this commutation relation among elementary moves follows from the 
commutation relation (II) for simple moves. 

(2) The configuration here is shown in Fig. 9 (with suitable choice of linking circles 
C:, C; and C’,“‘). 

Consider the diagram of simple moves: 

‘C;, fq’ -tc;,ci, *<c:“, C,’ 

(II) 

t 
<c,!,c;.) 

T 

MC:.‘: c; 1 -<c,l”, c, ) 

(I) I/_, (II) 

(I) 

<cl’& <c;“: c;> 
_1 

<Cli*l,C;) 

\(yf , < c;: c;> cj,c;, 

The path from (C’i, Cj) to (C’j, Ci) across the top of the diagram corresponds to the 
cycle of three elementary moves in relation (2). The path across the bottom is the 
cycle (III). These paths are homotopic using (I) and (II), as shown. 

(3) We may choose the same linking circle for all three elementary moves. Then 
the edge-path is 

which is null-homotopic in the l-skeleton of X,. 
(4) This is just (C~)+(C~)~(C~)+(C~)+(C’i)~ which is again null-homotopic in 

X,‘. 
(c) Clearly, only the case of an essential crossing is of interest here. Near an 

essential crossing in the slice t = I,,, T, C ITf,) depended first on choosing T,,, C Uf,J, 
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Fig. I. 

Fig. 8. 

and second on choosing for nearby tf to one of the two collapsing edges of Tcf,) to 
belong to T1. 

Consider first the choice of T,O C R.ftJ. A new choice differs by elementary moves 
in ICf,), so it suffices to consider one such elementary move T,,,+ TI, + a - b. In the 
ambient one-parameter family this can be realized by first introducing inverse ele- 
mentary moves T, + T, + a - b -+ T, + (a - b) + (b -a) just to one side of t = t,, (the 
effect of this on sequences of cut systems was discussed in (b) above), and then 
commuting one of these elementary moves with the given essential crossing. Thus 
simple moves (C~)+(C~)+(C~) corresponding to the elementary move are to com- 
mute with the simple move (Ci)+(C:) corresponding to the essential crossing. Here Cj 
and Ci correspond to Q and b, edges of rutO), so Cj and Ci are disjoint from Cc U Cl. 
Also, Cy can be chosen disjoint from Ci U C:. So the desired commutation relation 
follows from (II). 

And second, there is the choice of which collapsing edge of I’Cf,) to put in T,, for t 
on either side of to. Two choices differ by an elementary move, so only a homotopy in 
X,’ can be involved. El 

Proof that ?r,X, = 0: By Lemma 1.4, we can realize a given closed edge-path in X, 
by a one-parameter family cf,, T, C rut)). Since the edge-path is closed, we may take 
(fO, TO C lTj,,)) = cf,, T, C rCfJ) by splicing in a one-parameter family cft, 7’, C IIf,)) 

without essential crossings or elementary moves, as in the proof of Lemma 1.4. 
Let fiU, (t, U) E I x I be a generic two-parameter family realizing a homotopy from 

Fig. 9. 
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(3) L 

Fig. 10. 

the loop f, to the constant loop fO. Except for the isolated phenomena described below 
in (l)-(6), fi, will be a generic one-parameter family for each u. (see [5,6]). 

(1) A co-dimension two singularity, of the form 

f,.(x, y) = f x4 f (u - uo)x* _+ (t - fo)x k y2. 

(2) A birth and death point are cancelled or introduced. 
(3) A birth-death point crosses a non-degenerate critical point. 
The changes in the graphic from u < u. to u > u. are shown in Fig. 10. 
In each case the portion of M between levels just above and below the 

phenomenon in question is a genus zero surface, so no essential crossings are 
involved, and maximal trees can be chosen for nearby t and u so that no elementary 
moves are involved. Hence the associated path of simple moves is unchanged. 

(4) Two crossings cancel or are introduced: 

This is non-trivial only for essential crossings, where it is a null-homotopy of a 
path (Ci)+(C{)+(Ci). 

(5) Two birth-death crossing points occur simultaneously. This is non-trivial only 
for two essential crossings. 

This is a commutation cycle (II). 
(6) Three non-degenerate critical points lie on the same level: 

The only non-trivial cases occur when ail three critical points are saddles, and at 
least one essential crossing is involved. To enumerate the possibilities, we regard the 
saddles as one-handles attached to level circles just below the level of the three 
saddles. From this viewpoint an essential crossing looks like: 

Isvel circle handles 

Fig. 11. 
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Up to sliding handles (i.e. isotopy), the essentially distinct ways of involving a 
third saddle are listed in Fig. 12. 

The configurations of each pair (a -a’), (b-b’), (c-c’) are obtained from each 
other by replacing fi,, by -t, so it suffices to consider only (a), (b) and (c). 

(a) Consider the one-parameter family obtained by restricting (t, u) to a small 
circle about the point where all three saddles are on the same level. The graphs FCf,,) 
go through the cycle in Fig. 13. Choose maximal trees to include the edges parallelled 
by dotted lines. There are three essential crossings, giving simple moves (cK)+(/~)+ 
(y)+(a), a cycle of type (I). 

(b) The pictures here are shown in Fig. 14. There is an elementary move required. 
This corresponds to two simple moves (y~)+(yJ+(yz) which exactly cancel the two 
simple moves (yz)+(yl)+(y~) coming from the two essential crossings. 

(c) Here only one essential crossing is involved, and no elementary moves, so the 
path of simple moves is unaffected. 0 

52. GENERATORS AND RELATIONS FOR THE MAPPING CLASS GROUP 

As a standard model for M we choose a sphere with g handles attached, as in Fig. 
15. 

Let H be the subgroup of G = a0 Diff’(M) represented by diffeomorphisms which 
preserve the standard cut system (a,, . . . , ag). (Elements of H 
and reverse their orientations.) At the end of this section 
well-known methods: 

can permute the ai’s 
we shall derive by 

(b’) 

123 2i3 2% 321 312 132 123 
Fig. 13. 
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213 123 132 312 321 231 213 

Fig. 14. 

PROPOSITION 2.1. There is an exact sequence 

Z +ZB @ Pz,_, + H + f IX*-+0 

where Pzs-, is the pure braid group on 2g - 1 strands and 2 I& is the group of signed 
permutations of g objects. 

From this one can write down a presentation for H. 

Let c E G, supported near al U p,, be a “90” rotation” of the first handle of M, as 
shown in Fig. 16. 

THEOREM 2.2. Every element of G can be expressed in the form p,+, opt. . . up,, 

pi E H. All relations between such words follow from the relations (A)-(E) below. 

Proof. For cp E Diff+(M), there is by Theorem 1.1 a path of cut systems 

(a,, . . * 4,) = (C*O, * * . ,c,“>, (C,‘, . . . ,Cl), . . . ,(C,‘, . . . ,c;> = (co-‘(a,), . . . ,cp-‘(a,)) 

related by simple moves (Ci-‘)+(C$. To this path we associate a word ap,. . . ~PI as 

follows. Suppose inductively that apk+. . .crpl takes (C!-‘, . . . , Ci-‘> to ((Y,, . . . , a,). 

Then o&+ . . apl(Ci-‘) = (Ti for some i, and q&r. . . upl(C\) is a circle meeting (Yi 

Fig. IS. 

I \ 

! I 

Fig. 16. w--e- 
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transversely in one point and disjoint from q, i# i. So there exists pk E H with the 
property that okq&_l . . . up,(Ct) = PI. Hence &r&-l . . .upl(Cfk-‘) = al, and qk.. . OPl 

takes (CIk,. . . , C,“) to (a,, . . . , a*>. When k = r, both up,. . . up, and 50 take 

(cp-‘(al), . . . , v-‘(a,N to (al,. . . , a,), so they differ by an element of H, that is, ~0 has 

the form ~,+~crp,. . . upI with pi E H. This is the first statement of Theorem 2.1. 
Suppose now that cp E G has two representations as words in u and H, 

cp = Pr+lUPr * * . up, = p;,up:. . . up;. 

Both words are associated to paths of simple moves; for example p,+lup,. . . up, is 
associated to 

(C,k, . . , , CR”> = ((upk. - . aplY’(aA. . . , (a&. 1 - upI)-‘(a k = 0, 1,. . . , r. 

LEMMA2.3. Two wordsp,+,up,. . . up, = p;+,up;. . . up; associated to the samepath of 
simple moves may be obtained from each other using only the relation 

(A) u commutes with H(a,, PI), the subgroup of H represented by diffeomorphisms 
leaving both aI and p, invariant. 

Proof. Suppose inductively the lemma is known when p, = pi,. . . , pk = pi. We 
show that it is then also true assuming On& PI = pi, . . . ,Pk-l = pi-l. Let p; = pippal. This is 
in H(a,, /3,) since 

dpi’(~l) = pbpk-, . . . up,(c$ = p;U& . . . Up;(c[) = B,. 

so 

PL+luP:. *. uPi+luPbPk-l . . . UP, = P;,uP:. . . uPi+luP:PkuPk_, . . * UPI 

= p;,up:. . . ~(Pi+lP%Pk~Pk-l . . - UPI by (A). 

This word is also associated to the given path of simple moves since 

p;+lp;upk . . . uPl(c:~+‘) = p:+,up;. . . up,(CY’) = p,. 

So the induction hypothesis applies. D 
Since H(a,, pl) is finitely generated, (A) reduces to a finite number of relations. 
The remaining relations among words p,+,up. . . upI arise from homotopies be- 

tween associated edge-paths. These are of four types arising from null-homotopies of 
the cycles: 

(0) (c~~-‘>-q,)-+(c~-‘) 

Since we may choose &+I = 1, this yields the relation 

u2 E H. (B) 

The images of these three circles under p&r&+ . . . up, are al, &, and some circle y. 
Rotation of the subsurface of M in Fig. 17 by 120“ clockwise, damped off to the 
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Fig. 17. 

identify at the boundary, has the form pq for some pr E H, uniquely determined by 

Y* 
For the word associated to the three simple moves in question we may choose 

UP, * * (Pyd3PkUPk-l . - * upI. So the cycle (I) yields: 

There are only finitely many choices of y, modulo the choice of pk. So in the 
presence of (A), there are just a finite number of relations in (C). 

(II) (Ct?)+(Ct) commuting with (C~+,)+(C~~). 

We may choose pk so that pkcrp~ . . . rpI carries Ci+, to (Y~ and Cc! to pz. Then (II) 
becomes: 

u commutes with p-‘up, where p E H satisfies p(az) = al, p(pJ = p,. (D) 

In the presence of (A), a single choice of such a p suffices. 

Suppose these five simple moves give the subword a~~+~. . . q&. The desired relation 
is then: 

upk+4 . . . upk E H. 03 

We may choose pk so that the cycle of five circles Ck-‘, Cl, Cfz*, Cg+,, CE: is carried 

by PkuPk-I . . . up, to the chain of circles al, /3,, a*, y in Fig. lg. 
Modulo the choice of pk, there are just finitely many possibilities for the position 

of /3 and y on M-(a3 U . . . U q). For each of these finitely many choices a single 
choice Of pk, &+I,. . . , pk+4 Suffices. q 

Proof of Proposition 2.1: Let Diff+(M;(ai}) C Diff’(M) be the subgroup of 
(orientation preserving) diffeomorphisms which leave aI U . . . U aR invariant. 

LEMMA 2.4. qJ3iff’(M;(ai}) + ?r,Diff’(M) is injectiue. Hence H = qDiff’(M; 

{(yil>- 

Proof. Restriction of elements of Diff+(M) to al U . . . U a, gives a fibration 
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Fig. 18. 

where B is the space of smooth submanifolds of M consisting of g disjoint circles 
whose union does not separate M. If g > 1, the components of B are contractible 
(simply-connected is all we need here; see[8]) and the result follows. 0 

Restriction of elements of Diff’(M;{ai}) to cyI U . . . U ag gives a fibration 

Diff+(M rel {ai}) + Diff+(M;{,})+Diff ({ai]) 

whose exact sequence of homotopy groups ends with 

Z’+~~Diff (Mrel{~i})+H+ ‘2, +O. 

LEMMA 2.5. rro Diff (M rel {ai}) = Z2,7-‘@P2g-,. 

Proof. Cutting open M along the circles Q, produces a sphere with 2g holes, or a 
disc with 2g - 1 holes, say D2 - (fi, U . . . U &_,), where ai corresponds to a&i-, U 
aDzi, i <g, and aa corresponds to aD+, U aD2. Diff (M rel {oi}) can then be 
identified with the fiber of the fibration 

Diff (D2 rel {D,, . . . , D2g_,r aD2}) + Diff (02 rel ao2) * E 

where E is the space of orientation-preserving embeddings of 2g - 1 disjoint discs 

D,,. . . , 4,_, in 8’. Since Diff (0' rel aD2) is contractible, we obtain rro 
Diff (M rel {ai}) t rr, E. 

There is a map d: E + [SL(2, Ft)]2E-’ x P2g-,(Z52), obtained by taking the differential 
of ~:D,U...UD~~-,+ fi2 at the centerpoints of the Di’S. Here Pzg_,(B2) is the 
configuration space of distinct (2g - I)-tuples of points in ti2. By definition, 
7r,P2,_,(B2) = Pzr_,, the pure braid group. Standard methods of differential topology 
show that the map d is a (weak) homotopy equivalence. Hence ?r,E = Z28-,@P2g-,, as 
desired. 0 

We now have an exact sequence 

It remains to describe the map 8. A basis {Si} for Zg corresponds to rotations of the 
circles ai through 360”, while a basis {ti} for Z2g-’ corresponds to Dehn-Lickorish 
twists along the circles aDi. In these bases, 8 sends Si to t2i tG’-, for i c g. In particular, 
g - 1 summands of Zg can be split off from the exact sequence above. Also, @(s,) = t 
t&, where t is the twist along aD2. 0 



236 A. HATCHER AND W. THURSTON 

REFERENCES 
1. P. BERGAU and J. MENNICKE. ober topologische Abbildungen der Bretzelfllche vom Geschlect 2. Murh. 

Z. 74 (1960). 414-435. 
2. J. BIRMAN and H. HILDEN, On mapping class groups of closed surfaces as covering spaces. In: Aduances in 

fhe theory of Riemann surfaces. Ann. Math. Stud. 66 (1971), 81-I 15. 
3. M. DEHN, Die Gruppe der Abbildungsklassen. Acta Math. 69 (1938). 135-206. 
4. W. B. R. LICKORISH, A finite set of generators for the homotopy group of a l-manifold. Proc. Camb. 

Phil. Sot. 60 (1964). 769-778. 
5. J. CERF, Sur les diffeomorphismes de la sphere de dimension trois (TJ = 0). Springer Lecture Notes No. 

53 (1%8). 
6. J. CERF, La stratification naturelle.. Publ. Math. I.H.E.S. 39 (1970). 5-173. 
7. A. F. MOBIUS, Theorie der elementaren Verwandschaft. Werke, Bd. 2. 
8. A. GRAMAIN, Sur le type d’homotopie du groupe de diffeomorphismes d’une surface compact. Ann. 

Scient. Econ. Nom. Sup. 6 (19731, 53-66. 
9. S. HUMPHRIES, Generators for the mapping class group (to appear). 

10. J. MCCOOL, Some finitely presented subgroups of the automorphism group of a free group. J. Algebra 
35 (1975). 205-213. 

11. J. BIRMAN, Braids, links and mapping class groups. Ann. Math. Stud. 82 (1975). 
12. C. EARLE and A. MARDEN, (to appear). 

University of California 
Los Angeles, CA 90024, U.S.A. 

Markings 
APPENDIX 

A maximal collection of disjoint, non-contractible, pairwise non-isotopic smooth 
circles on M we call a marking. Each complementary component must then be a 
triniont, or thrice-punctured sphere. So by Euler characteristic considerations, there 
are 3g - 3 circles in the marking and 2g - 2 complementary trinions. To a marking is 
associated a finite graph, whose vertices correspond to the complementary trinions, 
and whose edges correspond to the circles of the marking. This graph is trivalent, three 
edges (not necessarily distinct) meeting at each vertex. There is a one-to-one cor- 
respondence between such finite trivalent graphs and (ambient) diffeomorphism 
classes of markings. For example, in genus two there are just two non-diffeomorphic 
markings: 

We can change markings by the simple moves (I)-(IV) below. 

Note that only (I) produces a net change in the associated graph. 

PROPOSITION. Any two markings of Mare obtainable one from the other by a finite 
sequence of simple moves of these four types (up to isotopy). 

Sketch of Proof. To a generic function f: M +R we associate a marking p(f) as 

follows. In the graph r(f) let yCf) be the unique smallest subgraph to which T(u) 
collapses (i.e. y(f) has no univalent vertices. Regarding bivalent vertices of y(f) not as 
vertices at all, then y(f) is trivalent). Lifting a point of each edge of y(f) to a level 
curve off gives the marking p(f). This is uniquely determined by f, up to isotopy. Note 
that y(f) is the graph associated to p(f). 

tThis odd term is due to Mobius (71, following his use of “union” for “disc” and “binion” for “annulus”. 
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(III) @-(f&p 

““1 @ -@ . 

Every marking arises in this fashion-just define f on disjoint product neighbor- 
hoods of the circles of the marking to be projection onto the normal direction, then 
extend over the complement of these neighborhoods in any generic way. Thus any 
two given markings have the form pLcfO) and pcf,). Join fO to fr by a generic path 
fi: M+R. Clearly, birth-death points and crossing points in the graphic of ft, other 
than those in Figs. 5 and 6, have no effect on pcf,). Examining the crossings in Figs. 5 
and 6, one can easily check that the markings pcf,) are changed by the simple moves 

(I)-(IV). 
It seems that the rest of the program of §I can also be carried over to markings, to 

obtain again a complete set of relations between simple moves. However, to apply 
this to the mapping class group there is now the added difficulty that there is not one 
standard model for markings, but finitely many (for each genus), one for each type of 
associated trivalent graph. 

Remark. Moves (I) and (IV) in fact suffice. 


