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One of Thurston’s important contributions to surface theory is his construction of
measured lamination spaces. These spaces originally arose because their projectivizations
form natural boundaries for Teichmüller spaces, but they are also of interest purely topo-
logically. For example, they provide a nice global framework in which to view all the
isotopy classes of simple closed curves in a surface. In view of the many parallels between
surface theory and 3 manifold theory, it is natural to ask whether 3 manifolds also have
measured lamination spaces. The idea would be that, after projectivization, the rational
points of the measured lamination space of a given 3 manifold M would be the isotopy
classes of incompressible surfaces in M , and the remaining points would be isotopy classes
of measured laminations in M satisfying some sort of incompressibility conditions.

There is a 1988 paper of Oertel [O1] which takes some first steps in this direction.
At about the same time I also put some effort into a project of working out the technical
details of this theory. Unfortunately these details turned out to be much more complicated
than I would have liked, and there were no striking applications on the horizon, so the
project was eventually abandoned. Still, there are some nice ideas here which may some
day prove useful, so it may be worthwhile to make some of this material available, even
without full proofs of all the stated results.

The measured lamination space of a surface can be developed either geometrically,
using geodesic laminations on a surface of constant curvature, or purely topologically. For
3 manifolds there is less geometric structure available to study incompressible surfaces, so
it seems necessary to take a more topological viewpoint. Therefore we take as our model
the more topological approach to measured lamination spaces of surfaces, as developed for
example in [H1].

There are two or three purely topological constructions of the measured lamination
space ML(M) of a compact orientable surface M . Once one has defined precisely what
ML(M) is as a set (isotopy classes of certain measured laminations in M ), one can
topologize this set in the following ways.

— Via length functions: Each closed loop γ in M determines a function `γ :ML(M)→
[0,∞) assigning to a measured lamination L the minimum length, with respect to the
given measure on L , of all loops homotopic to γ . Letting γ vary over the set C of all
conjugacy classes in π1(M), one has a total length function ` :ML(M) → [0,∞)C .
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After one proves that ` is injective, one identifies ML(M) with its image under `

and gives it the subspace topology from the product topology on [0,∞)C .

— Via R trees: If L̃ is the preimage of L ∈ ML(M) in the universal cover M̃ , then
there is an R tree TL ‘dual’ to L̃ in M̃ , with an action of π1(M) on TL by isometries,
induced by the deck transformations of M̃ . The map L 7→ TL embeds ML(M) in
the space of actions of π1(M) on R trees, and one gives it the induced topology. This
approach is in fact not essentially different from the length function viewpoint since
the space of actions of π1(M) on R trees is topologized via length functions associated
to such actions.

— Via train tracks: Given a train track τ in M satisfying certain nontriviality condi-
tions, then each assignment of positive weights to the various sectors of τ , subject to
compatibility conditions at the branching loci, defines a measured lamination. The
weights vary over a convex cone, and these cones give coordinate charts for a manifold
structure on ML(M), at least if one deletes the empty lamination.

It is then a theorem that the different topologies agree on ML(M). To describe the
global topological structure of ML(M) it is convenient to consider the projectivization
PL(M) of ML(M) obtained by deleting the empy lamination and factoring out by scalar
multiplication of the measure. Then ML(M) is the quotient of PL(M)× [0,∞) obtained
by collapsing PL(M) × {0} to a point. Using the train track approach one proves that
when M is closed and of genus g > 1, the space PL(M) is a sphere of dimension 6g− 7.
For the torus a direct argument shows that PL(M) is a circle. When M is not closed,
PL(M) is the join PL0(M) ∗ ∆b−1 where b is the number of boundary components of
M and PL0(M) ≈ S6g+2b−7 is the subspace of PL(M) consisting of laminations disjoint
from the boundary of M .

When M is a compact orientable 3 manifold, the constructions of ML(M) via length
function and dual R trees go through as one would hope, though the proof that the total
length function ` :ML(M)→ [0,∞)C is injective takes a fair amount of work. The analog
of the train track approach in one lower dimension is to use branched surfaces, for which
a well-developed theory exists. The global structure of the projectivization PL(M) is
however quite a bit more complicated than in one lower dimension. Branched surfaces
give coordinate charts for a decomposition of PL(M) into finitely many strata which are
piecewise-linear manifolds of various dimensions. The frontier of a stratum is contained in
strata of lower dimension, but the novel feature is that for some manifolds M , parts of the
boundaries of some strata are missing. Thus ML(M) need not be a closed subspace of
[0,∞)C , and PL(M) may not be compact. Put another way, one can have a convergent
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sequence of R trees dual to measured laminations whose limit is an R -tree not dual to any
measured lamination. This does not happen in one lower dimension. What we expect to be
true is that PL(M) has a natural compactification PL(M) in terms of projective classes
of actions on R trees, such that PL(M) is a finite polyhedron containing a subpolyhedron
∂PL(M) with PL(M) = PL(M)− ∂PL(M).

To illustrate, let us consider the case that M is the product F × S1 with F a closed
orientable surface of genus g ≥ 1. When g = 1 everything is nice: M is the 3 torus,
so incompressible surfaces are subtori embedded linearly, and more generally, measured
incompressible laminations are just standard linear foliations of M . Such a foliation is
uniquely determined by its orthogonal line field, so PL(M) can be identified with the
space of lines through the origin in R3 , which is RP2 . We can also think of this as the
projectivization of H2(M ;R) = R3 , corresponding to the fact that linear subtori of M
are uniquely determined by their homology class, modulo orientations. The corresponding
dual R trees are all isomorphic to R .

When M is a product F × S1 with F of genus g > 1, things are more complicated.
It is classical that all incompressible surfaces can be isotoped to be either horizontal or
vertical, i.e., either transverse to the circle fibers of the product structure on M , or a union
of this fibers. The same is true of incompressible measured laminations. The horizontal
laminations can be taken to be measured foliations transverse to fibers, with dual R trees
isomorphic to R . These foliations are determined by their homology classes, modulo sign.
We have H2(M ;R) = R2g+1 , and the vertical homology classes form a linear subspace R2g .
The remaining classes are horizontal, so after projectivization we see that the horizontal
elements of PL(M) form an open cell e2g = RP2g − RP2g−1 . The vertical measured
laminations, on the other hand, form a copy of ML(F ), so after projectivization these give
a subspace S6g−7 ⊂ PL(M). Set-theoretically we thus have ML(M) as the disjoint union
S6g−7 q e2g , and it is also topologically the disjoint union since the closure of e2g in the
space of actions of π1(M) on R trees is RP2g , the projectivization of H2(M ;R) = R2g+1 ,
actions on R , and the points of S6g−7 are actions on more complicated trees, the dual
trees of measured laminations in F .

A similar analysis holds more generally for Seifert-fibered manifolds. In all these
examples incompressible tori play an essential role, so one might wonder whether PL(M)
is compact when M is atoroidal. Unfortunately this is not true. Examples are provided
by 2 bridge link exteriors; see [FH].
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1. Incompressible Measured Laminations

Throughout, M will be a compact, orientable, irreducible, ∂ irreducible 3 manifold.
Our first task is to give a precise definition of the set ML(M), whose points will be isotopy
classes of incompressible measured laminations in M .

A prelamination in M is a compact 3 dimensional subman-
ifold P ⊂M with a 2 dimensional singular foliation having local
structure as shown in the figure. The singularities of the foli-
ation form a 1 dimensional submanifold Σ ⊂ ∂P along which
bifurcation of a leaf occurs, and ∂P − Σ consists of two parts:
∂MP = P ∩ ∂M , where leaves meet ∂M transversely; and the
“horizontal” boundary ∂hP , each component of which is contained in a leaf.

We can eliminate the singularities of the prelamination P by splitting it open along
the leaves through the singular points Σ, taking care to damp down the magnitude of the
splitting fast enough so that the process converges. The result is a lamination L . In this
paper we shall consider only laminations constructed by this procedure. In particular, the
laminations we consider have only finitely many complementary components, meeting the
lamination in finitely many leaves, called boundary leaves. We remark also that laminations
in our restricted class have no isolated leaves, as is clear from the construction.

Different (i.e., non-isotopic) prelaminations P can split open to the same lamination
L . Namely, if P ′ is obtained from P by splitting open along compact subsurfaces of the
singular leaves of P , then P ′ splits open to the same lamination as P does. Conversely, it
is clear that two prelaminations P splitting open to the same L have a common compactly
split prelamination P ′ . Thus laminations correspond to equivalence classes of prelamina-
tions under the equivalence relation generated by compact splitting along singular leaves.

One could also consider splitting a prelamination P along a compact subsurface of a
nonsingular leaf which is not a component of ∂hP . The effect of this on the associated
lamination L is to split L along a non-boundary leaf, creating a complementary I bundle
component for the resulting lamination L′ . Conversely, a complementary I bundle com-
ponent of a lamination L′ (with ends of fibers on L′ , and meeting ∂M in a union of fibers)
can be collapsed fiberwise to create a new lamination L . Laminations related by splitting
along non-boundary leaves will be regarded as equivalent. A convenient way to factor out
by this equivalence relation is to restrict attention to laminations without complementary
I bundle components.

Next we give a definition of incompressibility for a lamination L ⊂ M . Let V be a
complementary component of L with the abutting boundary leaves of L adjoined; V is
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given the weak topology, as a possibly non-compact 3 manifold. The boundary ∂V consists
of certain boundary leaves, which we call ∂hV , together with a part of ∂M , ∂MV . Define
L to be incompressible if for each complementary component V the following conditions
hold:

— In V , ∂hV is incompressible, ∂ incompressible toward ∂MV , and end-incompressible
(see below).

— No component of ∂hV is a sphere or disk, or a compact surface isotopic across V to
a component of ∂M .

Here ∂hV is end-incompressible in V if it contains no end-compressing disk: a closed
half-plane H embedded properly in V (inverse images of compact sets are compact) with
H ∩ ∂hV = ∂H a proper arc in ∂hV not cutting off a half-plane from ∂hV .

Since the ends of V are I bundles by the construction of L , it is not hard to see
that an end-compressing disk H can be isotoped so that either (a) H is obtained from
a compressing disk D for ∂hV in V by pushing a point of ∂D out to infinity along an
arc of ∂hV , or (b) the end of H is a union of fibers in an I bundle end of V . Note that
condition (b) implies automatically that ∂H does not cut off a half-plane from ∂hV . Type
(b) end-compressing disks correspond to “infinitely long folds” in leaves of L .

Our definition of an incompressible lamination involves only conditions on the comple-
ment of the lamination, so all foliations of M are automatically incompressible according
to this definition. One might want a more stringent definition which rules out Reeb com-
ponents. This is the notion of an essential lamination, as in [GO] or [H2]. For measured
laminations, incompressibility can be shown to be equivalent to essentiality.

By a measure on a prelamination P we mean a transverse Euclidean structure on
P . This assigns a “length” to curves γ in P transverse to leaves, and this length is
invariant under homotopy of γ through curves transverse to leaves, with ∂γ not moving
across leaves during the homotopy. The lamination L obtained from P by splitting open
singular leaves inherits a measure from P , assigning lengths to curves in M transverse to
L (portions of curves in the complement of L have length zero).

Definition. ML(M) is the set of isotopy classes of incompressible measured laminations

L ⊂M without complementary I bundle components.

For example, if all leaves of a lamination L ∈ML(M) are compact, then each compo-
nent of L is either (a) an I bundle, (b) a bundle over S1 , or (c) the union of two nontrivial
I bundles meeting along their ∂I subbundles. In the latter two cases, the component of
L is all of M . In all three cases the component of L can be assigned a total measure: the
length of a fiber in (a), the length of a circle cross-section in (b), the sum of the length
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of fibers in the two I bundles in (c). If these total measures are all integers, we say L

is integral . If S(M) denotes the set of isotopy classes of incompressible surfaces in M

(not necessarily connected, but without boundary-parallel components), there is a natural
map S(M) → ML(M) onto the integral laminations, obtained by first thickening each
component of a given S ∈ S(M) to a laminated neighborhood of itself with total measure
one, then collapsing out complementary I bundles. This map is very nearly injective, the
only exception arising from the fact that in (c) the cross-sections of the two I bundles are
not isotopic in M (they represent different elements of H2(M,∂M ;Z2), in fact), but they
yield the same measured lamination.

The conditions for incompressibility of a lamination L can be reformulated as con-
ditions on the associated prelaminations P . Reversing the process of splitting P along
singular leaves to form L , we can obtain P from L by collapsing the fibers of an I bundle
W in the complement of L . The boundary ∂W decomposes into three parts: the end-
points of the fibers, ∂hW , lying in boundary leaves of L ; ∂MW , the part in ∂M , a union
of fibers; and the rest, ∂vW , also a union of fibers. We call W essential if it includes the
ends of the complement of L , and if, in the complement of L , the components of ∂vW
(annuli and rectangles) are incompressible, ∂ incompressible toward both L and ∂M , and
also not ∂M parallel.

If L is incompressible, it has an essential complementary I bundle W . Namely,
begin by letting W be the ends of the complement of L . Thus each component of W is
noncompact. If a component of ∂vW is compressible in M − L , it must be an annulus
whose boundary circles bound disks in their leaves of L (since L is incompressible), so the
annulus bounds a D2 × I in the complement of L , and we enlarge W by adjoining this
D2 × I . Similarly, components of ∂vW which are ∂M compressible or ∂M parallel can
be eliminated by enlarging W . Finally, a ∂ compressing disk for ∂vW toward L would
give rise to an end-compressing disk for L since the components of W are noncompact,
so such ∂ compressing disks cannot exist.

If P is obtained from the incompressible lamination L by collapsing the essential
I bundle W , then:

— In the complement of P , ∂hP is incompressible, ∂ incompressible toward ∂M , and
without components which are parallel to ∂M , or which are spheres or disks with
boundary contained in ∂M .

— P has no complementary monogon, i.e., disk D ⊂ M with D ∩ P = ∂D , the circle
∂D having one cusp point where it crosses Σ.

— The components of Σ do not bound disks in their leaves in P .
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We call P incompressible if it satisfies these conditions.

Conversely, if an incompressible P splits open to a lamination L , then L is incom-
pressible. Namely, P is obtained from L by collapsing an essential I bundle W . Take a
compressing, ∂ compressing, or end-compressing disk for L and simplify its intersections
with ∂vW by the standard arguments, to produce a compressing or ∂ compressing disk
for ∂hP , or a monogon. (Details left to the reader.)

Branched Surfaces

For a prelamination P , consider a 1 dimensional foliation on the underlying set of P
transverse to the 2 dimensional leaves of P . For convenience we call the 1 dimensional
leaves “fibers:” If all these fibers in P are closed intervals, we can collapse them to points
to produce a branched surface B ⊂M with fibered neighborhood N = N(B) equal to P

as a subset of M . In general however, not all fibers in P will be closed intervals, but we
can achieve this by splitting P open along finitely many disjoint disks contained in leaves
of P and lying either in the interior of P or meeting ∂P in an arc in ∂M . Such disks,
and also the holes they create in the resulting P ′ , we call slits. Such slits prevent P ′ from
being incompressible, but only in a rather mild way.

A branched surface B ⊂M with fibered neighborhood N is incompressible if:

— In the complement of N , ∂hN is incompressible, ∂ incompressible toward ∂M , and
without components which are parallel to ∂M , or which are spheres or disks with
boundary contained in ∂M .

— N has no complementary monogon, i.e., disk D ⊂ M with D ∩N = ∂D , the circle
∂D having one cusp point where it crosses Σ.

— B has no disk or half-disk of contact. (A disk of contact is a disk D ⊂ N transverse
to fibers, with ∂D ⊂ Σ, D lying on the side of Σ away from the abutting sheets of
∂hN . A half-disk of contact is similar, ∂D consisting of an arc in Σ and an arc in
∂M .)

This third condition is a version of the third condition in the definition of incompressibility
for prelaminations P which does not use the 2 dimensional leaf structure of P , but rather
the transverse fiber structure. It also allows slits. This definition is the same as that
used in [FO] and [O2], except for our mild additional requirement that ∂hN contain no
components which are spheres, or disks with boundary in ∂M , or ∂M parallel.

If B is incompressible and P is a prelamination having underlying set N(B) with
slits collapsed, and having leaves transverse to fibers, then clearly P is incompressible.
Conversely:
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Lemma 1.1. If B is obtained from an incompressible measured prelamination P by

inserting slits and collapsing transverse interval fibers, then B is incompressible.

Proof: Take a disk or half-disk of contact D for N(B). This lives in P after slits are
collapsed. It suffices to isotope D (rel ∂D ), staying transverse to fibers, until it lies in a
leaf of P . To do this, perturb D to have general position intersection with the leaves of
P , so P induces a foliation on D with center and saddle singularities in int(D), with ∂D

a leaf. By index considerations, there must be some center singularities. Around a center
singularity the leaves form concentric circles. This growing family of circle leaves limits on
a leaf which either contains a saddle or is ∂D . In the latter case we can push D vertically
to lie in the leaf of ∂D ; this is possible if P is measured, though not in general otherwise,
e.g., in a Reeb component. If the limit leaf contains a saddle there are the two subcases
shown in the next figure. In the first case we can push D vertically to cancel the center

and the saddle. In the second case the limit leaf bounds a disk disjoint from the given
center, and we transfer our attention to a center singularity in this disk. In both cases an
induction finishes the proof. tu

Let C(B) be the set of weight vectors α = (α1, · · · , αn) on B , αi being the weight
assigned to the ith nonsingular sector of B , satisfying the branch equations αi +αj = αk

along the branching locus of B , and with each αi > 0. C(B) is thus an open convex
polyhedral cone in Rn , whose closure C(B) is obtained by allowing coordinate weights
αi = 0. To α ∈ C(B) we associate a measured prelamination P ′α ⊂ M by first taking
a family of parallel sheets of “thickness” αi over the ith nonsingular sector of B , then
glueing these families together over the branching locus of B via the branch equations
αi + αj = αk . Clearly every measured prelamination whose underlying set is N(B) and
with leaves transverse to fibers of N(B) has this form P ′α for some α ∈ C(B). Let Pα be
the prelamination obtained from P ′α by collapsing complementary I bundle components,
and let Lα be the lamination obtained by splitting open the singular leaves of Pα . (If
B is incompressible this Lα could just as well be constructed by first splitting P ′α along
its singular leaves to produce a lamination L′α , then collapsing complementary I bundle
components L′α .)
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If N(B) has complementary I bundle components which are products, then different
weights α ∈ C(B) can give the same lamination Lα since at the stage of constructing P ′α
we could push a layer of sheets of P ′α across such a product yielding a prelamination P ′β
with Pα = Pβ and hence Lα = Lβ . Such moves generate a linear equivalence relation on
C(B), whose quotient c(B) is therefore also an open convex linear cone in some quotient
Rk . If B is incompressible, we thus obtain a map ϕB : c(B)→ML(M). We will show in
Proposition 4.1 that ϕB is injective.

We call an incompressible branched surface B maximal if it has no essential comple-
mentary annuli, rectangles, digons, or half-digons.

In terms of the associated essential complementary I bundle Wα for the lamination Lα ∈
ML(M) with α ∈ C(B), maximality of B is simply the condition that Wα be maximal
up to isotopy among essential I bundles for Lα . (This condition is independent of α .)

Maximality can easily be achieved by finitely many pinching operations, modifying B

by collapsing the fibers of neighborhoods of essential complementary surfaces of the types in
the preceding figure. For this collapsing to yield a branched surface, a little care is needed to
avoid for example collapsing a fiber whose two endpoints coincide on B . General position
suffices for this: first put the boundary curves of an essential complementary surface in
general position on B , to have only isolated intersections, then perturb the fiber structure
near these isolated intersections to break any cycle of fibers.

Note that laminations Lα carried by B with positive weights before pinching are still
carried with positive weights after pinching, and in fact pinching induces a linear map of
the cones C(B) projecting to a linear inclusion of the quotient cones c(B).

Pinching essential annuli, rectangles, digons, or half-digons preserves incompressibility
of B since it amounts to enlarging the essential complementary I bundles Wα so that they
stay essential (modulo slits).

2. Length Functions

Fix now an incompressible branched surface B and a weight vector α ∈ C(B). Con-
sider loops in M which meet the associated prelamination Pα in finitely many paths, each
a union of finitely many subpaths which are either vertical (in fibers of Pα ) or horizontal
(in leaves of Pα ); we call such loops PVH — piecewise vertical or horizontal. PVH loops
have a length, the total length of the vertical segments, as specified by α . For an arbitrary
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loop γ in M define `γ(Pα) to be the infimum of the lengths of all PVH loops homotopic
to γ . We will show in Proposition 2.1 below that this infimum is always achieved, if B
is incompressible. We may assume B is maximal if we like, since pinching it to make it
maximal clearly has no effect on `γ(Pα).

The notion of “vertical” depends on the fiber structure of Pα , which is not really part
of the data of Pα . To avoid this we could replace “vertical” by “transverse to leaves of
Pα .” This leads to the same `γ(Pα), clearly. “Piecewise transverse or horizontal” loops are
also defined for the associated lamination Lα , and also give the same `γ(Lα) = `γ(Pα).
In particular, `γ(Lα) is independent of the choice of the incompressible branched surface
B used to construct Lα . If α is integral it is easy to see that `γ(Pα) equals the minimum
number of points of intersection of the incompressible surface associated to α with loops
homotopic to γ . Another elementary observation is that `γ(Pα) is linear with respect to
scalar multiplication of α .

Shortest Curves

Loops γ which are PVH with respect to Pα are partitioned into segments which
are either vertical, horizontal, or outside Pα . We may assume the horizontal segments
cross the singular locus (cusp curves) Σ of Pα transversely. In particular the horizontal
segments do not switch branches at a cusp. The PVH loop γ is called taut if it cannot be
deformed to decrease the number of segments outside Pα and if neither of the following
moves is possible:

(1) shortening γ by pushing vertically a horizontal segment
(2) decreasing the number of intersections of γ with Σ by taking a horizontal subarc of γ

with endpoints on Σ, and deforming this subarc either (a) into Σ, and a little beyond,
to a horizontal subarc disjoint from Σ, or (b) into a horizontal path in ∂Pα meeting
Σ only in its endpoints.

In (2) the subarc can go outside Pα during the deformation. Examples of type 2 deforma-
tions are shown in the next figure.

Any PVH γ can be made taut by a finite sequence of type 1 and 2 deformations, after
first pushing as many segments outside Pα into Pα as possible. To see this, first note
that a sequence of consecutive type 2 moves must be finite since each such move decreases
intersections with Σ. So consider a horizontal segment s for which a type 1 move is

10



possible, say in the downward direction. Let δ be the minimum length of the two vertical
segments at the ends of s . We could hope to push s down a distance δ , shortening γ by
2δ . This motion may be obstructed by arcs of ∂Pα , however. If ε is the minimum weight
αi of α , then the obstructing arcs within vertical distance ε of s are non-overlapping when
projected back up to s . Push s down to the first of these obstructing arcs, which thus
becomes a contact arc of γ with ∂Pα . If possible, perform type 2 moves on subarcs of s
to eliminate such contact arcs in s . The newly positioned subarcs can have no obstructing
arcs within distance ε below them. Then push s down to the next obstructing arc and
repeat the preceding step. Continuing in this way, after finitely many steps either we
eliminate a vertical segment at one end of γ , or we produce an essential contact arc which
cannot be eliminated by type 2 moves, or we shorten γ by at least 2ε . In the last case
we repeat the argument. Eventually either we have eliminated a vertical segment of γ or
we have a horizontal segment s for which no type 1 or 2 moves are possible. Then do the
same with other horizontal segments of γ . After a finite number of steps, γ will be taut.

Proposition 2.1. Given a maximal incompressible branched surface B and α ∈ C(B) ,

a loop γ which is taut with respect to Pα achieves the minimum length of loops within

its homotopy class.

Proof: The first step is to reduce to the case that α is rational. Consider an n parameter
variation α(t) = α0 + t1α1 + · · · + tnαn of the given α = α0 = α(0), t = (t1, · · · , tn),
ti ≥ 0, where α1, · · · , αn are integral points spanning the closure C(B). Corresponding
to α1, · · · , αn are surfaces S1, · · · , Sn in the interior of Pα(0) transverse to fibers and
in general position with respect to each other and to γ , which is taut for Pα(0). The
lamination Pα(t) may be obtained from Pα(0) by slitting it open along S1 , inserting a
neighborhood of S1 of vertical thickness t1 , extending the foliation over this neighborhood
in the obvious way, then repeating this operation for S2, · · · , Sn . This converts γ into an
n parameter family of PVH loops γ(t) by inserting vertical pieces of length ti at the points
where γ meets Si . (These points may be in either horizontal or vertical segments of γ .)
For t = 0, γ(t) is taut by assumption. For small t , γ(t) can be pulled to a taut γ̂(t)
using only small type 1 moves, since no contact arcs can be introduced by small vertical
deformations. Thus we may choose the taut γ̂(t) varying continuously with t near 0.

Suppose γ′ is a PVH loop homotopic to γ and shorter than γ , with respect to the
given Pα . We may extend γ′ , like γ , to a family γ′(t) of PVH loops varying continuously
with t . Choosing α(t) rational with t small enough, γ′(t) remains shorter than the taut
γ̂(t). This reduces us to the case that α is rational. Rescaling, we may assume α is
integral, corresponding to an incompressible surface S .
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We may obtain Pα from a thickening N(S) of S by collapsing the fibers of an I bundle
A in the complement of N(S). Let γ1 be a loop projecting to γ under the map which
collapses fibers of A , γ1 being obtained by inserting certain fibers of A . These fibers
contribute nothing to the length of γ1 , which is the same as the length of γ , namely the
number of points of intersection with S (we may assume γ1 meets S transversely). Since
γ1 is not shortest in its homotopy class, a well-known elementary argument shows there
is a homotopy of a subarc of γ1 which eliminates two consecutive points of intersection
of γ1 with S . Thus there is a map f :D2 → M taking one arc ∂+D

2 of ∂D2 to γ1 ,
the remainder of ∂D2 being ∂−D2 = f−1(S). By deforming f near ∂−D2 , pushing
it vertically away from S , we may assume that f(D2) ⊂ M − int(N(S)). After this
deformation f(∂+D

2) has length zero, since originally all the length of f(∂+D
2) came

from its endpoints intersecting S . Note that f(∂+D
2) is contained in ∂N(S) ∪ A since

otherwise we could use f to deform γ to decrease the number of segments outside Pα ,
contradicting tautness.

We may assume f is transverse to ∂N(S) and to ∂vA . Consider a component arc
a of f−1(∂vA). If both endpoints of a lie on ∂−D2 , a can be eliminated by rechoosing
f near the disk in D2 cut off by a . The next case is that a has only one endpoint on
∂−D2 . Since the endpoints of ∂−D2 map into A , there must be another such arc a′ , the
endpoints of a and a′ separated on ∂−D2 by an interval I− mapping to ∂N(S) − A .
The interval I+ in ∂+D

2 bounded by the other endpoints of a and a′ corresponds to a
horizontal subarc of γ for which a type 2(b) move is possible using the rectangle in D2 cut
off by a and a′ (contrary to tautness) unless int(I+) is disjoint from f−1(∂vA). In the
latter case a type 2(a) move will be possible for γ (using maximality of B) unless f maps
I+ to the same component of ∂N(S) as I− , a and likewise a′ having both its endpoints
mapped to the same end of an annulus or rectangle component of ∂vA .

Consider next an arc a with both endpoints on ∂+D
2 which is “nearest” ∂−D2 among

such arcs, so f maps points near a on the side away from ∂−D2 to points outside A . Then
the arc of ∂+D

2 cut off by a corresponds to a horizontal subarc of γ on which a type 2(a)
move is possible, using the subdisk of D2 cut off by a , again contrary to tautness.

The upshot of all this is that f(∂+D
2) is contained in the union of A with the

component of ∂N(S) containing f(∂−D2). Collapsing the fibers of A , this means that a
type 1 move was possible on γ . tu

The same proof shows that a taut PVH path achieves the minimum length within a
homotopy class of PVH paths with the same endpoints.
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Trees Associated to Measured Laminations

When studying measured laminations it is sometimes convenient to factor out what
is happening within leaves and within complementary regions of the lamination. Trees
provide a nice way of doing this, just as in one lower dimension.

By a tree, or more precisely an R tree, we mean a metric space (T, d) such that:

(1) Any two points x, y ∈ T are the endpoints of a unique segment [x, y] , i.e., a subset
isometric to a closed interval in R .

(2) [x, y] ∩ [x, z] = [x,w] for some w .

(3) [x, y] ∪ [y, z] = [x, z] if [x, y] ∩ [y, z] = y .

This is the definition in the foundational paper [AB]. (Axiom (2) actually follows from (1)
since d takes values in R , rather than in a more general ordered abelian group.)

Verifying the uniqueness of segments [x, y] with given endpoints can be difficult in
practice. This problem is avoided with the following alternative characterization.

Lemma 2.2. A metric space (T, d) is a tree if there is a function assigning to each

unordered pair x, y ∈ T a segment [x, y] in T , such that (2) and (3) hold.

Proof: Choose a basepoint x0 ∈ T . According to Theorem 3.17 of [AB], the following
two axioms characterize trees:

(4) Segments [x0, x] exist for all x ∈ T .

(5) Letting x ∧ y =
(
d(x, x0) + d(y, x0) − d(x, y)

)
/2, then x ∧ z ≥ min(x ∧ y, y ∧ z) for

all x, y, z ∈ T .

Under the hypotheses of the Lemma, x ∧ y is d(x0, w), where [x0, x] ∩ [x0, y] = [x0, w] .
Then (5) follows by simply listing the possible configurations for the segments joining x0

to x , y , and z . tu

Given a lamination Lα ∈ ML(M), let L̃α be its preimage in the universal cover M̃
of M . For x, y ∈ M̃ define d̃(x, y) to be the infimum of the lengths of all PVH paths
joining x and y in M̃ . (Strictly speaking, we mean PVH with respect to the lift of
the prelamination Nα here, instead of L̃α .) As we observed earlier in this section, this
infimum is always realized by some PVH path. Clearly d̃ defines a pseudo-metric on M̃ ,
being symmetric and satisfying the triangle inequality. Let (T, d) be the associated metric
space, obtained by identifying points of M̃ of d̃ distance zero apart, namely points in the
same leaf or in the closure of the same complementary component of L̃α (since a PVH
path of zero length cannot have nontrivial vertical segments).
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Proposition 2.3. (T, d) is a tree.

Proof: We use the preceding lemma. For the segment [x, y] we take the image in T of a
shortest path in M̃ . To verify that this segment is well-defined, and at the same time check
axiom (2), consider two shortest paths in M̃ with the same initial point. The intersection
of their images in T is closed, being the intersection of two closed sets. The intersection is
also connected. For otherwise we would have an embedded circle in T . This would mean
that for some leaf of L̃α there was a closed (PVH) loop in M̃ meeting this leaf in only
one point, transversely. But leaves of L̃α are properly embedded in M̃ . (If a leaf in L̃α

were not properly embedded, it would meet some vertical segment in M̃ infinitely often;
but we have seen that vertical segments are length-minimizing.) This is a contradiction.

x

y

z

For (3), let segments [x, y] and [y, z] be given, intersecting only in
y . If [x, z] differed from [x, y] ∪ [y, z] we would have the configuration
shown in the figure, and again T would contain an embedded circle. tu

The tree T associated to Lα has an action of π1M by isometries, coming from deck
transformations in M̃ .

Proposition 2.4. No proper subtree of T is invariant under the action of π1M .

Proof: Given a point in T , there is a vertical segment s in M̃ whose image in T contains
the given point. Being vertical, s is taut. We claim that s can be extended to a taut path
of infinite length in both directions. For this we may as well work with the prelamination
Pα ⊂M corresponding to Lα . Choose an end of s and extend this vertically until stopped
by a component C of ∂hPα . (If the vertical extension can be carried on infinitely far, we
are already done.) There are two cases now. If C contains singular points (cusps) of
Pα , extend s by a horizontal segment until it crosses such a cusp point, then continue s

vertically in the same direction until it meets another component of ∂hPα . This extended
s can then be perturbed to miss the cusp locus, staying taut, by pushing the new horizontal
segment slightly into the interior of Pα . The other case is that C has no cusp points. In
this case we first extend s by a segment outside Pα , going to another component of ∂hPα
if possible, and otherwise returning to C by a path not homotopic (rel endpoints) to a
path in C ; such a path must exist since the component of M − Pα cut off by C is not a
product, in view of the maximality of the branched surface B used to define Pα . Then
we extend s by a vertical segment until it meets ∂hPα again.

This is the inductive step in extending s . It can be repeated infinitely often if necessary
to produce the desired taut bi-infinite line, which we shall still call s . This has infinite
length since at each step we are able to lengthen it by at least the minimum weight of Nα .
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Since M is compact, each end of s must eventually have vertical segments accumulat-
ing somewhere. Then we can rechoose the ends of s so they are eventually periodic, cycling
around two taut loops. Lifting to M̃ and projecting to T , s becomes an embedded R ⊂ T
whose two ends are part of the invariant axes for the actions on T of the elements of π1M

represented by the two ending loops of s . Any invariant subtree of T must contain these
two axes, hence also the embedded R ⊂ T , which contains the arbitrarily given point of
T we started with. tu

Piecewise Linearity

We have seen in the proof of Proposition 2.1 that `γ(Pα(t)) is continuous on the open
cone C(B). A considerably stronger result is:

Proposition 2.5. For B incompressible, the function α 7→ `γ(Pα) is the restriction to

the open cone C(B) of a piecewise linear function on the closed cone C(B) .

Proof: We may assume B is maximal, since the pinching operation for achieving maxi-
mality corresponds to a linear change of coordinates in C(B).

To prove the proposition, we shall deform the family γ(t) constructed in the proof of
Proposition 2.1 to a family of PVH loops γ̂(t) which are taut for all t , such that:

(i) The segments of γ̂(t) outside Pα(t) are independent of t .
(ii) The vertical segments of γ̂(t) are subsegments of the vertical segments of γ(t), varying

finitely piecewise linearly with t , i.e., “piecewise” with respect to a partition of the
parameter domain [0,∞)n by finitely many hyperplanes; and having lengths which
are convex functions of t .

(iii) The horizontal segments of γ̂(t) vary piecewise continuously with t , “piecewise” with
respect to a partition of the parameter domain by hyperplanes, perhaps infinite in
number.

Since `γ(Pα(t)) is the sum of the lengths of the vertical segments of γ(t), the Proposition
will follow from (ii).

As in the unparametrized case, pulling γ(t) taut is done inductively, one horizontal
segment at a time. Since no new vertical segments are introduced in the process, horizon-
tal segments can always be regarded as unions of horizontal segments of the original γ(t)
(t 6= 0). At the inductive step of pulling a segment s(t) taut, we assume all “subsegments”
of s(t) have already been pulled taut, and that s(t) lives over some convex subpolyhedron
of the parameter domain [0,∞)n . Pulling s(t) taut involves a number of type 2 moves
eliminating inessential contact arcs. The number of such moves is finite for fixed t , as we
have seen, and bounded for nearby t by the same argument (though it may be unbounded
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as t approaches ∞). A given sequence of moves pulling s(t) taut can be chosen to vary
continuously with t provided that the relative heights of the inessential contact arcs en-
countered do not change with t . These relative heights of contact arcs can be measured by
comparing their vertical distances from points of ∂P ′α(t), where the prime on P indicates
that we have inserted slits corresponding to the slits of B ; we call such vertical distances
displacements. Displacements of contact arcs are linear functions of t , with constant term
a sum of coordinates αi of α(0) and with coefficient of ti the number of intersections of Si
with the vertical arc from the contact arc to the reference point in ∂P ′α(t). Without loss
of generality we may assume the weight α(0) is integral, so displacements of contact arcs
are N linear functions. Where two given contact arcs are on the same level thus defines
a hyperplane in the parameter domain (if it is not all of the parameter domain). These
hyperplanes define a nice polyhedral stratification of the support of s(t), on each stratum
of which the process of pulling s(t) taut can be taken to vary continuously, using a single
sequence of moves.

A further inductive hypothesis which we make is that displacements of points on
horizontal segments of γ(t) are finitely piecewise N linear functions of t . Since α(0) is
integral, we may assume the displacements of horizontal segments of γ(0) are integral, so
before we pull γ(t) taut, its horizontal segments have N linear displacements. We must
check that after pulling s(t) taut, its displacement is still finitely piecewise N linear. At
the moment, we can say that after s(t) is pulled taut its displacement varies at least
continuously with t . This is because if we then extend it by the vertical segments at either
end it becomes a family of taut paths with continuously varying endpoints, and, as we
have already observed for families of taut loops, such families of paths have continuously
varying lengths.

Toward strengthening this to finite piecewise N linearity, we first verify that there is a
well-defined collection of components of Σ, independent of stratum, such that if for some
t , s(t) is pulled taut using type 1 moves, and possibly also type 2 moves, and meets such a
component of Σ, then the resulting contact arc is essential. (Strictly speaking, we should
be working in the universal cover of M at this point.) We may restrict to rational weights
α(t) for this, since within strata everything varies continuously and rational points are
dense in strata, the strata being defined by N linear equations.

During a type 1 move, s(t) at each instant lies in a leaf of Pα(t) and can moreover
be lifted to lie in a leaf of the lamination Lα(t). This holds also in the limit, at the
end of the type 1 move, before any type 2 moves are performed. If type 2 moves are
now to be done, we may assume they each replace an arc in the given leaf of Lα(t) with
another arc in the same leaf. For otherwise the move would be a type 2(b) move, with
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the new arc lying in an adjacent leaf across a complementary component of Lα(t). Then
(compare the proof of Proposition 2.1) the move could be realized by some type 2(a) moves
eliminating all intersections of the interior of the arc with Σ, followed by a homotopy
across a complementary component of Nα(t) . Since B is maximal, the existence of the
latter homotopy would mean that the two endpoint intersections of the arc with Σ could
also be eliminated by a type 2(a) move. Thus type 2(b) moves are not really necessary at
any time following type 1 moves.

Suppose that for t in a certain stratum we have performed on s(t) some sequence of
type 1 and 2(a) moves ending with a type 1 move, and that we also have another such
sequence of moves arising as a limit from a sequence of moves for nearby t ’s in an abutting
stratum. Suppose also that these two sequences produce horizontal segments with the
same endpoints. These two horizontal segments can then be viewed as lying in the same
leaf of Lα(t). The existence of essential contact arcs on either of these horizontal segments
depends on whether or not the segment can be homotoped (staying in the leaf, since the
leaf is incompressible) to be disjoint from those components of Σ in the leaf which lie
on the side of the leaf to impede further vertical motion of the segment. Hence the two
segments have the same status in this regard. Thus the essential contact components of Σ
are well-defined locally. Global well-definedness then follows by considering a line segment
in the parameter domain joining two points where a component is essential.

The displacement of the taut s(t) is the infimum of the displacements, with respect
to a suitable reference point, of:

(a) the opposite endpoints of the two vertical segments adjacent to s(t), and
(b) any essential contact components of Σ which s(t) meets.

The endpoints in (a) have displacements which are finitely piecewise N linear by
induction. By Lemma 2.6 below, the infimum is effectively over a finite set of N linear
functions. So the infimum is finitely piecewise N linear. This completes the induction step
except for the convexity property of lengths of vertical segments. For this, the inductive
assumption is that upper endpoints of vertical segments have convex displacements from
reference points below, as do lower endpoints from reference points above. This is clearly
preserved when s(t) is pulled taut (an infimum of concave functions is again concave). tu

Lemma 2.6. The infimum of a collection of N linear functions on [0,∞)n is always

achieved with some finite subcollection.

Proof: First, the inhomogeneous case reduces to the homogeneous case by adjoining a
new variable xn+1 = 1. In the homogeneous case, choose one function ϕ in the collection.
We need only consider functions taking on a smaller value than ϕ on one of the standard
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basis vectors for [0,∞)n , finitely many possibilities. For each of these possible values, the
problem becomes one in n− 1 variables, so by induction on n we are through. tu

3. Injectivity of Length Functions

The various length functions `γ :ML(M) → [0,∞), as γ ranges over the homotopy
classes of loops in M (i.e., conjugacy classes in π1M), form the coordinates of a map
` :ML(M)→ [0,∞)∞ . The goal of this section is to prove:

Theorem 3.1. The function ` :ML(M)→ [0,∞)∞ is injective.

It is not too difficult to show that the restriction of ` to the rational points of ML(M)
is injective. For this, it suffices to find, for a given pair of non-isotopic incompressible
2 sided surfaces S and S′ , a loop γ which is disjoint from S but which cannot be homo-
toped to be disjoint from S′ . Finding such a loop is not hard after one first isotopes S
to intersect S′ in a minimal number of circles. The proof for irrational points of ML(M)
is quite a bit more difficult. For a start, it is not evident that one can isotope two in-
compressible measured laminations to intersect in a “minimal” fashion. Instead, it seems
better to start by putting the laminations in “normal form” with respect to a triangulation
of M . This takes some work, but it is easier than trying to put non-measured laminations
in normal form; see [B]. Then the strategy is to find a loop having a much smaller length
with respect to one lamination than the other. This is the best one could hope for, as one
can see from the case of linear foliations of the 3 torus.

4. Piecewise-Linear Strata

At the end of §1 we associated to an incompressible branched surface B in M a
map ϕB : c(B) → ML(M) where c(B) is an open cone of equivalence classes of positive
weights on B . One can think of ϕB as something like a coordinate chart for ML(M).
The following result bolsters this viewpoint.

Proposition 4.1. If B ⊂M is a maximal incompressible branched surface, then the map

ϕB : c(B)→ML(M) is injective. If B′ ⊂M is another maximal incompressible branched

surface, then the “coordinate change” map ϕ−1
B
◦ϕB′ is a piecewise linear homeomorphism

defined on an open subset (perhaps empty) of c(B′) .

It follows that ML(M) inherits the structure of a piecewise linear manifold with
components of various dimensions. These components we think of as strata, and the main
problem, addressed in the remaining sections of the paper, is to see how the strata fit
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together to give ML(M) the structure of a stratified polyhedron in a natural way. We will
also show the strata are Hausdorff manifolds, which does not follow from Proposition 4.1.

Proof: The main point will be to examine how different maximal B ’s carrying a given
Lα ∈ ML(M) are related. There are three choices made in passing from Lα to B : the
maximal essential I bundle Wα , which determines the prelamination Pα ; the transverse
fiber structure on Pα ; and the slits in Pα , which determine the fibered neighborhood
N(B).

First we consider the choice of slits. Given two collections of slits in Pα we can find
a third collection disjoint from both collections, just by a local construction of inserting a
multitude of small slits. So rechoosing slits can be achieved by a sequence of operations in
which a single disjoint slit is inserted or deleted. If B′ is obtained from B by inserting a
slit D ⊂ N(B), then pinching B′ back to B induces a linear map C(B′)→ C(B) which
passes down to a quotient map c(B′) → c(B) which is a linear injection. The image of
this map contains a neighborhood of α since if we consider Pβ for β near α , the slit D
which lies in a leaf of Pα lies near a disk Dβ contained in a leaf of Pβ and vertically
(fiberwise) isotopic to D (since D is simply-connected), so realizing this vertical isotopy
by an ambient isotopy takes Pβ to a prelamination carried by B′ . Thus the ϕB image of
the linear germ of α in c(B) is independent of the choice of slits.

Next we consider the choice of transverse fiber structure on Pα . Any two such are
isotopic, since they correspond to line fields on Pα transverse to leaves and tangent to
∂M , and the space of such line fields is contractible. So consider an isotopy of transverse
fiber structures τt . For fixed t = t0 choose a system of slits in leaves of Pα cutting all
fibers of τt0 into compact intervals. These slits do the same thing for fibers of nearby τt

as well. By compactness of the t-interval, we may then assume a single set of slits works
for all t , producing branched surfaces Bt with fibered neighborhoods Nt .

Consider the collection Ct of annuli and rectangles in Nt formed by the fibers through
the singular points of Nt . We may assume the components of Ct have general position
intersections with each other for all t , namely isolated fibers in int(M) where exactly two
components meet transversely, except for three kinds of isolated “catastrophes:” a fiber of
non-transverse intersection, occurring when a pair of nearby transverse intersection fibers
is introduced or cancelled; a triple transverse intersection fiber, when one component of Ct
moves across an intersection fiber of two other components; and a transverse intersection
fiber in ∂M , when a transverse intersection fiber “moves across” ∂M . Away from these
catastrophes Bt varies only by isotopy. Near one of these catastrophes we can insert a
slit cutting the critical fiber in a leaf of Pα between two of the cusp points of Nt in the
components of Ct involved. The non-isotopic change in Bt produced by the catastrophe
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can then be achieved just as well by slitting and reglueing in a different way. This reduces
us to a situation considered previously.

Now we consider the choice of the maximal essential I bundle Wα . Varying this by
isotopy only changes Pα by isotopy, so it is non-isotopic variation which we must consider.
We consider four kinds of elementary moves which change one maximal essential I bundle
to another. In the first move we take the product of the disk shown in (a) of the figure
below with S1 , obtaining a submanifold S1 ×D2 of a complementary component of Lα .

(a) (b)

The fibers of Wα are drawn as families of parallel lines. Thus in this move a component of
Wα which is a thickened annulus is deleted and replaced by another such component “in
the transverse direction.” The second move is similar: Take the product of the disk shown
in (a) with I instead of S1 . For the third move, indicated in (b), take the product of the
disk shown with S1 , then delete a smaller concentric solid torus, indicated by the small
central disk in (b), producing a torus component of ∂M . For the fourth move, reinsert
this smaller deleted solid torus so as to produce a Seifert fibering of a solid torus with
one multiple fiber, and then the picture in (b) represents the base surface of this Seifert
fibering, with the small central disk a neighborhood of the multiple fiber. Both the third
and fourth moves replace a component of Wα which is a thickened annulus by another
such component.

Lemma 4.2. Any two maximal essential I bundles Wα are related by a finite sequence

of elementary moves (and isotopies).

Proof: Consider finite collections A of disjoint annuli and rectangles in M − Lα , the
annuli having boundary in Lα , the edges of the rectangles lying alternately in Lα and
∂M . We assume these annuli and rectangles are essential, as defined earlier. We shall use
the following fact: Up to isotopy there is a unique minimal collection A splitting M −Lα
into components which are either:

— I bundles meeting A and ∂M in unions of fibers, and Lα in the ∂I subbundle

— I bundles meeting A and Lα in unions of fibers, and ∂M in the ∂I subbundle

— Seifert fiberings meeting A , Lα , and ∂M in unions of fibers

— acylindrical, containing no essential annuli or rectangles except parallel copies of com-
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ponents of A .

This is a consequence of the Jaco-Shalen, Johannson machinery, but can also be proved
by an elementary geometric argument.

To obtain a maximal essential I bundle Wα from such a minimal collection A we
take the union of:

(1) thickenings of the the annuli and rectangles in A (For the rectangles there is no
ambiguity about which direction fibers of Wα go since these fibers are to meet Lα in
their endpoints.)

(2) the complementary components of A which are I bundles of the first type

(3) thickenings of maximal collections of non-parallel essential rectangles which are unions
of fibers in the second type of complementary I bundle component of A

(4) thickenings of maximal collections of non-parallel essential annuli which are unions of
fibers in the Seifert fibered complementary components of A .

It is not hard to see that, conversely, every maximal Wα arises in this way.

The non-isotopy variation in the choice of Wα comes from the choices of annuli and
rectangles in (3) and (4). These project to arcs in the base surface S of the I bundle
or Seifert fibering. We may take S to be compact since the ends of noncompact leaves
of Lα lie in the boundaries of complementary regions of type (2). Over certain arcs and
circles in ∂S lie the points in Lα in the closure of the complementary region. Collapsing
these arcs and circles in ∂S to points yields a new surface T with V ⊂ T the image of
the collapsed arcs and circles. In the Seifert fibered case delete from T small open disk
neighborhoods of the images of the multiple fibers. Let E be the projection to T of the
annuli and rectangles in (3) and (4). These are “edges” with endpoints on the “vertex” set
V . By maximality of E , the complementary components of E in T are either triangles or
once-punctured monogons, the punctures being components of ∂T disjoint from V ; such
punctures occur only in the Seifert fibered case, coming either from tori in ∂M or tori
bounding neighborhoods of the multiple fibers. We call such an edge system E in (T, V )
a triangulation of (T, V ).

The four elementary moves changing Wα correspond to the two types of elementary
moves on triangulations of (T, V ) shown in the next figure. It is a classical fact, at least

in the case with no punctures, that any two triangulations are related by a finite sequence
of elementary moves. A proof of this in the general case can be found in [H3]. tu
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Continuing with the proof of 5.1, the branched surface versions of the four elementary
moves on maximal I bundles Wα are shown in (a) and (b) of the next figure, with the
same pictorial conventions as before. Consider a move of the first or second type, changing

(a)

(c) (d)

(b)

B to B′ . Laminations Lβ with β near the given α in c(B) are carried by one of the two
branched surfaces B+ , B− indicated in (c) of the figure. To see this, one can insert slits
in (a) of the first figure in this section, parallel to each of the four sheets of Lα shown,
just outside the region shown. Laminations near Lα can be made disjoint from such slits,
as we have seen, so these laminations can use the central component of Wα only to go
diagonally from one corner of the figure to the opposite corner. Thus these laminations
near Lα are carried by B+ or B− .

Define a function d from a neighborhood of α in C(B) to R measuring the thickness
of the layer of diagonal leaves, with a plus sign for leaves going from lower left to upper
right and a minus sign for leaves going from upper left to lower right. The function d is
linear, as can be seen as follows. In terms of B+ and B− (which pinch to B ) d is just
the weight on the central sector of B+ or B− , with the appropriate sign. For the common
branched subsurface B0 of B+ and B− where the central sector is deleted, d is zero. So
d lifts to a continuous function c(B+) ∪ c(B0) ∪ c(B−) → R , where we put the natural
topology on c(B+) ∪ c(B0) ∪ c(B−), identifying c(B0) as a face of c(B±) (if it is not
equal to c(B±)). The projection c(B+) ∪ c(B0) ∪ c(B−)→ c(B) being continuous (linear
on each piece, in fact), d is continuous. Therefore it is linear if it is linear on rational
points. Since it preserves scalar multiplication, it is linear on rational points if it is linear
on integer points. But linearity on integer points is clear if we interpret integer points as
surfaces embedded in N(B) transverse to fibers, with “sum” as the classical cut-and-paste
operation (staying transverse to fibers).

Since d is linear (near α) it either takes on both positive and negative values or is
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identically zero. In the former case the projection c(B+)∪ c(B0)∪ c(B−)→ c(B) is linear
and injective on each piece, hence a piecewise linear homeomorphism near Lα . (Points in
different pieces cannot have the same image since they have distinct d values.) This holds
equally well with B′ in place of B , with the same B+ , B− , and B0 , so the elementary
move replacing B by B′ corresponds to a piecewise linear change of coordinates near
α . In the case that d is identically zero, c(B0) → c(B) and c(B0) → c(B′) are linear
homeomorphisms, and the coordinate change is linear.

Elementary moves of the other two types are treated in entirely similar fashion; details
are left to the reader.

What we have shown so far is the following. If Lα is isotopic to L′α for α ∈ c(B)
and α′ ∈ c(B′), B and B′ being maximal incompressible branched surfaces, then there is
a piecewise linear homeomorphism ψ of a neighborhood of α onto a neighborhood of α′

such that Lβ is isotopic to Lψ(β) for β near α . To finish the proof it therefore suffices to
show that each ϕB is injective.

Suppose ϕB is not injective, so that there exist isotopic laminations Lα and Lβ with
distinct α, β ∈ c(B). By the preceding, whole neighborhoods of α and β would then
correspond to isotopic laminations, so we may take α and β to be rational, and in fact
integral by clearing denominators. Let Sα and Sβ be the corresponding incompressible
surfaces carried by B . Doubling α and β if necessary, we may assume Sα and Sβ are
orientable. Now we appeal to a result of Oertel [O2] which says that since Sα and Sβ are
isotopic in M , we can pass from Sα to Sβ by a sequence of moves in which sheets of Sα
are transferred across slits of B (and vertical isotopy in N(B)). Hence α = β in c(B), a
contradiction. tu

5. Limits of Length Functions

Given an incompressible branched surface B , let Lt ∈ ML(M) be a path of lami-
nations determined by a linear path of weights α(t) on B , t ≥ 0, which are all strictly
positive for t > 0 but not for t = 0. By Proposition 2.5 we know that for any loop γ ,
`γ(Lt) approaches a limiting value as t goes to 0. The question we consider in this section
is, when is this limit equal to `γ(L0) for all γ ?

Zero Weights

For a branched surface B , the branched subsurfaces B′ ⊂ B correspond to the faces
C(B′) of C(B) obtained by setting the weights αi for the sectors in B − B′ equal to
zero. Assuming B is incompressible, it can happen that B′ is compressible, due to the
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presence of disks or half-disks of contact for B′ . Let B′′ be obtained from B′ by splitting
to eliminate disks and half-disks of contact; that is, we split N(B′) along a complete
collection of disjoint disks and half-disks of contact to form N(B′′) for a branched surface
B′′ . Any incompressible Lα with α ∈ C(B′) can be isotoped, by vertical motion in N(B′)
and shifting sheets across slits, so as to be disjoint from the chosen disks and half-disks.
So the natural linear map C(B′′) → C(B′) → c(B′) is onto the subset of incompressible
Lα ’s, which therefore form a nice subcone of c(B′). Assuming this subcone is non-empty
(hence contains rational points), it follows as in [O2] that B′′ is incompressible. [Details?]
We call B′′ an incompressible branched surface for the given face of C(B).

Recall from [O2] that an incompressible branched surface B is said to have a Reeb
component if it carries a torus or annulus bounding a solid torus which meets some surface
carried by B with positive weights in a collection of meridian disks. In particular, B is
without Reeb components if it carries no compressible tori or ∂ compressible annuli. By
[O2], if B has no Reeb components then every surface carried by B (without restriction
on weights) is incompressible and ∂ incompressible. A similar question, not considered in
[O2], is whether B can carry closed surfaces parallel to ∂M . To handle this, we enlarge the
notion of Reeb component to include the case that B carries a ∂ parallel torus T cutting
off a T × I from M which meets some surface carried by B with positive weights in a
collection of essential annuli. By methods as in [O2] one can easily show that when this
broader class of Reeb components is excluded, B carries no ∂ parallel surfaces. Following
[G-O] we call an incompressible branched surface without Reeb components essential .

Let B be the collection of essential branched surfaces B ⊂ M for which C(B) is
non-empty. If B ∈ B and B′ is an incompressible branched surface for a face C ′ of C(B),
then B′ ∈ B . Consider the following diagram of linear maps:

C(B′) J−−→ C(B)yq′ yq
c(B′)

j−−→ c(B)

Here J comes from the definition of B′ as an incompressible branched surface for the face
C ′ (hence Im(J) ⊂ C ′ ), q′ is the canonical quotient map, q is the continuous extension of
the quotient map q :C(B)→ c(B) to the closures of these cones, and j is defined to make
the diagram commute. To see that j is well-defined, consider a product complementary
region P of B′ . The product structure on P can be isotoped so that its I fibers are
transverse to any surface carried by B with positive weights. [[[...DETAILS...]]]

The image of j is the whole face c′ = q(C ′) of c(B). To show this it suffices to show
that Im(j) contains all the rational points in c′ . These points correspond to surfaces

24



carried by B with weights in C ′ . Since B ∈ B these surfaces are incompressible and
∂ incompressible, hence as earlier they can be isotoped off the disks and half-disks of
contact along which the branched subsurface of B corresponding to C ′ is split to form
B′ . So these surfaces are carried by B′ , with positive weights.

The maps j are not in general injective, however.

Reeb bundles

We return now to the question raised at the beginning of this section: If B is an
incompressible branched surface and Lt ∈ML(M) is a path of laminations determined by
a linear path of weights α(t) on B , t ≥ 0, which are positive for t > 0 but not for t = 0,
when is it true that the lengths `γ(Lt) approach `γ(L0) for all loops γ ? We are assuming
L0 is incompressible, so it is carried with positive weights by some incompressible branched
surface B′ for the face of C(B) containing α(0) in its interior. As described above, B′ is
obtained from the branched subsurface of B corresponding to this face by splitting disks
and half-disks of contact.

A Reeb bundle for the pair (B,B′) is a codimension zero compact submanifold R of
the closure of M −N(B′), meeting ∂N(B′) in a disjoint union ∂hR of tori and annuli in
∂hN(B′), such that:

∂ R
h

∂ R
h

(a) For some surface S carried by B with positive weights,
the leaves of the associated prelamination P meet R
in the surface fibers of a fiber bundle R → S1 , with
∂hR a subbundle.

(b) There is an oriented line field on R , transverse to the
surface fibers, which on ∂hR is tangent to the interval
fibers of N(B′), pointing inside N(B′).

The Reeb bundle R is essential if it contains a path with endpoints in ∂hR which cannot
be deformed in M (rel endpoints) to a path in ∂hN(B′). We shall see that if (B,B′) has
an essential Reeb bundle for one surface S carried by B with positive weights, then it has
an essential Reeb bundle for each such S .

Proposition 5.1. lim `γ(Lt) = `γ(L0) for all γ if and only if there are no essential Reeb

bundles for (B,B′) .

Proof: First we show how to construct an essential Reeb bundle if lim `γ(Lt) 6= `γ(L0)
for some γ . For this it suffices by continuity to assume that the linear path Lt joins
laminations L0 and L1 coming from rational, and in fact integral, weights α(0) and α(1)
corresponding to surfaces S0 and S1 .
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Consider S0 as embedded in the prelamination P1 associated to S1 , meeting ∂P1

only in ∂M . By vertical isotopy of S0 we can arrange that S0 and ∂S0 are transverse to
leaves of P1 except for the following phenomena:

— saddle tangencies in int(S0) and half saddle tangencies on ∂S0

— round saddles (a circle of tangency in int(S0), with a local maximum or minimum in
cross-section) and half round saddles (a proper arc of tangency with a similar cross-
section).

It follows that for the induced singular foliation on S0 all the nonsingular leaves are
essential, not cutting off a disk from S0 . We may assume all the various saddles of S0 lie
in distinct nonsingular leaves of P1 , and then we can choose for S1 a union of nonsingular
leaves of P1 not containing saddles, such that in each region of P1 between adjacent
components of S1 there is at most one saddle or singular leaf.

Let ν be the vertical linefield on P1 , modified near S0 (staying transverse to leaves
of P1 and tangent to ∂M ) to be tangent to S0 except near the various saddles of S0 ,
where ν is given a standard form.

Let T0 be S1 split along S0 . For a fixed m (to be chosen later) let Tm be the
subsurface of T0 consisting of points from which the two trajectories of ν , above and
below, flow across at least m sheets of T0 without meeting ∂hP1 or saddles of S0 .

Lemma 5.2. If lim `γ(Lt) 6= `γ(L0) for some γ , then ν can be deformed so that there

exists a component U0 of Tm which is essential, containing a path with endpoints on S0

which cannot be homotoped in M (rel endpoints) to a path in S0 .

Proof: First we define a collection C0 of curves in T0 . Each cusp circle of P1 contributes
two circles to C0 , obtained by flowing up and down via ν to the adjacent sheet of T0 .
Similarly each cusp arc of P1 contributes two arcs to C0 . The rest of C0 comes from the
various saddles. An ordinary saddle of S0 contributes two core arcs to C0 with boundary
on S0 , one in the sheet of T0 above the saddle, the other in the sheet below; these can be
thought of as the core and co-core of the associated 1 handle. A half saddle yields only
one core arc in C0 , with one end on S0 and the other on ∂M . A round saddle contributes
a circle to C0 obtained from the core of the round saddle by flowing to the adjacent sheet
of T0 on the side away from S0 . Similarly a half round saddle gives an arc in C0 with
endpoints on ∂M . Each curve of C0 is embedded and essential in T0 .

A curve of C0 arises from trajectories of ν flowing into T0 from one side or the other.
Continue these trajectories until they meet either ∂hP1 , a saddle (of some sort) in S0 , or
the next sheet of T0 . Let C1 be the union of C0 with the points of T0 at the ends of these
enlarged trajectories. If ν is in general position, C1 is obtained from C0 by adding finitely
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many embedded circles and arcs with endpoints either on ∂T0 or on curves of C0 coming
from cusp points of P1 or round or half round saddles. Inductively, we construct curve
collections Cn in this way, Cn−Cn−1 consisting of curves with boundary on ∂T0 ∪Cn−1 .

We wish now to modify ν so that the curves of Cn for a fixed n ≥ 2m have minimal
intersections with each other, in the following sense: If c and c′ are two curves of Cn then
there is no disk D ⊂ T0 with ∂D consisting of an arc of c , an arc of c′ , and, possibly,
an arc of S0 . The procedure is inductive. Consider adjoining one curve c of Cn − Cn−1 ,
assuming all previous curves, including those in Cn−1 , have minimal intersections with
each other. Let c′ ∈ Ci be a previous curve which c intersects non-minimally, with i

minimal, and let D be a disk as above for c and c′ . We may assume D is a minimal
such disk. The curves c and c′ arise from trajectories which arrive at c and c′ from
opposite sides of T0 , say from above at c and from below at c′ . (Otherwise we would
have a non-minimal intersection among curves of Cn−1 .) In a neighborhood of D there
can be no other points of c or previous curves coming from above, nor can there be other
points of previous curves in Ci coming from below. So the obvious isotopy of c across D
decreases the number of intersections of c with previous curves in Ci coming from below.
This isotopy can be realized by an isotopy of ν in the region just above a neighborhood
of D , finishing the induction step in our modification of ν .

To see how the hypothesis lim `γ(Lt) 6= `γ(L0) implies the existence of a component
U0 of Tm containing an essential path, we consider as in the proof of Proposition 3.2 the
prelaminations Pt corresponding to Lt (with maximal I bundles Wt collapsed) and the
family of loops γ(t) which are pulled to loops γ̂(t) taut with respect to Pt for t > 0. (Note
the change in notation: now α(t) = tα(1) + (1 − t)α(0) for t ∈ [0, 1], whereas formerly
α(t) = α(0) + tα(1) for t ∈ [0,∞); projectively this is the same path, but now it has the
limiting value α(0).)

Prior to pulling γ(t) taut, we may first deform γ(1) to minimize the number of
intersections with S0 , cancelling pairs of unnecessary intersections in the usual way. Then
we pull γ(1) taut and construct γ(t), with vertical segments created by the intersections of
γ(1) with S0 . Some of these vertical segments may be eliminated when γ(t) is pulled taut.
As t goes to 0, if every intersection point of the taut γ̂(t) with S0 lies in a vertical segment
of γ̂(t), then clearly `γ(Lt) approaches `γ(L0), the number of points of intersection of
γ(t) with S0 . And otherwise the limiting value of `γ(Lt) is less than `γ(L0). The latter
case is the one we are considering.

Since some vertical segment is eliminated completely for t approaching 0, there must
be a pair of such segments at the ends of a horizontal segment s of γ(t) upon which an
unbounded number of type 1 and 2 moves is performed, s meeting S0 only in its endpoints.
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(Since we earlier deformed γ(1) to minimize intersections with S0 , s is essential with
respect to S0 .) As shown in Figure 5.2, we see that for t near 0, s is being deformed
via a sequence of type 1 and 2 moves through a one-parameter family ss of horizontal
segments with endpoints on S0 and crossing S1 arbitrarily often, say at the parameter
values s = 0, 1, · · · , n , where n is chosen as earlier in the proof.

Figure 5.2
For each s the path ss may be viewed as a horizontal path in P1 , and we may perturb

the homotopy ss so that it is transverse to the leaves of P1 .
The claim is now that we can deform the homotopy ss for s ∈ [0, n] so that it is

obtained by simply flowing along trajectories of ν , meeting components T0i of T0 for
integer parameter values s = i . Suppose inductively that this has been done for s ∈ [0, j] .
This means that sj is disjoint from the collection C of curves of Cj lying in T0j and
arising from trajectories flowing to T0j from the same side that sj came from. To do the
induction step we need to homotope sj in T0j , staying disjoint from C , so that it also
misses the collection C ′ of curves of C0 in T0j flowing to T0j from the opposite side. (The
curves of C ′ come from cusp curves and cores of saddles obstructing the flow of sj along
trajectories of ν from T0j to T0,j+1 .)

Suppose sj meets C ′ . The existence of ss for s ∈ [j, j + 1] implies that sj can be
homotoped in T0j to be disjoint from C ′ , so there is a subsegment s′ of sj , meeting C ′

only in one or both of its endpoints, which can be homotoped (rel its intersection with C ′ )
to a path s′′ in C ′ . See Figure 5.3 for the case that both endpoints of s′ lie on C ′ ; we
describe this case and leave it for the reader to make the minor modifications needed for
the other case.

Figure 5.3
Let T ′ be the subsurface of T0j consisting of a neighborhood of C ∪ C ′ with com-

plementary disk components meeting S0 in at most an arc filled in. One possibility is
that s′ lies in such a disk. In this simple case we may assume that s′ is embedded, hence
also that s′′ is embedded. So s′ ∪ s′′ bounds an disk D ⊂ T0j , disjoint from C since we
aranged that curves of Cn intersected minimally. So homotoping s′ across D decreases
intersections of sj with C ′ without introducing intersections with C .

The other possibility is that s′ lies outside T ′ except near its endpoints. Since s′

can be homotoped into T ′ , the part of s′ outside T ′ can be homotoped to a path in
∂T ′ , without affecting intersections with C ∪C ′ ; we assume now that this has been done.
The part of s′ in ∂T ′ we may take to be a monotone (i.e., immersed) path, which might
conceivably wrap around this component of ∂T ′ more than once. If it does not, then s′

is embedded and the previous argument applies. If s′ does wrap around ∂T ′ more than
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once, then by an easy argument in surface theory, s′ must lie in an annulus bounded by
the components of ∂T ′ and C ′ which it meets. Then C must be disjoint from annulus
since curves of Cn intersect minimally, so again we can deform s′ to decrease intersections
of sj with C ′ without introducing intersections with C . This finishes the induction step
in the improvement of the homotopy ss to be a flow along ν .

We have chosen n ≥ 2m , and therefore the essential path sm can flow along ν crossing
m sheets in both directions. Let U0 be the component of Tm containing sm . tu

Returning to the proof of Proposition 5.1, let Uj for j ≤ m be the set of points in T0

reachable from U0 by flowing along trajectories of ν , crossing T0 at most j times. Thus
U0 ⊂ U1 ⊂ · · · ⊂ Um . Each component of Uj is essential since U0 is. In particular, each
component of Uj contains a path which cannot be homotoped in T0 (rel endpoints) to a
path in S0 . Let U ′j be obtained from Uj by filling in any disk components of T0 − Uj
which are either disjoint from ∂T0 or meet ∂T0 in an arc in S0 . These surfaces also form
an expanding sequence U ′0 ⊂ U ′1 ⊂ · · · ⊂ U ′m .

If m is larger than a certain bound depending only on T0 then for some k ≤ m either:

(1) Two components of U ′k are parallel rectangles in T0 meeting S0 in a pair of opposite
sides (parallel via an isotopy through such rectangles).

(2) The surfaces U ′k−1 and U ′k are isotopic via an expanding one-parameter family of
surfaces U ′t ⊂ T0 , with U ′t ∩ S0 also an isotopy.

In case 1 we can take an essential arc in one rectangle and flow along trajectories until we
obtain an essential arc in the other rectangle. From this we can then construct a bundle
V → S1 whose fibers are rectangles in leaves of P1 , rectangles meeting S0 in a pair of
opposite edges and containing an essential arc.

In case 2 we also construct a bundle V → S1 , in several steps. First let V1 be the
union of the trajectories of ν starting from U0 (in both directions) and continuing until
they cross T0 k times, stopping a short distance ε after the kth crossing. Next fill in
the disk components of int(T0) − Uk and enlarge V1 to V2 by letting these disks flow
along trajectories as long as their boundaries stay in V1 . Enlarge V2 to V3 by adding the
trajectories going a distance ε up and down from the disk components of T0 − Uk which
meet S0 in single arcs. (Unfortunately these disks must be treated differently from the
disks of int(T0)−Uk due to the presence of saddles of S0 .) Now form V4 by truncating ends
of trajectories in V3 , tapering via the isotopy U ′t in the interval [0, ε/2] on the appropriate
side of U ′k . Similarly, form V5 by tapering V4 in the interval [ε/2, ε] on each side of U ′k
so as to delete by isotopy the disk components of T0 − Uk meeting S0 in single arcs. See
Figure 5.4 for what V5 might look like along S0 .
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Figure 5.4
V5 is foliated by compact subsurfaces of leaves of P1 which are transverse to ∂V5 ,

and is therefore a bundle V5 → S1 .
To get the desired V → S1 it remains to peel part of ∂V5 away from S0 so that V

intersects S0 in a subbundle, while preserving the property that fibers of V → S1 contain
essential paths. To do this, take an essential path in U ′k and let it flow through the fibers
of the bundle V . We may do this arbitrarily far keeping both endpoints of the path on
S0 . One endpoint must eventually return to the same component of U ′k∩S0 . Taking the
first return, we may assume this endpoint then follows periodically an embedded loop in
S0 . And similarly for the other endpoint. If the two loops followed by the endpoints meet,
we may assume they coincide. Peel all of ∂V5 away from S0 except for a neighborhood of
these loops.

Now we show the converse. For this we may assume L1 is carried by B with integral
weights, corresponding to the surface S1 , while L0 is carried with arbitrary positive weights
by B′ . Assume we have an essential Reeb bundle R . By definition, we then have a path
γ′ in R which cannot be deformed into ∂hN(B′). We may deform this to lie in a fiber
S1 ∩R of R . Extend γ′ at its ends by vertical arcs in P0 of length ε , say. This extended
γ′′ is a shortest path between its endpoints, length being measured with respect to P0 .
This is because γ′′ is taut, or can be made into a taut γ′′′ of the same length by deforming
arcs of γ′ outside N(B′) into ∂N(B′) if possible and then eliminating extra intersections
of γ′ with Σ by type 2 moves; since γ′ cannot be deformed into ∂hN(B′), the resulting
γ′′′ will be taut. By the fact mentioned at the end of §2, γ′′ can be extended to a PVH
loop γ0 minimizing length for P0 . We can extend this to a continuous family of loops γt
for t near 0 which are PVH for Pt , with the part of γt corresponding to γ′′ consisting
of two vertical segments of length approximately ε joined by a horizontal segment. Now
using the Reeb bundle structure on R this part of γt can be pushed vertically to shorten
it by 2ε , provided t > 0. Hence lim `γ(Lt) 6= `γ(L0). tu

Proposition 5.3. If laminations Lt ∈ ML(M) , t ∈ [0, 1] , arise from a linear path of

weights α(t) ∈ C(B) for some incompressible branched surface B , with α(t) ∈ C(B) for

t > 0 , and if lim `(Lt) 6= `(L0) , then lim `(Lt) /∈ `(ML(M)) .

6. Assembling the Strata

In §4 we saw how the set ML(M) is partitioned into disjoint strata which have the
structure of piecewise linear manifolds (without boundary). Our task now is to fit these
strata together in a way which reflects how the associated length functions converge.
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Recall from §5 the collection B of essential branched surfaces. If B ∈ B and C ′ is
an open face of the cone C(B), let B′ be an incompressible branched surface for this face
(obtained as in §1 by slitting disks and half-disks of contact in the branched subsurface
of B corresponding to C ′ ). We call the corresponding face c′ of c(B) good if the pair
(B,B′) has no essential Reeb bundles. From Proposition 5.1 this is equivalent to continuity
of all length functions `γ at the face C ′ , and is independent of which face C ′ we choose
projecting to c′ by Proposition 4.?. From Proposition 4.1 it follows that the natural linear
map j : c(B′) → c′ , which is surjective since B and B′ are without Reeb components, is
also injective. (In these applications of Propositions 4.1 and 4.? it suffices to have the
result just for rational points.) Let c(B,B′) = c(B)∪ c(B′) where c(B′) is identified with
the face c′ of c(B) via j . The natural map ϕ : c(B,B′)→ML(M) is injective. Namely, it
is injective on c(B) and c(B′) separately by Proposition 5.1, since we can pinch B and B′

to be maximal, inducing linear inclusions of the cones c(−). Also by 5.1, if the ϕ images
of c(B) and c(B′) intersected each other, they would do so at rational points. Injectivity
of ϕ on all rational points of c(B,B′) was proved in [O2].

We define a topology on the set ML(M) by specifying that U ⊂ML(M) is open iff
ϕ−1(U) is open in c(B,B′) for all B ∈ B and all good faces c′ of c(B).

On each stratum of ML(M) this topology is the same as that underlying the piecewise
linear manifold structure on that stratum.

Proposition 6.1. The map ` :ML(M) → [0,∞)∞ having coordinates the length func-

tions `γ is a homeomorphism onto its image.

Proof: We have shown that ` is a continuous injection, so it remains to show that a
sequence Ln ∈ ML(M) converges to L ∈ ML(M) whenever all the length functions
`γ(Ln) converge to `γ(L). All the laminations Ln are carried with positive weights by a
finite number of branched surfaces B ∈ B , so by passing to a subsequence we may assume
all the Ln ’s are carried with positive weights by one B , say Ln is carried with weight
vector αn ∈ C(B).

If the αn ’s are unbounded, then after passing to a further subsequence we may choose
positive scalars tn → 0 so that the sequence tnαn approaches a non-zero limit α ∈ C(B).
Since lim `(tnLn) = 0 ∈ `(ML(M)), Proposition 4.? implies that lim `(tnLn) = `(Lα).
But `(Lα) 6= 0 since ` is injective and α 6= 0. This contradiction shows the αn ’s are
bounded.

Passing to a subsequence, we may then assume the αn ’s converge to α ∈ C(B). As in
the preceding paragraph, lim `(Ln) ∈ `(ML(M)) implies lim `(Ln) = `(Lα), so Ln → Lα

in ML(M). And Lα = L since ` is injective. tu
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Proposition 6.2. The frontier of each stratum of ML(M) is a union of strata of lower

dimension.

Proof: Let L0 be a lamination in the frontier of a given stratum. This means there is
a pair (B,B′) where B ∈ B has ϕ(c(B)) contained in the given stratum and B′ is an
incompressible branched surface for a good face of c(B), B′ carrying L0 with positive
weights. Thus there is linear path Lt , 0 ≤ t ≤ 1, approaching L0 , with Lt ∈ ϕ(c(B)) for
t > 0. Our first goal is to modify B and B′ so that B′ becomes maximal, still carrying
L0 with positive weights, with the new B still carrying the linear path Lt at least for t
near 0.

We take L1 to have integer weights, corresponding to a surface S ∈ S(M). The
prelamination P0 determining L0 lies in N(B) transverse to I fibers, as does S . Perturb
S to be in general position with respect to ∂hP0 . Split N(B) outside P0 ∪ S along
surfaces transverse to fibers of N(B) so that N(B) becomes P0 ∪N(S). Inserting slits in
P0 and collapsing the resulting I fibers in P0 ∪ N(S) yields a new branched surface B .
The branched surface B′ we take to be obtained from P0 by inserting slits and collapsing
resulting I fibers. So B is obtained from B′ by adjoining S − P0 .

The incompressible branched surface B′ can be made maximal by pinching P0 near
a collection Ai of complementary annuli, rectangles, Mobius bands, digons, and half-
digons. We need to put these Ai ’s into a good position with respect to S . To simplify the
discussion let us assume no Ai ’s are rectangles or half-digons; the additional arguments
needed to handle such Ai ’s are entirely similar, and no more difficult. We may assume
each Ai meets S transversely, with the curves of S∩Ai meeting ∂Ai tangentially since we
may assume S meets ∂hP0 tangentially. There can be no monogon components of Ai−S
since the original B was incompressible and splitting cannot produce monogons. Disk
components of Ai−S (with smooth boundary) can be eliminated as follows. Consider the
prelamination Pt associated to Lt (with respect to the branched surface B ). The part of
Pt outside P0 consists of a slight thickening of S − P0 , foliated trivially. Let D be a disk
component of Ai − S . We view D as a disk in the complement of Pt with ∂D ⊂ ∂hPt .
We can begin to enlarge D by adding on a collar so that ∂D stays in a leaf of Pt at each
time. Choosing a fixed t = t1 small enough, this enlargement of D can be continued until
∂D meets another component of Ai − Pt . See Figure 6.1.

Figure 6.1

For the enlarged D , ∂D bounds a disk D′ in a leaf of Pt (possibly meeting cusp
points of Pt if Pt has disks of contact) since Lt is incompressible. Clearly, if t = t1 is
small enough, D′ will meet P0 only near ∂hP0 .
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Now we split Pt along the disk D′ (slightly enlarged). After this splitting, we can
eliminate the disk component D from Ai − Pt by isotoping Ai so that D moves to
D′ . If int(D′) meets ∪Aj we push disks in other Aj ’s along too so that ∪Aj stays
embedded. This splitting and isotopy decreases the number of components of ∪Aj − Pt .
So by repeating this process finitely often (with smaller and smaller t = t1, t2, · · ·) we
eventually reach the case that there are no disk components of ∪Aj − Pt . Each time we
split Pt we also split N(B), producing a new B . Any disks or half-disks of contact which
this B may have can be eliminated by further splitting of the same sort. So we may
assume B is incompressible.

There exist I fiberings of the Ai ’s which restrict to I fiberings of the components of
Ai − Pt . For clearly such I fiberings exist except for Ai ’s which are annuli or Mobius
bands meeting Pt in “Reeb configurations” (Figure 6.2). But these would give rise to
essential Reeb bundles for (B,B′), which are ruled out by Proposition 3.1.

Figure 6.2
Thus we can pinch B′ to be maximal, simultaneously pinching B . The new B

might have monogons, however, arising when an annulus component of Ai−Pt is pinched.
(Pinching a Mobius band component of Ai − Pt cannot produce a monogon. For such
a monogon would come from a ∂ compressing disk for this Mobius band relative to Pt ;
∂ surgering the Mobius band via this ∂ compressing disk would produce a nonseparating
compressing disk for ∂hPt ). An annulus component of Ai − Pt which pinches to create a
monogon would be ∂ parallel relative to Pt , isotopic to an annulus in ∂hPt . Just as disk
components of Ai−Pt were eliminated before, we can eliminate this annulus component of
Ai−Pt by splitting Pt and isotoping Ai , decreasing the number of components of Ai−Pt .
Repeating this process, we eventually reach a position where pinching the Ai ’s produces
no monogons for B , so the new B is incompressible (pinching the Ai ’s cannot create disks
or half-disks of contact). This gives the desired pair (B,B′), which still carries the linear
path Lt for t small.

The branched surface B′ still corresponds to a good face c′ of c(B) since lim `γ(Lt) =
`γ(L0) for all γ . This is a proper face since we assume L0 is not in the same stratum as
Lt for t > 0. By Proposition 3.1 we have continuity of all length funcions `γ at c′ , so
ϕ(c′) = ϕ(c(B′)) is in the closure of ϕ(c(B)) by Proposition 6.1. Since B′ is maximal,
this means a neighborhood of L0 in its stratum is contained in the closure of the stratum
of Lt , t > 0. Since c′ is a proper face of c(B), the stratum of L0 has dimension less than
the dimension of the stratum of Lt .

Strata being connected, it remains only to verify that the closure of the stratum of Lt
meets the stratum of L0 in a closed set. After Proposition 6.1 this is just simple point-set
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topology (the set of accumulation points of a set is closed). tu

7. The Linear Substratification in the Atoroidal Case

In this section we assume M is atoroidal and acylindrical, i.e., the set of incompressible
surfaces S(M) defined in §1 contains no surfaces of Euler characteristic zero. We will show
that the piecewise linear strata of ML(M) then have, themselves, a natural stratification
into linear substrata. The key ingredient is the following:

Lemma 7.3. If M is atoroidal and acylindrical, then a maximal incompressible branched

surface B ⊂ M has only a finite number of annuli and rectangles of contact, modulo

vertical isotopy in N(B) .

Proof: Suppose there are infinitely many annuli of contact, hence an infinite number all
having the same boundary consisting of one or two branching circles of B . For convenience
in describing this situation, consider the enlarged branched surface B′ in the manifold M ′

obtained by deleting a thin solid torus in M −B running parallel to each of the branching
circles in question, as shown in cross-section in Figure 7.1.

Figure 7.1
We have an infinite sequence of annuli Ai carried by B′ with integer weight vectors

αi ∈ C(B′). Since all the αi ’s are distinct by assumption, some coordinate αji of the αi ’s
must be unbounded. Normalizing the αi ’s by dividing by the sum of their coordinates, we
get an infinite sequence of weight vectors in the intersection of C(B′) with the hyperplane∑
j αj = 1. This intersection is compact, so some subsequence of the normalized αi ’s

converges to a weight α ∈ C(B′). The coordinate of α along B′ − B is zero since the
αi ’s have bounded weight (1 or 2) there. The coordinate weights of α along ∂M are also
zero, since this was the case for the αi ’s.

The Euler characteristic function χ on C(B′) is linear with rational coefficients. The
αi ’s lie in the linear subspace where χ = 0, hence α does also. Rational points are dense
in this subspace. These correspond to collections of tori carried by B . Thus we can find
a torus collection arbitrarily close (in terms of normalized weights) to an annulus Ai . Let
T be a torus in such a collection.

Given a maximal incompressible branched surface B , consider Pα associated to α ∈
C(B). Let A(Pα) be the collection of annuli and rectangles of contact for B which lie in
leaves of Pα , the annuli meeting the singular locus of Pα only in their boundary circles,
the rectangles only in pairs of opposite sides. For a fixed set A of annuli and rectangles of
contact for B , let c(A) ⊂ c(B) be the set of Pα ’s with A(Pα) = A . These subsets c(A)
partition c(B) into disjoint subsets, finite in number by Lemma 7.1.
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Each c(A) is defined by a finite number of linear equations and strict inequalities in
c(B). This can be seen as follows. The condition that a given annulus or rectangle of
contact A have its two opposite boundary curves on the same height in Pα is given by a
linear equation on α , since the difference in heights between these two curves is a linear
function of α . If A is in A(Pα) for some α then α must satisfy this equation, but also
α must satisfy some strict linear inequalities expressing the condition that no other cusp
curves of Pα move up or down into A (regarding A as contained in a leaf of Pα ). When
such a cusp curve does move into A it means that for this Pβ a subannulus or subrectangle
of A lies in A(Pβ), rather than A itself. This yields the additional fact that the closure
of each c(A) is a union of c(A)’s.

Thus the c(A)’s define a stratification of c(B) into convex polyhedral substrata. The
coordinate change transformations ϕ−1

B
◦ϕB′ map the substrata in c(B′) linearly to the

substrata in c(B), as the proof of Proposition 4.1 shows, so there is induced on each
piecewise linear stratum of ML(M) a natural subdivision into substrata with natural
linear structures.

Proposition 7.2. If S(M) contains no surfaces of Euler characteristic zero, then the

frontier of each linear substratum of ML(M) is a union of linear substrata of lower di-

mension.
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