A Short Exposition of the Madsen-Weiss Theorem

Allen Hatcher

The theorem of Madsen and Weiss [MW] identifies the homology of mapping class
groups of surfaces, in a stable dimension range, with the homology of a certain infinite
loopspace. This result is not only intrinsically interesting, showing that two objects that
appear to be quite different turn out to be homologically equivalent, but it also allows
explicit calculations of the stable homology, rather easily for rational coefficients as we
show in Appendix C, and with considerably more work for mod p coefficients as done by
Galatius in [G2]. Outside the stable dimension range the homology of mapping class groups
appears to be quite complicated and is still very poorly understood, so it is surprising that

there is such a simple and appealing description in the stable range.

The Madsen-Weiss theorem has a very classical flavor, and in retrospect it seems that
it could have been proved in the 1970s or 1980s since the main ingredients were available
then. However, at that time it was regarded as very unlikely that the stable homology
of mapping class groups could be that of an infinite loopspace. The initial breakthrough
came in a 1997 paper of Tillmann [T] where this unexpected result was proved. It remained
then to determine whether the infinite loopspace was a familiar one. A conjecture in this
direction was made in a 2001 paper of Madsen and Tillmann [MT], with some supporting
evidence, and this conjecture became the Madsen-Weiss theorem.

The original proof of the Madsen-Weiss theorem was rather lengthy, but major simpli-
fications have been found since then. Our aim here is to present a proof that uses a number
of these later simplifications, particularly some due to Galatius and Randal-Williams which

make the proof really quite elementary, apart from the three main classical ingredients:

(1) The fact that the diffeomorphism group of a closed orientable surface has contractible
components once the genus of the surface is at least 2. This is originally a theorem
of Earle-Eells [EE] proved by analytic methods, but a purely topological proof was
given soon after by Gramain [Gr|. Also needed is the extension of this result to
compact orientable surfaces with boundary, originally a result in [ES], but proved in
the Gramain paper as well. In fact Gramain’s proof in both cases is quite simple so

we present it in Appendix B.



(2) Harer stability [Har]|, the fact that the ith homology group of the mapping class group
of a compact orientable surface is independent of the genus and the number of bound-
ary components, once the genus is sufficiently large with respect to i. Subsequent
improvements in the stable dimension range were made by Ivanov [I], Boldsen [B], and
Randal-Williams [RW], and a significant gap in Harer’s proof was filled by Wahl [W1].
For a full exposition of the current state of the art on this theorem see [W2]. As yet no
really simple proof has been found, although the exposition in [HV] represents some

progress in this direction.

(3) The Group Completion Theorem from around 1970. A nice exposition of this fun-
damental result in algebraic topology was published in [MS], and an illuminating
general discussion is given in [A]. The original version seems to be due to Barratt and
Priddy [BP]. This theorem has apparently not made its way into textbooks yet, so we
give a textbook-style exposition of it in Appendix D following an argument told to us

by Galatius. The only ingredients for this are results already available in textbooks.

The strategy we follow for proving the Madsen-Weiss theorem follows the pattern in [GRW],
and consists of using (3) to prove a theorem that is independent of (1) and (2). This
theorem can be phrased as saying that the classifying space of the group of compactly
supported diffeomorphisms of an infinite-genus surface is homologically equivalent to a
certain infinite loopspace (or more properly, one component of this infinite loopspace).
Then one can quote (1) and (2) to restate this result in terms of the homology of mapping

class groups of compact surfaces in the stable range.

A large part of the proof works for manifolds of arbitrary dimension, not just surfaces,
so we present it in that generality. In the case of zero-dimensional manifolds the whole
proof goes through and in fact is considerably simpler than for surfaces, yielding the
Barratt-Priddy-Quillen theorem that the infinite symmetric group £ = U, %, has the

same homology as one component of 75,

Here is a quick outline of the paper. In section 1 we present basic definitions and the
motivating constructions leading to a precise statement of the Madsen-Weiss theorem. The
proof of the theorem is contained in section 2, with the two hardest steps postponed to
sections 3 and 4. In section 5 we give extensions to the cases of nonorientable surfaces and
surfaces with punctures, along with the Barratt-Priddy-Quillen theorem and its analog for
braid groups due to F. Cohen. After this there are four appendices: Appendix A giving
basic information on classifying spaces for diffeomorphism groups, Appendix B proving
the Earle-Eells theorem following the method of Cerf and Gramain, Appendix C giving

the calculation of the stable rational homology in both the orientable and nonorientable
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cases, and finally Appendix D proving the Group Completion Theorem.

Acknowledgments: Thanks are due to Tom Church, Sgren Galatius, Oscar Randal-

Williams, and Ulrike Tillmann for their comments on an early version of this exposition.

1. The Scanning Map

The statement of the Madsen-Weiss theorem involves a certain infinite loopspace, so
we will begin by describing what this space is and how it arises. The root of the idea can
be traced back a long way, to the Pontryagin-Thom construction around 1950. Another
version appeared later in the 1970s in papers by Segal [S1, S2] and McDuff [M]. A more
immediate predecessor is the paper of Madsen-Tillmann [MT] which explicitly conjectures
the Madsen-Weiss theorem.

The homology of the mapping class group of a closed orientable surface S is the
homology of an Eilenberg-MacLane space K(I',1), with I" the mapping class group. We
are free to choose any K (I',1) we like, and there is a particular choice that works well for
the Madsen-Weiss theorem. This is the space C(S,R>) of all smooth oriented subsurfaces
of R* diffeomorphic to S. The symbol € is chosen to indicate that C(S,R°°) is the
space of all possible “configurations” of S in R>. The space C(S,R>) is the union
of its subspaces C(S,R™) of smooth oriented subsurfaces of R" diffeomorphic to S, for
finite values of n, with the direct limit topology. Each C(S,R"™) is given the usual C'™
topology as the orbit space of the space (S, R") of smooth embeddings S — R" under the
action of Diff"(S) by composition, where Diff(S) is the group of orientation-preserving
diffeomorphisms of S with the C°° topology. By definition, in the direct limit topology on
C(S,R*) a set is open if and only if it intersects each subspace C(S,R") in an open set.
A key feature of direct limit topologies (for Hausdorff spaces) is that compact subspaces
lie in finite stages of the direct limit, so the homotopy groups and homology groups of a
direct limit are the direct limits of the homotopy and homology groups of the finite stages.

As we explain in Appendix A, the quotient map E(S,R>) — C(S,R>) is a fiber bun-
dle with fiber Diff"(S), whose total space &(S,R*>) is contractible, so the long exact se-
quence of homotopy groups for the bundle gives isomorphisms m;Diff " (S) = 7, C(S,R™)
for all 7. By the Earle-Eells theorem these groups are trivial for ¢ > 0, at least when the
genus of S is at least 2, so we see that C(S,R*?) is a K(I',1) for the mapping class group
in these cases.

To place things in their natural setting, consider a smooth closed orientable manifold
M of arbitrary dimension d > 0, and let C(M,R°°) be the space of all smooth oriented
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submanifolds of R>® diffeomorphic to M, defined analogously to the case d = 2 that
we have just described. It is natural to ask what information can be extracted from an
embedded submanifold M C R"™ of dimension d just by looking locally. Imagine taking
a powerful magnifying lens and moving it all around R" to see what the submanifold M
looks like. For most positions of the lens one is not close enough to M to see anything
of M at all, so one sees just the empty set, but as one moves near M one sees a small
piece of M that appears to be almost flat. Moving toward M, this piece first appears
at the edge of the lens, then moves to the center. The space of almost flat d-planes in
an n-ball has the same homotopy type as the subspace of actually flat d-planes since one
can canonically deform almost flat planes to their tangent planes at their centers of mass.
Regarding the m-ball as R"™, we thus have, for each position of the lens where the view
of M is nonempty, a d-plane in R™. This plane has an orientation determined by the
given orientation of M. We will use the notation AG,, ; for the affine Grassmannian of
oriented flat d-planes in R"™, where the word “affine” indicates that the planes need not
pass through the origin. Taking into account positions of the lens where the view of M is
empty, we then have a point in the one-point compactification AG; 4 of AG,, ; for each
position of the lens, with the compactification point corresponding to the empty d-plane.

Positions of the lens near infinity in R" give an empty view of M, hence map to the
compactification point at infinity in AG: 4- Thus by letting the position of the lens vary
throughout all of R"” we obtain map S" = R"U{co} — AG:{’ 4 taking the basepoint oo in
S™ to the basepoint of AG:’ 4> the compactification point. Such a map is exactly a point
in the n-fold loopspace QnAG:;d. This point in QnAG:;d associated to the submanifold
M C R"™ depends on choosing a sufficiently large power of magnification for the lens, which
in turn can depend on the embedding of M in R"™. Making the plausible assumption
that the magnification can be chosen to vary continuously with M, we then obtain a map
C(M,R") — Q”AG:{,d. Letting n increase, the natural inclusion C(M,R") — C(M,R" ™)
corresponds to the inclusion Q”AG; g rttagt . obtained by applying Q" to the

n+1

inclusion AG:{’d — QAG:[H’d that translates a d-plane in R" from —oo to +oo in the

(n + 1)st coordinate of R™™'. Passing to the limit over n, we get a map
C(M,R™) — Q®AGL ,

which we will refer to as the scanning map. (In the case d = 0 when M is a finite set
of points, the scanning process is described explicitly in [S2]|, which seems to be the first
place where the term “scanning” is used in this context.)

The affine Grassmannian AG,, ; can be described in terms of the usual Grassman-

nian G, ; of oriented d-planes through the origin in R™. The projection AG,, ;, — G, 4
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translating each d-plane to the parallel plane through the origin is a vector bundle whose
fiber over a given d-plane P is the vector space of vectors orthogonal to P since there
is a unique such vector translating P to any given plane parallel to P. The vector bun-
and the

one-point compactification AG: 4 is the Thom space of this complementary vector bundle

dle AG,, ; is thus the orthogonal complement of the canonical bundle over G, ;,
since G, 4 is compact.

For the scanning map C(M,R>) — QOOAG;’d the source space depends on the
manifold M but the target space does not, so one would hardly expect this map to be any
sort of equivalence for arbitrary M. One might have a better chance if one could replace
the source by some sort of amalgam or limit over all choices of M, and this is what the
Madsen-Weiss theorem does in the case of surfaces, when d = 2, so that there is just one
closed orientable surface S, for each genus g. We can form a limit of this sequence of
closed surfaces by considering the simplest infinite-genus surface S__. This is the union of

an increasing sequence of compact surfaces S, ; of genus g with one boundary component.

7 7 7
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a a a
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-
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Let Diff(S, ;) be the group of diffeomorphisms of S, ; that restrict to the identity on
the boundary circle (and whose derivatives of all orders equal those of the identity diffeo-
morphism at points in the boundary). The standard embedding S, ; < S, ; induces a
natural inclusion Diff(S, ;) < Diff(S,,; ;) by extending diffeomorphisms by the identity
on the complement of S, ; in S, ;. Let C, be the space of subsurfaces of (o0, g] x R™
diffeomorphic to S, ; whose boundaries coincide (to infinite order) with the boundary of a
fixed standard S, ; C (—o0,g] x R*™ with S, ; N (g x R™) =095, ;. As in the closed case,
€, isa K(I',1) for I' = myDiff(S, ;). There are inclusions €, C C,,; by adjoining the
missing part of the standard S, ; C (—o0,g+ 1] x R®, so we can form the direct limit

Cr =U,C,. The version of the Madsen-Weiss theorem that we will prove is the following:

The Madsen-Weiss Theorem. There is an isomorphism

H,(C.) = H,(Q°AGL, »)

oo

where QF° AG 2 denotes the basepoint path-component of QOOAG;Q.

o0

The reason for replacing Q™ by " is that €., is path-connected since each C, is

path-connected. All the path-components of QOOAG;Q have the same homotopy type
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since it is an H-space with 7, a group, so it does not matter which path-component we
choose.
This version of the Madsen-Weiss theorem implies the more usual version in terms of

mapping class groups since

H,(C.) = lim H,(C

g

oo g) = hénHi(ﬂ-ODiﬁ‘(Sg,l»

and by Harer stability these limits are actually achieved at finite stages and agree with the
homology of mapping class groups of the closed surfaces .S, in the stable dimension range.

One might wish to have a scanning map €, — QOOAG;FO’Q that induces the homology
isomorphism in the theorem, but constructing a scanning map like this involving surfaces
with fixed boundary would require an additional argument and this is not actually needed
for the proof of the theorem. Instead the isomorphism in the theorem will be obtained in

a somewhat less direct fashion by recasting the scanning idea in a slightly different form.

A Convention: We will sometimes say a map is a homotopy equivalence but only prove
it is a weak homotopy equivalence, inducing isomorphisms on all homotopy groups. This
will not be a problem since in the end we are only interested in homology groups and weak
homotopy equivalences induce isomorphisms on homology. Some of the spaces we consider
are known to have the homotopy type of CW complexes, when the qualifier “weak” can

be dropped, but this may not be true in all cases.

2. The Proof, Assuming Two Delooping Propositions

Let C(M,R*) be the space of oriented smooth submanifolds of R> diffeomorphic to
a given closed orientable manifold M of dimension d > 0. By definition, C(M,R>) is the
union of its subspaces C(M,R") of oriented smooth submanifolds of R"™ diffeomorphic to
M, with the direct limit topology.

We enlarge C(M,R") to the space C" of all smooth oriented d-dimensional sub-
manifolds of R"™ that are not necessarily closed, but are properly embedded, so they are
closed subspaces of R" even if they are not closed manifolds. The manifolds in €" need
not be connected, and the empty manifold is allowed and will be important, serving as a

basepoint. The topology on €" is defined to have as basis the sets C'(B,V) where:

(i) B is a closed ball in R"™ centered at the origin.
(ii) V is an open set in the standard C°° topology on the space of d-dimensional smooth

compact submanifolds of B that are properly embedded (meaning that the intersec-
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tion of the submanifold with 0B is the boundary of the submanifold, and this is a

transverse intersection).

(iii) C(B,V) consists of all manifolds M in C" meeting dB transversely such that M NB

isin V.

The empty submanifold of B is allowed in (ii), and forms an open set V all by itself. It
is not hard to check that the sets C'(B,V), as B and V vary, satisfy the conditions for
defining a basis for a topology. In this topology a neighborhood basis for a given manifold
M € @™ consists of the subsets of €" obtained by choosing a ball B with OB transverse
to M and taking all manifolds M’ € " such that M'N B is C*-close to M N B, so in
particular M’ is also transverse to 0B.

With this topology, €™ is path-connected when n > d since a given manifold M C R"
can be connected to the empty manifold by the path obtained by larger and larger radial
expansion of R" from any point in the complement of M. This path is continuous since
in any ball B it is eventually constant, the empty manifold. If n = d, C" consists of two
points, the empty manifold and R™ itself. This case is not of interest for us, so we will
assume n > d from now on without further mention.

For the proof of the Madsen-Weiss theorem, when we take d = 2, it would be possible
to restrict surfaces in €" to have finite total genus over all components since the construc-
tions we make will preserve this property, but there is no special advantage to adding this
restriction.

The homotopy type of C" is easy to determine completely:

Proposition 2.1. €™ has the homotopy type of its subspace AG:;’ 4 consisting of ori-
ented affine linear d-planes in R", together with the empty set which gives the one-point

compactification of the space of d-planes.

Proof. Consider the operation of rescaling R"™ from the origin by a multiplicative factor
A > 1, including the limiting value A\ = co. Applied to any manifold M defining a point
in C" this rescaling operation defines a path in €" ending with a d-plane through the
origin if 0 € M, or with the empty set if 0 ¢ M . This path does not depend continuously
on M , however, since as we perturb a manifold containing 0 to one which does not, the
endpoint of the path suddenly changes from a plane through the origin to the empty set.
To correct for this problem we will modify the rescaling operation.

Let W be a tubular neighborhood of a given M € G", so W is a vector bundle
p:W — M with fibers orthogonal to M. If 0 ¢ W then we do just what we did in the
previous paragraph, rescaling R"™ from the origin by factors ranging from 1 to oo. If

0 € W then we rescale by different factors in the directions of the tangent and normal
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planes to M at p(0). In the tangential direction we again rescale by a factor going from
1 to oo, but in the normal direction we rescale by a factor ranging from 1 to a number
A that decreases from oo to 1 depending on the position of 0 in the fiber of W, with A
being oo when 0 is near the frontier of W and 1 when 0 is near the zero-section M in
W, so there is no normal rescaling at all near M. This gives a continuous deformation
of €" into the subspace AG;:d consisting of linear planes and the empty set, using the
fact that the tubular neighborhood W can be chosen to vary continously with M. The
subspace AG:’ 4 1s taken to itself during the deformation, so the inclusion AG:’ g CMis

a homotopy equivalence. O

We filter @" by subspaces €™° c €™ c ... c €™" = " where ™" is the subspace
of " consisting of manifolds that are properly embedded in R™ but actually lie in the
subspace R¥ x (0,1)"7*. Thus a manifold M in C€™* can extend to infinity in only k
directions, and the projection M — R* is a proper map, meaning that the inverse image
of each compact set in R¥ is compact in M.

There is a natural map C™* — QC™*! obtained by translating a manifold in €™*
from —oo to +oo in the (k + 1)st coordinate, which gives a loop in €™ 1 based at the

empty manifold. Combining these maps and their iterated loopings gives a composition
e’ - ae™! - e » ... 5 Qe

This composition takes a closed manifold M in €™° and translates it to infinity in all
directions. This is essentially the same as scanning M with an infinitely large lens. By
shrinking the lens to a small size one obtains a homotopy from this map ™% — Q" to
the original scanning map. However, this observation will not play a significant role in the
proof of the Madsen-Weiss theorem. Instead, the proof will consist of two main steps. The

first one is easier and is valid for all d > 0:
(1) The map ™" — QC™*! is a homotopy equivalence when k > 0.

This leaves only the map C€™” — Q€™ to be considered. This is quite a bit more delicate
except in the one easy case d = 0 which we discuss in Section 5. A rough statement of the

second step in the case of the Madsen-Weiss theorem is:

(2) When d = 2 the map ™Y 5 QC™! becomes a homology equivalence after passing
to suitable limits involving letting n and the genus g to go to infinity, so we obtain
isomorphisms H,(C_ ) = H,(0,C™").

In order to prove the statements (1) and (2) we will not work directly with loopspaces

but rather with classifying spaces, more specifically with classifying spaces of topologi-
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cal monoids. Recall that a topological monoid is a space M with a continuous product
M x M — M which is associative and has a two-sided identity element, but need not
have inverses. The space ™" is an H-space when k£ < n, with the product given by
juxtaposition in the (k + 1)st coordinate, after compressing the interval (0,1) in this co-
ordinate to (0,1/2) as in the definition of composition of loops. The homotopy-identity
element for the H-space structure is the empty configuration, and the multiplication is
homotopy-associative. Just as the Moore loopspace provides a monoid version of the usual
loopspace, with strict associativity and a strict identity, there is a monoid version M™" of
C™F . This is the subspace of €™ x [0,00) consisting of pairs (M, a) with M a manifold
in R* x (0,a) x (0,1)""*~1. The product in M™" is again given by juxtaposition in the
(k 4+ 1)st coordinate, but this time without any compression. It is easy to see that the
inclusion C™F < M™* as pairs (M, 1) is a homotopy equivalence.

A topological monoid M has a classifying space BM. Let us recall the construction.
In the special case that M has the discrete topology, BM is the A-complex having a
single vertex, an edge for each element of M, and more generally a p-simplex for each
p-tuple (my,---,m,) of elements of M. The faces of such a simplex are the (p —1)-
tuples obtained by deleting the first or last m, or by replacing two adjacent m,’s by their
product in M. Thus BM is a quotient space of ]_[p AP x MP with certain identifications
over OAP x M? for each p. Essentially the same construction can be made when M
has a nontrivial topology. One gives each AP x M? the product topology and then one
forms a quotient of ]_[p AP x MP using the same rules for identifications over the subspaces
OAP x MP as before. Thus BM is built from p-simplices for all p > 0, where the set of
p-simplices for fixed p is not a discrete set but forms a space M?. In particular there is a
single 0-simplex.

There is a natural map M — QBM obtained by taking p = 1 in the definition of
BM, so each element m € M gives an edge A' xm in BM which is a loop at the basepoint
vertex of BM. In favorable cases this map M — QBM is a homotopy equivalence. This
happens when 7,M = 0 for example, and more generally when 7,M is a group with
respect to the multiplication coming from the monoid structure. A proof of this classical

fact is given in Appendix D.

In Section 3 we will prove the following result which will complete step (1) of the

proof:

Proposition 3.1. For k > 0 and d > 0 the monoid m,M™" is a group and BM™" ~

Gg’kH, the component of @"**1 containing the empty manifold. Hence C™* ~ QE™**!

when k>0 and d > 0.



Here the last statement follows from the first two by the chain of equivalences
en,k ~ M’I’L,k‘ ~ QBMn,k‘ ~ Qen,k—l—l o Qen,k—l—l
~ ~ ~ QC; =

where the last equality holds since 2X only involves the basepoint component of X . The
proof of Proposition 3.1 will show in fact that the natural map C™" — QC™ ™! is a
homotopy equivalence.

In the more delicate case k = 0 the monoid WOMn’O is not a group since all the
manifolds in each path component of M™ are diffeomorphic and the disjoint union of
two nonempty manifolds is not empty. For an arbitrary topological monoid M, if the map
M — QBM is a homotopy equivalence then m,M must be a group since the induced map
ToM — mQ2BM is a homomorphism and 7,Q2BM = 7m; BM is a group. Thus the map
™% — QC™! cannot be a homotopy equivalence.

Another issue is that the product operation in M™ s disjoint union whereas what
one needs in the Madsen-Weiss theorem is a sum operation within the realm of connected
surfaces. With this in mind we will replace M™" in the case d = 2 by a monoid of
connected surfaces with nonempty boundary, so that gluing two such surfaces together
by identifying a boundary circle of one with a boundary circle of the other preserves
connectedness.

In order to define the new monoid, we first consider the cylinder Z = RxC ¢ RxR" ™!
where C' is a fixed circle in the first two coordinates of R" ™! centered at the origin and
of small radius, say radius 1/2. Then we let M" be the space of pairs (S,a) where S is

a compact connected orientable surface in [0,a] x (—=1,1)""" such that:

(i) DS comsists of the two circles Z N ({0,a} x (-1, 1)”_1), and S is tangent to Z to
infinite order along these two circles. Furthermore, S — S C (0,a) x (—1,1)""*.
(i) SN ([0,a] x (—1,0] x (—1,1)" ) = Z N ([0,a] x (—1,0] x (—1,1)"?).

We also allow the limiting case a = 0 when S degenerates to just a circle. The monoid
structure in M" is given by juxtaposition in the first coordinate of R™. The condition
of tangency to infinite order in (i) guarantees that the monoid operation stays within the

realm of smooth surfaces.
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We will only need the case n = oo, so we set M™ = U, M" with the direct limit

topology as usual. In Section 4 we will prove:
Proposition 4.1. BM™ ~ >,

The path-components of M are the subspaces M;O consisting of surfaces of genus
g, so meM™ is the monoid Z~ of nonnegative integers under addition. We have seen
that for a monoid M such that m,M is not a group, the map M — QBM cannot be a
homotopy equivalence since 7,Q2BM is always a group, namely 7; BM. It is not hard to
see that m; BM is the group completion of myM, which can be defined as the group with a
presentation consisting of the elements of m,M as generators and the multiplication table
of oM as relations. For example if m,M is the monoid Z, of nonnegative integers under
addition then its group completion is just Z.

When 7,M is only a monoid there is a theorem, known as the Group Completion
Theorem, that describes the homology of QBM in terms of the homology of M, under
certain hypotheses on M. To state this let us assume for simplicity that 7,M is Z-,. The
path-components J\/[p of M then correspond to integers p > 0 and there is a stabilization
map M, — M,,,; given by taking the product (on the right, say) with any element of
M, . In our application this map will be an injection M,, < M, so one can form the
direct limit of the M,,’s as U,M,,, with the direct limit topology. The Group Completion
Theorem then says that if the multiplication in M is homotopy-commutative, then there
is an isomorphism

H,(Z x UM,) = H,(Q2BM)

On the left side we have 74(Z x U,M,) = Z since U,M,, is path-connected, as each M,
is path-connected. Thus passing from M to Z x U,M,, has the effect on m, of converting
Zs to its group completion Z. It also has the effect of forcing all the path-components
of Z x UpMp to be homotopy equivalent, just as they are in 2BM since a loopspace is an
H-space with m, a group.

We can apply the Group Completion Theorem to M = M since it is easy to see
that the multiplication in M is homotopy-commutative, using the same sort of idea as
is used to show that higher homotopy groups are abelian after m;. Restricting to a single
path-component, we then obtain isomorphisms H,(U,M;") = H, (2, BM™).

The isomorphism in the Madsen-Weiss Theorem is now obtained by composing seven

isomorphisms:

1%

H,(Cy) (U M) (1)

(2 BM™) (2)

12

H,
H,
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> H,(2,€>) (3)
=~ lim H, (Q,C™") (4)
= li:brln H, (Qpe™) (5)
= lim H, Q5 AG, ) (6)
>~ H,(Q°AGL, ») (7)

The first isomorphism follows from the fact that C,, = U,C, and €, ~ M ° (and in fact C,
and M;o are homeomorphic). The second isomorphism comes from the Group Completion
Theorem as we have just noted. The third isomorphism follows from Proposition 4.1. The
fourth isomorphism holds since homology and the loopspace functor commute with direct
limit for a space that is the union of a sequence of subspaces with the direct limit topology.
The fifth isomorphism follows by repeated applications of Proposition 3.1. The sixth is

Proposition 2.1, and the seventh follows in the same way as the fourth.

3. Delooping: the Easy Cases
In this section we prove the first of the two missing steps from the proof in Section 2:

Proposition 3.1. For k > 0 and d > 0 the monoid m,M"™" is a group and BM™" ~

n,k+1 n,k+1
e e

, the component of containing the empty manifold. Hence ek ~ et

when k>0 and d > 0.
First we give a more precise version of the first assertion.

Lemma 3.2. 7,C"" =0 when k > d, while for 0 < k < d m,@™" is isomorphic to the
group Qg?k’n_ ., of cobordism classes of closed oriented (d — k)-manifolds in R™™* | where

cobordisms are embedded in R" ™% x I.

The sum operation in st_okm_k is given by disjoint union, after translating the two
submanifolds of R"™* to lie on opposite sides of a hyperplane. The inverse of a given
manifold M C R™" is obtained by reflecting across a hyperplane, where a cobordism
between the union of M and its reflection is given by a U-shaped embedding of M x I in
R™* x I, with both ends of M x I lying in the same end of R" % x I.

For the Madsen-Weiss theorem we only need these cobordism groups when d = 2 and
k = 1,2. The actual calculation of these groups will not be needed, but it is not hard to

see that they are given by 952_2 =7 and Qig_l =0.

12



Proof of 3.2. A point in ™" is a d-dimensional manifold M in R™ with the projection
p:M — R* a proper map. By a small perturbation of M we can arrange that p is
transverse to 0 € R”. If k > d this implies that p_l(O) is empty. Then there is a ball B
about 0 in R* disjoint from p(M) since p(M) is a closed subset of R¥ | the map p being
proper. Expanding the R* factor of R™ radially from 0 until B covers all of R* then
gives a path in €™ from M to the empty manifold, so Woen’k =0 in the cases k > d.

When k < d transversality and properness of p imply that p_l(O) =MnN ({O} XR”_R)
is a closed submanifold M, C M of dimension d — k. The manifold M, inherits an
orientation from the given orientation of M and an orientation of R”* which pulls back to
an orientation of the normal bundle of M, in M. Thus M, gives an element of Qg?k’n_ e -
By a standard transversality argument, the association M +— M| determines a well-defined
map ¢ :m, ek Qg_ok’n_k , and this is a homomorphism since the sum is disjoint union in
both cases. Moreover, ¢ is surjective since we can choose M = R” x M, for any cobordism
class [M,] € Qg?k’n_k.

To show that ¢ is injective, first deform a given M near M, so that M agrees
with R” x M, in a small neighborhood of M. Then by radial expansion of R¥ we can
construct a path in €"* connecting M to R* x M,, so we may assume M = R* x M,.
If we are given another M’ e C™* with [M,] = [M{] in Qg?k’n_k, we may similarly
assume M’ = R* x M. Since [M,] = [M}] there is a cobordism V C I x R"™* from
M, to M}, and we can assume this lies in I x (0,1)"* ¢ I x R"™*. Let W be the
submanifold R*™! x V ¢ R", extended by M in R* ! x (—00,0] x R™* and by M’ in
R x [1,00) X R™*. Translating W from 400 to —oco in the kth coordinate of R™
then gives a path in ™" from M to M’. This shows @ is injective. O

T M=
/

[L'Q MO _\/)

N\

Now we turn to proving the second assertion of Proposition 3.1, the homotopy equiv-
alence BM™* ~ €"**! " We will define a map o : BM™" — "' and show this induces
isomorphisms on all homotopy groups. A point in BM™" is given by a p-tuple of points
in M™* and a point in AP with barycentric cooordinates wy, - - -, w,. When

ml’-.-,mp

we form the product my ---m,, we obtain manifolds M, .-, M, whose (k + 1)st coordi-
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nates lie in intervals [ag, a;], [aq, a5, -, [a,_1,0a,] for 0 =ag < ay <--- < a,. The union
of the manifolds M, is a manifold M € Rt However, M does not depend continu-
ously on the given point of BM"™" since as the weight w, or w, goes to 0, the manifold
M, or M, is suddenly deleted from M . Furthermore, when w, goes to 0 the remaining
manifold is suddenly translated a distance a; to the left in the (k 4 1)st coordinate of
R™. The latter problem can easily be resolved by dropping the restriction a, = 0 and
translating in the (k + 1)st coordinate so that the barycenter b = ). w;a; is at 0.

To fix the other problem we choose “upper and lower barycenters” b™ and b~ by
letting a; = max{a;,b} and a; = min{a;,b}, then setting b™ = > w;a] and b~ =
Zi w;a; . Then we have ay <b~ <b < bt < a,, with all these inequalities strict unless
they are all equalities (and hence M is empty). Now we define the map o: BM™* —
Cr**1 by taking the part of M in the open slab S(b~,b"7) = R¥ x (b7, b%) x R*7+71
and stretching this slab out to R™ by stretching the interval (b~,b") to (—o0,400) in
the (k + 1)st coordinate. More precisely, let L:R"™ — R™ be the map that is the identity
in all coordinates except the (k + 1)st coordinate, where it is the composition of a fixed
identification of (—oo, +00) with (—1,+1) followed by the unique affine linear map taking
[—1,+1] onto [b7,b7]. Then o of the given point in BM™" is defined to be L' (M).
Note that this definition works even in the degenerate case that b* = b~ = 0 when we
are just stretching the empty manifold. The map o is continuous since it is continuous on
each product AP x (Mn’k)p and is consistently defined when weights go to 0. The image

CrFt of @1 containing the empty manifold since

of o lies in the path-component
the image contains the empty manifold and BM™" is path-connected.

To show that o, :Wq(BM"’k) — wq(en”““) is surjective, represent an element of the
target group by amap f: DY — it taking 0D? to the basepoint of Gl , the empty
manifold. Thus we have manifolds M, = f(t) € C™*™ for t € D?. For the moment let
us fix a value of ¢ and let M = M,. The projection p: M — R* s a proper map,

R**L. Let z be a regular value and let

so its set of regular values is open and dense in
M, = p~'(z), a manifold of dimension d —k — 1. In the cases d < k + 1 the manifold
M.’E

that B x J is disjoint from p(M) in R*"!. By expanding each ball B x {a} for a € J to

R* x {a}, damping this expansion down to zero near 0.J, we obtain a deformation of M

is empty. Then we can choose a closed ball B C R” and a closed interval J C R such

to a manifold disjoint from the slices S(a) = R* x {a} x (0,1)" %! for @ in a subinterval
of J.

When d > k+1 the manifold M, can be nonempty, and we will achieve the same dis-
jointness property by using a process somewhat like the one used in the proof of Lemma 3.2.

First perturb M to make it agree with RF™! x M, over a neighborhood B x J of z .

14



Next, do the damped radial expansion in slices S(a) as in the cases d < k+ 1 to make M
agree with R*™ x M_ in all slices S(a) for a in a subinterval J' of J. Since M is in the
component CFT of @F 1 the cobordism class [M,

bounds a manifold V in I x R"*~1 We place the I factor of this product in the kth

coordinate of R¥. Then translation in this coordinate as in the proof of Lemma 3.2, but

| is zero in Qg?k_lﬁn_k_l, so M,

now damped down near 9.J', gives a further deformation of M to make it disjoint from

all slices over a subinterval of J'.

For nearby values of ¢ we can use the same product B x J. Using compactness of
D? we can then choose a cover of D? by finitely many open sets V; with corresponding
products B, x J, as above for ¢t € V,. After shrinking the intervals .J, appropriately,
we can assume they are all disjoint. Then we can perform the deformations of M, for
different products B, xJ; independently, damping the deformation for B, x.J;, down to zero
outside slightly smaller open sets U, that still cover D?. Performing these damped down
deformations for all the products B; x J; produces a new map f: D? — Qi homotopic
to the old one by a homotopy which is constant for ¢t € 9D? since the manifold M, is
empty there. We discard the original f and work now with the new family f(t) = M,.

We can choose slices S(a;) disjoint from M, over U, with a; € J;, and we can
choose corresponding weights w, via a partition of unity subordinate to the cover {U,}
of D?. Over a neighborhood of dD? we can choose just the slice S(0) with weight 1.
By taking the parts of M, in the slabs between adjacent slices S(a;) we obtain a map
g: D7 — BM™* taking DY to the basepoint. The composition og is homotopic to f by
expanding the intervals (b, ,b;") for the family g(t) to (—oo, +00), thereby deforming the
maps L, to the identity.

The argument for showing o is injective on m_ is similar. Here we start with a map

q
g:57 = BM™F and a map f: D! — @"F ! restricting to og on S7. We deform the
family f(t) = M, by the same procedure as before, expanding in various slices S(a) to

make M, disjoint from slices S(a;) over sets U, covering D™

, with weights w,; coming
from a partition of unity supported in the cover {U;}. Over S? this deformation of f
induces a corresponding deformation of g since slices are preserved during the deformation.

We use the same notations for the new f and g. The maps L, that occur in the definition
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of og are initially defined over S?, and we extend them so that they are defined over all of
D9 by deforming them to the identity as ¢ moves across a collar neighborhood of $? in
D then taking them to be the identity over the rest of DY, We then obtain a map
f1 DT — BM™* by taking the parts of L,(M,) between the slices L,(S(a,)), with the
weights w, on these slices. A homotopy from f to f' on S¢ is obtained by letting the
weights on the slices for f decrease to 0 while the weights on the slices L,(S(a;)) for f
increase from 0 to their chosen values w;. Thus f is homotopic to a map that extends

over DY which shows that o is injective on Ty O

4. Delooping: the Harder Case

1to

In this section we restrict to the case of surfaces, so d = 2. We also take C°
consist of surfaces in R x (—1,1)% rather than R x (0,1)>. This does not change the
homeomorphism type of €', and the new €' fits better with the definition of M,

so there is a map o: BM™ — > defined just like the o in the preceding section.

Proposition 4.1. The map o: BM™ — C°! is a homotopy equivalence.

Proof. We break the argument into two parts by defining a space e;"”l with maps
BM™ & et o et

such that the composition op is homotopic to 7, and then we show that p and 7 are

homotopy equivalences. This implies that ¢ is also a homotopy equivalence.
A point in Ggo’l consists of an oriented surface S in €' with numbers ag < - <ay,

p > 0, and corresponding weights w; > 0 summing to 1, such that:

(i) SN(Rx(=1,0]x(=1,1)*) = ZN(Rx (—1,0] x (—1,1)°), a half-cylinder B that we

call the base of S. Furthermore, the orientation of S agrees with a fixed orientation
of B.

(ii) SNS(a;) =ZnNS(a;) for each i and S is tangent to Z to infinite order along these
circles.

(iii) The intersection of S with each slab between adjacent slices S(a;) and S(a;,) is
connected.

When a weight w; is zero the corresponding a; can be deleted. There is a map p: Ggo’l —

BM® obtained by restricting to the parts of surfaces between adjacent slices, and there

is amap 7: (:’Eo’l — ! forgetting the extra data. The composition op is homotopic to

7 by expanding the intervals [b~,b"] in the definition of o to [—o0, 4+-0c].
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First we show that p induces isomorphisms on all homotopy groups. For this it suffices
to show that for every map f: DY — BM™ with alift f:0D? — €' there is a homotopy
of f and a lifted homotopy of f to new maps g and g such that g extends to a lift of g
over all of D?, for arbitrary ¢ > 0. (Both BM®™ and Gio’l are path-connected so there

is no need to consider the case ¢ =0.)

As in the definition of o, we view f as defining a family of surfaces S, in R with
slices S(a,(t)) and weights w,(t), for t € D?. The lift f over dD? gives an enlargement
of the surfaces S, so that they extend to foo in the first coordinate. We can assume
the barycenters b(t) are always at 0. The slices S(a,;(t)) cut S, into pieces, and the first
step in the deformation of f and f is to spread these pieces apart by inserting “padding”
consisting of a piece of the cylinder Z of width ew,(t) at the slice S(a;(t)) for each i. This
spreads the slices apart, and we take the new S(a;(t)) to be at the center of the inserted
piece of Z. Again we translate so that the new barycenters are at 0. Letting £ go from
0 to 1 gives a deformation of f and fv to new maps f and fv which we use for the next

step of the argument.

We replace the construction of the intervals (b~,b") by a different construction of
intervals (¢ (t),c"(t)) that contain at least one point a,(t) as follows. For fixed t € DY
choose slices S(a~(t)) and S(a™(t)) from among the slices S(a;(t)) with nonzero weights
w,(t), such that o~ (t) < 0 < a™(t). Expand the interval [a~(t),a™(t)] slightly to an
interval [~ (t), ¢ (t)] by including a little of the padding around a~ () and a™(t). The
same choices of a*(t) and ¢*(t) work in a small neighborhood U of ¢-values. Extend the
functions gpi (t) over all of D? by letting them be 0 outside a slightly larger neighborhood
V' and interpolating continuously in V' — U. Since D? is compact, finitely many such
neighborhoods U suffice to cover D?. Call these neighborhoods U ;» With corresponding
intervals [aj_(t),a;r(t)] and [goj_(t),gp;r(t)]. Now define the interval [c¢™(t),ct(t)] to be
U; w5 (1), gpj(t)] The key properties of [c¢™(t),ct(t)] are that it is contained in a small
neighborhood of [a(t), a,(t)] and it contains [a; (%), a;'(t)] for t € U;.

Let g(t) be the family obtained from f(¢) by replacing the slices S(a,;(t)) with the
slices S (af(t)), with weights wj.[(t) given by a partition of unity for the cover of D? by
the neighborhoods U;. A homotopy from the family f(¢) to the family g(¢) is obtained
by letting the weights go linearly from their values for f(¢) to their values for g(¢). Over
dD? this lifts to a homotopy of f(¢) to a lift §(¢) of g(t) since we are not changing S, .
Finally, by expanding the intervals (¢~ (t),c"(t)) to (—o0, +00) we obtain homotopies of
g(t) and §(t) to h(t) and h(t) such that h(t) lifts to h(t) over all of D?. Thus p induces

isomorphisms on all homotopy groups.
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It remains to see that the map 7: ej"’l —e™liga homotopy equivalence. Its image
is contained in the subspace C‘?Zo’l c ! consisting of surfaces satisfying just the ‘base’
condition (i) above. It is easy to see that the inclusion map i : 620,1 — @>" is a homotopy
equivalence by constructing a homotopy inverse j: €™ — @go’l as follows. For S € @
let S’ be the surface obtained from S by compressing the interval of the second coordinate
x, from (—1,1) to (1/2,1). Then let 5(S) = S’UZ. A homotopy from ij to the identity is
obtained by first realizing the z,-compression via an isotopy, then introducing the cylinder
Z by an isotopy, namely, take the part of Z with x; > ¢ and cap off its boundary circle
with a disk (smoothly), then let ¢ go from 400 to —oo to obtain the isotopy. A homotopy
from the other composition ji to the identity can be constructed as an isotopy from S’ UZ
to S for S € 620,1 which ‘zips’ S” to Z by the isotopy shown in the figure below, moving
the ‘zipper’ from +oo to —oo and re-expanding (S — B)" back to S — B.

L ——

D —

\

To show that the map Gzo’l — C‘?Zo’l induces an isomorphism on homotopy groups we
start with f:D? — Ggo’l and a partial lift f:9D? — @' There will be three steps. As
notation we let S[a,b] denote the slab between the slices S(a) and S(b).

(1) In this easy preliminary step we deform f and f so that the slices S(a,(t)) in the
family f all lie in the slab S[—1,1]. First we deform f so that the slices S(a;(t)) vary
continuously not just over the set where the corresponding weights w;(t) are nonzero,
but over the closure of this set as well. We do this by modifying the weights by stretching
the interval [0, max{w,(t)}] to [— max{w,(¢)}, max{w,(t)}], discarding slices whose weights
are then negative, and rescaling so that the new weights sum to 1. After doing this we
do translations in the first coordinate of R* to move the barycenter of the set of slices
S(a;(t)) to 0 for all ¢t € 9D?. Then we rescale the first coordinate to squeeze all these
slices into S[—1, 1], using the fact that the values a,(t) are bounded as ¢ ranges over the
compact space 0D?. These translations and rescalings over 0D? can be extended over

D?, damping them off as we move into the interior of DY.

(2) Next we deform the family S, so that for each ¢, the subspace S, N S[—1,1] of S,

is contained in the base component of S,, the component containing the half-cylinder B.

18



Thus, each point of S, NS[—1, 1] will be joinable to B by a path in S,, although this path
need not stay in S[—1,1]. We can achieve this as follows. For fixed t choose a slab S[a, b]
slightly larger than S[—1, 1] with S(a) and S(b) transverse to S,. If a component C' of
S,NSa, b] does not lie in the base component of S, , we can create a tube in Sla, b] joining
C' to the base component by the deformation shown in the figure below which takes a pair

of small

disks in S;, one in C' and the other near B, and drags these disks to +o0o in the first
coordinate of R” to create a pair of tubes to 4oo, then these tubes are brought back
from oo joined together so that the given orientation of S, extends over the new tube.
We can do this simultaneously for each such component C', and after this is done, all of

S,NS[—1,1] lies in the base component of S, since S, N S[a, b] lies in the base component.

To do this procedure for all ¢t we first use compactness of D? to choose a finite cover
of D? by open sets U, with slabs Sf[a;,b;] containing S[—1, 1] such that the slices S(a;)
and S(b;) are transverse to S, over the closure U, of U;,. The pairs of disks that we
use to create tubes making S, N S[a;, b;] connected will be small neighborhoods of pairs
of points p;; and ¢;;, with ¢;; near B. The main concern will be choosing all these
points to be disjoint for fixed ¢ and varying ¢ and j. This is easy for the points g;;
which lie near the fixed B, so we focus attention on the points p;;. We choose the p,; by
induction on 4. For the induction step of choosing p;; over U,, note first that the surface
S, N Sla;,b;] varies by isotopy as t ranges over U,, so we can regard S, N S|a,,b;] as being
independent of ¢ over U,. Inductively we assume we have already chosen points p,, for
k < i, each point p,; being defined and varying continuously over some closed ball in U, ,
with all these points p,; being disjoint for each ¢. To begin the induction step we make

an initial choice of points p;; in the components of S, N Sla;,b;] disjoint from the base.

79
To achieve disjointness from the previously chosen p,; we will use a simple “scattering”
trick to replace each p;; by a finite number of nearby points, using the following easy fact

whose proof we leave as an exercise:
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Lemma 4.2. Let K be a closed set in D x DY intersecting each slice D¥ x {t} in a finite
set, with p > 0. Then there exist finitely many distinct points p,. € DY with corresponding
open disks V. covering D such that K is disjoint from {p,} x V, for each r.

We apply this once for each point p;;, with DP? a neighborhood of pij in S, D =1U,,
and K the union of the previously chosen points p,; for ¢-values in U;. The result is
that each p,; is replaced by a number of points p;;. with the desired disjointness. For
convenience we relabel these points just as p;;, each p;; living over a subball U,; of U,.
This gives the induction step for choosing the points p;; .

Having chosen all the pairs p;;, g;; to be disjoint for each ¢, we can deform the family
S; to create tubes joining these pairs, damping the deformation for the tube from p;; to

¢;; down to zero near the boundary of U, ., with this damping being done in such a way

ij
that the full isotopies take place in slightjly shrunk versions of U;; that still cover D7,
Since the ambient space is R™, we can choose all the tubes to be disjoint at all times.
Over 0D we can choose the tubes to lie outside the slices S(a;) and the slabs between
these slices since the points of .S, in these slices and slabs already lie in the base component
of S,, and we arranged in step (1) that these slices and slabs lie inside S[—1, 1], so we can
choose the tubes to go to either +00 or —oo so as to miss these slices and slabs. This
guarantees that the deformation of f that we have constructed induces a corresponding

deformation of f over §D.

(3) The final step is to make each S, intersect at least one slice S(a) in S[—1, 1] trans-
versely in a connected set, a single circle. The idea will be to insert tubes that lie in a
neighborhood of S(a) so as to join different circles of S, NS(a) together, as shown in the
figure below. Doing this for parametrized families will require a more refined variant of the

procedure we used in the preceding step to connect different components of S, together.

Suppose S, meets a slice S(a) in S[—1, 1] transversely in more than one circle. For each
circle C; of S, N S(a) that does not intersect the base choose a path a; in S; — B from
a point p; € C; to a point ¢; near B. Step (2) guarantees that such a path exists. We
can assume that «; is an embedded arc. (It will not matter if o intersects some C}’s at

interior points of «; .) We extend the end of a; near B by an arc to —oo parallel to B,
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still calling the extended arc a;. We also insert corresponding disjoint arcs 3, parallel to
B and closer to it, extending to +o00 as well as —oo.

If the arcs «; are in general position, they will intersect only in interior points that lie
in the sections not parallel to the baseline, and then we can eliminate any intersections of
a; with other a,’s by pushing these «;’s off the end of «; at p; by an isotopy S, — S,
supported near a;. This does not introduce any intersections among the other «;,’s since
the isotopy of the . ’s is the restriction of an isotopy of S;. Doing this for each «; in
turn, we can thus take all the «;’s (and 3;’s) to be disjoint.

We can modify S; by a surgery operation that attaches a thin tube T} joining a point
z; of a; to the point y,; of 3; having the same first coordinate as z;. We embed T} in
R so that it lies in a small neighborhood of the slice through z; and y;. By letting z;
move along a; from the end at —oo to the end at C; while y,;, moves simultaneously along
B; we obtain a deformation of S,. Doing this for all the circles C; at once, we deform S,
to a surface S; such that S; N S(a) is connected. (There is no problem with making all
the tubes T disjoint in R*.) By an isotopy of S, supported near S(a) and fixed on B
we can then make S; coincide with the cylinder Z near S(a).

For nearby t-values the curves C; in S, N S(a) vary by small isotopies and we can

take the arcs a; and 3; to vary by small isotopies as well, staying disjoint for each ¢. By

compactness of DY we can then choose a cover of DY by open balls U, such that over U,

there is a slice S(a;) in S[—1,1] transverse to S,, with arcs a,; going from —oo to the

i
components C;; of S, NS (a;) disjoint from the baseline, along with corresponding arcs
B,;; near the baseline. For fixed ¢ all the arcs «;; and j;; are disjoint for each ¢ € U,,
and our next task will be to make them disjoint as ¢ varies as well.

The arcs ;; are parallel to B and can easily be chosen to be disjoint by induction on
i. For the arcs «;; we also proceed by induction on 4, so we assume inductively that we
have already made the arcs o;; with k£ < ¢ disjoint for each ¢t. We will show in the next
paragraph how we can do a preliminary adjustment so that for each t € U,, no arc Qi
passes through the endpoint p;; of another «;; with £ < i. Assuming this has been done,
any intersections of «;; with arcs ay; for k < i will involve only interior points of ay;.
These intersections can be eliminated by the same sort of procedure as before, pushing the

arcs ay; off the end of a;; at p;; by an isotopy S; — S, supported near «;;, damping

this isotopy down to zero outside Uj. ’
The preliminary adjustment so that arcs «,; are disjoint from the endpoints py; of

arcs ay,; with k < i can be done by a variant of the scattering trick used in step (2) above.

First thicken the arcs «;; to narrow bands of arcs parallel to «;;. Then for a fixed ¢ all

but finitely many of these parallel arcs will be disjoint from the finitely many endpoints
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pr; With & < 7. Choose one of these arcs disjoint from p;,;’s for each j. These choices
extend continuously for nearby values of ¢ as well. Thus we can cover U, by finitely

many neighborhoods U;, with new choices of arcs «,;, in each of these neighborhoods,

such that «,;, satisfies the disjointness condition we are trying to achieve. We can choose

T
the arcs «,;, to be disjoint from each other for each ¢ € U, since we are free to choose
;. from an open set of the arcs parallel to a,;. We choose corresponding slices S(a;,.)

near S(a;) and connect «,;,. to the corresponding circle

wJr
Cyjr of Sy N S(a;.) as in the figure.  To complete the

induction step we then replace U;, S(a;), C;;, and a; Q) ) ]
by the collections U;,., S(a;.), C;;,., and a;;, and then

r
relabel to eliminate the extra subscripts r.

Having all the arcs «;; and f;; disjoint, we can use these to construct a well-defined
deformation of the family S, to create tubes T;; over U; making S, agree with the cylinder
near S(a;) as described earlier, damping this deformation down near the boundary of U,
as usual. For the resulting family S; there is one problem remaining, however. Because
the deformations for each U; are damped off near the boundary of U;, the tubes T},
may intersect the slices S(ay,) for other Uy ’s, perhaps destroying the connectedness of the
intersections S; N S(a;). To avoid this problem we first make sure the tubes T;; are very
thin while they move to their final destination. Then there will always be plenty of slices
S(ay;) near S(a;) that are disjoint from the moving thin tubes, and we use these slices
S(ay;) instead of the original slices S(aj). (This is another instance of the scattering
idea.)

Once we have deformed S, to meet certain slices S(ay,) in single circles, the parts of
S; in the slabs between these slices will be connected since inserting the tubes T}, does
not destroy the property that these parts of .S, lie in the base component of S, , from step
(2). Thus we have constructed a homotopy of the family f(¢) € Ggo’l to a family g(t)
having a lift §(¢t) € €' obtained by choosing weights for the slices S(a,). Over dD?

the slices S(a;) of f(t) all lie in the slab S[—1,1] by step (1), so in step (3) there is no
need to modify S, for t € 9D1. 0

The argument in the preceding proof can be applied to manifolds of higher dimension
d > 2, but it proves a weaker result, namely that ! s homotopy equivalent not to
the classifying space of a monoid, but to the classifying space of a topological category, a
category whose objects are smooth closed connected oriented manifolds of dimension d —1
embedded in R>™ and whose morphisms are connected oriented cobordisms of dimension
d embedded in slabs [0, a] x R*.
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5. Some Variants

Nonorientable Surfaces

The restriction to oriented surfaces can easily be dropped. The statement is then that

for the standard nonorientable surface N__ of infinite genus there is an isomorphism
H, (BDiff,(N..)) = H,(QFAGL, )

where AG is the version of AG without chosen orientations on the affine planes. Thus
EZ’Q is the Thom space of a bundle over the Grassmann manifold of unoriented 2-planes
in R", namely the bundle of vectors normal to these 2-planes. In the nonorientable case
the monoid 7w, M is not Z~, but something slightly more complicated, corresponding
to diffeomorphism classes of closed connected surfaces under connected sum. The group
completion of this monoid is still Z, however. The theorem can be restated in terms of
mapping class groups of nonorientable surfaces since these satisfy homology stability by

[W1] and the Earle-Eells theorem applies also to nonorientable surfaces.

Punctured Surfaces

Surfaces with punctures can be treated in the same way, provided that one stabilizes
with respect to both genus and number of punctures. Viewing the punctures as distin-
guished points on a surface rather than deleted points, let Diff, (S, , P) be the group of
compactly supported diffeomorphisms of the infinite genus surface S, that leave an infi-
nite discrete closed set P in S, invariant, perhaps permuting finitely many of the points
of P. The space AG,, , is enlarged to a space A"G,, , of oriented affine 2-planes in R"
with at most one distinguished point in the 2-plane, where the case of no distinguished
point is regarded as the limiting case of a distinguished point that approaches infinity in

the 2-plane. The statement of the theorem is that there is an isomorphism

The space AG,, 5 is a retract of A*G,, , by the map that forgets the distinguished point,
and this retraction extends to a retraction of one-point compactifications. The quotient
space A*G:Q /AG:{Q can be identified with the Thom space of the trivial n-dimensional
vector bundle over G,, 5 by regarding this bundle as the sum of the two canonical bundles
over GG, , consisting of vectors in a given 2-plane and vectors orthogonal to it; the vector
in the plane gives a distinguished point in the plane, and the vector orthogonal to it tells
where to translate the plane. In the stable homotopy category retractions give wedge sum

splittings, so we have an equivalence

OFA™GL 5 ~ QFAGL 5 x Q7 S™ ((Goo ) )

00,2 —
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using the fact that the Thom space of a trivial n-dimensional bundle over X is the n-fold
suspension S™(X_ ), the subscript + denoting union with a disjoint basepoint.

This theorem gives information about homology of mapping class groups of finite
surfaces since Diff (S, , P) has contractible components and homology stability is known
to hold for mapping class groups not just for stabilization with respect to genus but also
with respect to the number of punctures [BT], [Han|, [HW].

More refined results that cover stabilization with respect to genus for a fixed number

of punctures can be found in [BT].

The Zero-Dimensional Case

The parts of the proof of the Madsen-Weiss theorem in Sections 2 and 3 that apply
to manifolds of arbitrary dimension become somewhat simpler in dimension 0 and, with
only a small extension, suffice to prove the classical Barratt-Priddy-Quillen theorem. Let

us describe the steps and the simplifications.

(1) The space C" consists of configurations of discrete sets of points in R", and Propo-
sition 2.1 becomes the statement that C" is homotopy equivalent to S™, the subspace
consisting of configurations with at most one point. A continuously-varying tubular neigh-
borhood of such a configuration can be obtained by taking balls centered at the points
in the configuration, of radius equal to the minimum of 1 and one-third of the minimum
distance from the point to other points in the configuration. The procedure in the proof

of Proposition 2.1 then gives a deformation retraction of €" onto S™.

(2) Lemma 3.2 becomes the statement that WOGn’k =0 for £ > 0, with a trivial proof
since a configuration in C™" can be pushed to infinity by radial expansion in the R” factor

from any point not in the projection of the configuration to R”.

(3) Proposition 3.1 becomes the statement that BM™" ~ ™" for k > 0. The proof
only uses the easier case that d < k 4 1, when the manifold M, is empty.

(4) The argument for the cases k > 0 in the proof of Proposition 3.1 works just as well
for k=0 to give an equivalence BM™" ~ €™'. There is no need to replace M"™° by a
monoid M", nor is there a need to let n go to infinity. Thus the more intricate arguments
in Section 4 are completely unnecessary.

(5) The group completion theorem yields an isomorphism H*(UQMZ’O) >~ H,(Q,BM™°)
where MZ’O is the component of M™ consisting of configurations with ¢ points. This

holds for any n > 0 including n = oco.

(6) Putting together the previous steps, we get H*(UQMZ’O) ~H, (Q)S™) for 1 <n < 0.

24



The case n = 1 is not interesting since M;’O is obviously contractible, as is 2,5 L
For n = 2 the space Mf]’o is homotopy equivalent to the space of configurations of g
unordered points in the plane, a classifying space for the braid group B, for braids with g
strands. The other case when MZ’O isa K(m,1) is when n = oo and M;O’O is a classifying
space B for the symmetric group 3. Thus we have proved the Barratt-Priddy-Quillen

theorem and a theorem of Fred Cohen:
Theorem. H,(U,%,) = H,(Q°S>) and H,(U,B,) = H,(255?).

As an easy extension of these results, we can consider configurations in €" whose
points are labeled by points in a fixed space X . Such labeled configurations form a space
C"(X) topologized to allow the labels to vary continuously over X . There is no difficulty
in extending the preceding arguments to the context of labeled configurations since the
only deformations of configurations that were used involved pushing points to infinity, and
this can be done for labeled points just by keeping the labels unchanged. The space C"(X)
has the homotopy type of the subspace of single-point or empty labeled configurations, so
this is (8™ x X)/(oco x X) which is the same as S" (X ), the n-fold reduced suspension
of X with a disjoint basepoint adjoined. Assuming for simplicity that myX = 0 so that
the path-components of Mn’O(X ) are the subspaces MZ’O(X ) with g labeled points, we

conclude that there are isomorphisms
H,(U,MP(X)) = H,(Q4S™(X,)) for 1 <n < oo

Ignoring labelings gives a fiber bundle X9 — MZ’O(X ) —> MZ’O. For example if we take
n = oo and X = BG for a discrete group G then MEO’O(BG) is a classifying space for

the wreath product G, and we obtain isomorphisms
H,(Uy(G13y)) = H,(Q5 ST (BG,))

The homology of G, is known to stabilize with g, as shown in [HW] for example. One

could also take n = 2, replacing symmetric groups by braid groups, to obtain isomorphisms
H,(U,(G1B,)) = H,(235%(BG.))

where the homology on the left again stabilizes by [HW].
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Appendix A. Classifying Spaces for Diffeomorphism Groups

The most classical of classifying spaces are the classifying spaces for vector bundles.
The classifying space for real vector bundles of dimension k is the Grassmannian G ; of
k-dimensional vector subspaces of R, the direct limit of the Grassmann manifolds G|, ;
of k-dimensional vector subspaces of R™. (This notation is not quite consistent with the
notation earlier in the paper, where G, , meant the 2-sheeted cover consisting of oriented
k-dimensional vector subspaces of R*.) There is a canonical vector bundle E__ , over
G 1 consisting of the pairs (v, P) € R™ x G, with v € P. This is a universal k-
dimensional vector bundle in the sense that every vector bundle £ — X is induced from
the universal bundle by some map X — G, which is unique up to homotopy. Some

mild restrictions on X are needed for this, for example that X is paracompact.

If we shift our point of view from vector spaces to automorphisms of vector spaces,
there is an associated fiber bundle over G, , whose fibers are GL(k,R) rather than R".
This bundle is often written as EGL(k,R) — BGL(k,R) where BGL(k,R) is just another
notation for G, and EGL(k,R) is the space of linear embeddings f: RF — R*, with the
projection EGL(k.R) — BGL(k,R) sending an embedding f to its image f(R"). Since
a linear embedding f is determined by where it sends the standard basis of R”, one could
also describe EGL(k,R) as the Stiefel manifold of k-tuples of linearly independent vectors
in R . The condition of linear independence can be strengthened to orthonormality, which
amounts to requiring the embeddings f to be isometric embeddings, and then GL(k,R) is
replaced by the orthogonal group O(k) and one has a fiber bundle FO(k) — BO(k) with
fiber O(k). This does not affect the homotopy types of the spaces, and in fact BO(k) is
the same space as BGL(k,R), namely G, .

A key feature of EGL(k,R) and EO(k) is that they are contractible. It is an ele-
mentary fact (see [H1], Proposition 4.66) that whenever one has a fiber bundle or fibration
F — F — B with E contractible, then there is a (weak) homotopy equivalence F' — QB.
Thus O(k) ~ QBO(k) = QG -

Entirely analogous considerations hold for smooth fiber bundles with fiber a smooth
compact manifold M. A classifying space for such bundles is the space BDiff(M) =
C(M,R*>) of smooth submanifolds of R> diffeomorphic to M. (The notation C(M,R>)
conflicts with that used earlier in the paper since we are ignoring orientations now.) The
topology on CG(M,R>) is the direct limit of its subspaces C(M,R"™) which are in turn
given the quotient topology obtained by regarding C(M,R™) as the orbit space of the
space of smooth embeddings M — R"™ (with the usual C* topology) under the action of
Diff(M) by composition.
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There is a canonical bundle (M, R>) — C(M,R>) with fiber M, where £(M,R™)
consists of pairs (v, P) in R x G(M,R>?) with v € P. To see that this bundle is locally a
product, consider a given P C R" diffeomorphic to M with an open tubular neighborhood
N that is identified with the normal bundle to P in R"™. Then the sections of this bundle
form a neighborhood of P in C(M,R"), and projecting these sections onto the 0-section
P gives a local product structure for the projection &(M,R") — C(M,R"™), compatibly
for increasing n, hence also for the direct limit €(M,R>) — C(M,R>).

The bundle &(M,R™) — C(M,R*°) is universal for smooth bundles with fiber M
over paracompact base spaces, by essentially the same argument that shows the vector
bundle E_ ; — G, is universal; see for example the first chapter of [H2]. Realizing a
given bundle M — F — B as a pullback of the universal bundle is equivalent to finding
a map F — R* which is a smooth embedding on each fiber. Locally in the base B
such maps exist by combining a local projection onto the fiber M with a fixed embedding
M — R"™. These local maps to R"™ that are embeddings on fibers can then be combined to
a global map E — R that is an embedding on fibers via a partition of unity argument
just as in the vector bundle case. Thus every bundle M — E — B is a pullback of the
universal bundle via some map B — C(M,R>). Uniqueness of this map up to homotopy
follows from the uniqueness of the map E — R® up to homotopy, which is shown just as
for vector bundles by composing with linear embeddings R*® — R onto the odd or even
coordinates, using straight-line homotopies.

There is also an associated bundle Diff(M) — EDiff(M) — BDiff(M) whose total
space EDiff(M) is the space of smooth embeddings M — R°°. The fiber bundle property
can be proved using tubular neighborhoods and sections as before. The space EDiff(M) is
contractible by pushing each embedding M — R°° into the odd coordinates by composing
with a linear isotopy of R into the odd coordinates, then taking a linear isotopy to a
fixed embedding of M into the even coordinates.

Since we have a fiber bundle Diff(M) — EDiff(M) — BDiff(M) with contractible
total space, it follows that Diff(M) is weakly equivalent to QBDiff(M). In particular,
BDiff(M) is a K(m,1) for the mapping class group of M if the components of Diff(M)

are contractible.
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Appendix B. The Earle—Eells Theorem

Let S be a compact connected surface, not necessarily orientable and possibly with
boundary. In this appendix we use the notation Diff(.S) for the group of diffeomorphisms
of S that restrict to the identity on 9.5, with the C°° topology as usual.

Theorem B.1. The components of Diff(S) are contractible except when S is the sphere,

projective plane, torus, or Klein bottle.

In the exceptional cases the components of Diff(.S) are homotopy equivalent to SO(3)
for the sphere and projective plane, S* x S* for the torus, and S* for the Klein bottle.
These statements could be proved by mild extensions of the arguments below.

The theorem was first proved in [EE] and [ES] for orientable surfaces. We will give
an exposition of Gramain’s proof in [Gr]. This is based on a proof by Cerf for the case
S = D? in [C1], later republished in the appendix of the often-cited volume [C2]. This
special case already contains the key trick that makes the proof so simple. In the write-up

below this trick occurs at the very end.

Proof. There will be three main steps.

(I) Reduction to the case of nonempty boundary.
Assume 0S is empty. By evaluating diffeomorphisms S — S at a basepoint z, € S we

obtain a fibration

Diff(S, z,) — Diff(S) — S

whose fiber Diff(.S, z) consists of diffeomorphisms fixing z,. From the long exact sequence
of homotopy groups for this fibration we obtain isomorphisms m;Diff(S) = =, Diff(S, )
for i+ > 1 since m;(S) = 0 for 4 > 1 from the assumption that S # S, P?. We can also
deduce that mDiff(S) = = Diff(S, z,) by looking at the end of the long exact sequence

0 — 7, Diff(S, m) — m,Diff(S) —> 7, (S, z,) — 7 Diff(S, z,)

where it suffices to show that the final map 0 is injective. To verify injectivity, recall
from the construction of the long exact sequence that 0 sends the homotopy class [v]
of a loop v in S at the basepoint z, to the isotopy class [f] of the diffeomorphism
f:(S,xy) — (S,z,) obtained by dragging z, around 7 and extending this to an isotopy
of S ending at f. The automorphism of (S, z,) induced by f is conjugation by =, so
the composition (S, z) N moDiff(S, o) — Aut(m, (S, zy)) is injective since (S, x;)

has trivial center for S as in the theorem. Hence O is injective.
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Next we look at another fibration, this one obtained by evaluating diffeomorphisms

of (S,z,) on a closed disk D which is a neighborhood of z.
Diff(S, D) — Diff(S, zy) — Emb((D, z), (S, z,))

The fiber Diff(.S, D) consists of diffeomorphisms fixing D and the base is the space of
smooth embeddings D — S fixing x,. We have Diff(S, D) ~ Diff(S,) for S, = S—int(D).
There is a projection Emb((D, z,), (S, z,)) — GL(2,R) obtained by taking the derivative
at x,, and this is a homotopy equivalence as is true for manifolds of any dimension by a
very special case of tubular neighborhood theory. Since GL(2,R) ~ O(2) we deduce that
m, Diff(S, z,) = 7, Diff(S, D) for i > 1, and we can again extend this to the case i = 1 by

examining the exact sequence:
0 —» m,Diff(S, D) —» m, Diff(S, z,) — mEmb((D, z,), (S, z,)) = m,Diff(S, D)

Here we have m Emb((D,z,), (S,z,)) = Z generated by a full rotation of D about x.
The map 0 sends this rotation to the diffeomorphism obtained by extending this rotation
to a diffeomorphism of S, which we can take to be a Dehn twist about a curve parallel to
0D . This twist and all its nonzero powers induce nontrivial inner automorphisms of the
free group m,(Sy,y,) for a basepoint y, € 05, so injectivity of 0 follows.

Thus we have shown that m;Diff(S) = 7, Diff(S, z,) = m;Diff(S,) for all ¢ > 0, which

gives the reduction to the case that 05 is nonempty.

(IT) Reduction to contractibility of certain spaces of arcs.
We assume that 0.5 is nonempty from now on. Consider smooth embeddings I — S joining
two given points p and ¢ in 95 and whose images are proper arcs in S, intersecting 95
only in their endpoints. Fixing one such embedding «, let A(S, «) be the space of all such
embeddings I — S isotopic to « fixing the endpoints. In step (III) we will show that
A(S, «) is contractible, and let us now show that this implies that the path-components
of Diff(S) are contractible.

Since all the path-components are homeomorphic, it suffices to show this for the path-
component Diff;(.S) of the identity map.

Evaluation of diffeomorphisms on «(I) gives a fibration
Diff,(S, o) — Diff,(S) — A(S, «)

whose fiber consists of diffeomorphisms in Diff,(S) restricting to the identity on «(7).
Under the assumption that A(S,«) is contractible, we have myDiff,(S, a) = = Diff,(S5)
from the long exact sequence of homotopy groups, so Diff,(S, ) is the identity component
of Diff(S, a), the diffeomorphisms of S fixing S and «(I). Thus Diff,(S, ) ~ Diff,(S")
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where S’ is obtained from S by cutting along .. From the long exact sequence we conclude
that Diff,(S) ~ Diff,(S’).

We can reduce S to a disk by a finite sequence of cuts along nonseparating arcs, so
by induction on —x/(S) the problem is reduced to showing that DiffO(Dz) is contractible.

To show this we consider the fibration
Diff(D?) — Emb(D?, D*) — A(D?,«)

where D_2|_ is the upper half of D? and Emb(Di, D?) is the space of embeddings Di — D?
fixing D_2|_ N AdD? and taking the rest of 8D_2|_ to the interior of D?. Restriction to D'
OD? gives the map to A(D?, a) with a the inclusion D' — D*. The space Emb(D?, D?)
is contractible, by the standard argument that shows the space of embeddings of a collar on
the boundary of a manifold is contractible. So the map to A(D?,«) does indeed produce
embeddings isotopic to «. From the long exact sequence we see that contractibility of
A(D?,a) implies contractibility of Diff(D7) and hence of Diff(D?). (In particular this
shows that Diff,(D?) = Diff(D?).)

(III) Contractibility of the arc spaces.

It remains to show the spaces A(S, a) are contractible. The easier case is that a connects
two different components of 9S so we do this case first. Let T be the surface obtained
from S by filling in the component of 05 at one end of a with a disk, say the end at q.
Consider the fibration

Emb(I,S) — Emb(I U D*,T) — Emb(D? T — 0T

where U D? is formed by attaching 1 € I to a point in dD?, and Emb(I U D? T) is the
space of embeddings f:IUD? — T taking 0 to p and the rest of JUD? to the interior of
T. We assume also that f preserves orientation on D?, where we use f(I) to transport an
orientation of T at p to an orientation at f(1). It is not hard to see that Emb(I U D?, T)
is contractible. For example, by restricting embeddings f to I we get a fibration over the
space of embeddings I — T taking 0 to p and the rest of I to the interior of T", obviously
a contractible space, and the fibers are also evidently contractible.

The base space Emb(Dz, T — 0T) in the preceding displayed fibration has 7, = 0 for
i > 1. (One can see this by fibering over T—0T by evaluating embeddings D? — T—9T at
0.) From the long exact sequence of homotopy groups we conclude that the fiber Emb(Z, .S)
has contractible components. One of these components is A(S, a), so this takes care of

the case that p and ¢ lie in different components of 0.

The harder case is when « joins a component of 9S to itself. In this case let T

be obtained from S by attaching a rectangle R by identifying two opposite edges of R
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with arcs in 95 close to p on either side of p. (We can view R as a 1-handle.) The
effect of attaching R is that p and g now lie in distinct components of 97T'. Let § be an
arc in R joining the two nonattaching edges. Cutting 7" along [ produces a surface U

homeomorphic to S'.

It will suffice to show that the maps m, A(T — 3, «) — 7, A(T, «) are injective for all i since
the latter groups are trivial by the case already proved.

We prove injectivity of m, A(T — B,a) — m,A(T, ) by lifting to a certain covering
space T of T. Since T ~ SV S' we have m T = 7S *Z, and we let T be the covering
space corresponding to the subgroup 7S of 7S x Z. Explicitly, T is built from U by

attaching two copies of the universal cover Uof UtoU along the two copies of 8 in OU .

————————————

____________

All arcs in A(T,«) are isotopic to « so they have unique lifts to T isotopic to the
lifted copy of o in U C T. These lifts form a subspace A(T,a) of A(T, ) homeomorphic
to A(T, ) and we can identify the inclusion A(T — 3, ) < A(T, «) with the first of the

two inclusions

AU, 0) < A(T,a) — A(T, a)

It will suffice to show that the composition i: A(U,«) — A(T, a) of the two inclusions
induces injections on homotopy groups. We will do this by constructing a map in the
opposite direction r: A(T, a) — A(U, ) such that 7i is homotopic to the identity.

The interior of U is diffeomorphic to R? and U—oT is diffeomorphic to R x [0, c0).
Let fo be T with the part of oT lying in the two copies of U deleted. Via the two products

R x [0, 00) in TVO we can isotope TVO into U. The final map in this isotopy induces the map
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r and the restriction of the isotopy to U gives a homotopy from ri to the identity. This
finishes the proof. O

In the special case S = D? this argument shows that the space of smooth proper arcs
in D? with fixed endpoints has contractible components, but it does not show this space

is path-connected, which is equivalent to the Schoenflies theorem in the smooth category.

Appendix C. Rational Homology
The main result we prove here is:

Theorem C.1. H*(QPAGL, ,;Q) is a polynomial algebra Q[x,, x4, 4, - - -] on an infinite

. . 2
sequence of even-dimensional generators x,;, € H™".

As we will see, the method of proof is fairly general and applies equally well in many

other similar situations.

Proof. Recall that AG;2 is the Thom space of an (n — 2)-dimensional vector bundle over
the Grassmann manifold G, , of oriented 2-planes in R™ containing the origin. This is
an oriented vector bundle, so there are Thom isomorphisms I;Ti(AG:;z) ~ Hi_(”_z)(Gng)
for all 7.

The cohomology of G, , is the same as for CP™ in dimensions up to approximately
n, as one can see from the fiber bundle S* — V.2 — G, o involving the Stiefel manifold
V..o of orthonormal 2-frames in R". Since V,, 5 fibers over S™! with fiber S"7?, it is
(n — 3)-connected, so from the long exact sequence of homotopy groups for the bundle
st — Vo — G, o we see that G, , is a K(Z,2) up to dimension approximately n.
Thus there is a map G,, , — CP® inducing an isomorphism on homotopy groups up to
dimension about n, hence also on homology and cohomology. This map is essentially just
the inclusion G, , C G, 5 since G , isalso a K(Z,2) via the bundle = |
with V5 contractible. Generators for the groups H 2i(Gm’Q) are the powers e’ of the
Euler class of the universal bundle, so the restrictions of these classes 1,e,¢e?, - to Go
give an additive basis for H* (G,,2) up to dimension approximately n.

Via the Thom isomorphism the classes 1,e,e?, - - give generators for H *(AG:;’Q) up
to dimension around 2n. Since cohomology is represented by maps to Eilenberg-MacLane

spaces, these generators for H *(AG:[Q) correspond to a map
f1AG) , — K(Z,n —2) x K(Z,n) x K(Z,n+2) x -
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Now we switch to rational coefficients to take advantage of the fact that the rational
cohomology of Eilenberg-MacLane spaces K (Z, k) is rather simple, namely a polynomial
algebra Q[z] when k is even and an exterior algebra Ag[z] when k is odd, with x lying in
H*(K(Z,k); Q) in both cases. This standard calculation is done by induction on k using
the path fibration K(Z,k —1) — P — K(Z, k) with contractible total space P. For the
actual calculation one can use either the Serre spectral sequence or the Gysin and Wang
exact sequences with Q coefficients. From the Kiinneth formula it follows that the map
f is an isomorphism on rational cohomology in dimensions up to about 2n since the first
nontrivial product in the cohomology of the space on the right occurs in dimension 2n —4.

From the universal coefficient theorem it follows that f is also an isomorphism on
rational homology in the same range. We wish to deduce from this that f is an isomorphism
on rational homotopy groups 7, ® Q in this range. The quickest explanation for this fact is
via Q-localization. The map f induces a map fq of the Q-localizations of the two spaces,
and Q-localizations are characterized by the fact that their integer and rational homology
groups are isomorphic, as are their homotopy groups and rational homotopy groups. Thus
fo induces isomorphisms on integer homology up to dimension roughly 2n, so by the
relative Hurewicz theorem it also induces isomorphisms on homotopy groups in this range,
so f induces isomorphisms on rational homotopy groups in this range. (Note that the
spaces involved here are all simply-connected if n is large enough, so Q-localizations exist
and there are no subtleties with the relative Hurewicz theorem.)

Now we apply the loopspace functor repeatedly, using the fact that Q(X x Y) =
QX x QY. After applying it n — 2 times we have a map

Q" PAGY , — K(Z,0) x K(Z,2) x K(Z,4) x -+

inducing an isomorphism on rational homotopy groups up to dimension roughly n, since
the range was up to about 2n before. Applying 2 one more time involves only the
basepoint components of both spaces, so the factor K(Z,0) will disappear, and we will

have a map

Q" AGY , — K(Z,1) x K(Z,3) x K(Z,5) x -+
so that one final looping will give a map
QUAG) , — K(Z,0) x K(Z,2) x K(Z,4) x - - -
Restricting to a single component of each space, we then have a map
QAG, , — K(Z,2) x K(Z,4) x K(Z,6) x - --
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This induces isomorphisms on rational homotopy groups up to dimension roughly n. To
deduce that this induces isomorphisms on rational homology in this range we can again
make use of Q-localization. The space on the right is simply-connected, but the one on
the left might not be. However, it is an H-space so it has m; abelian with trivial action
on all higher homotopy groups, which is sufficient for a Q-localization to exist. After
Q-localization the map is an isomorphism on homotopy groups in a range, so relative
homotopy groups are trivial in this range, hence also the relative homology groups, so we
get the desired conclusion that the map displayed above is an isomorphism on rational
homology up to dimension about n. The same is then true for rational cohomology. Thus
by the Kiinneth formula we have shown that H™ (QSAG,‘:Q;Q) is a polynomial algebra
Q[zq, x4, xg, - - -] up through dimension approximately n.

It remains to check that the cohomology of QSAG:[’Q stabilizes as n increases, that
is, the maps QSAGZ’2 — QEHAG:{JFLQ induce isomorphisms on cohomology in a range of
dimensions that goes to infinity with n. For this we can use Z coefficients. To start, we

consider the map AGTJ{,Q — QAGL_LQ. This factors as a composition
AG), — QSAGY , — QAG] 5

where Y denotes reduced suspension and the first map is an instance of the canonical map
X — QY X defined for any space X . The second map is the looping of the map EAG,J{Q —
AG:HQ adjoint to AG;Q — QAG:HQ. The Thom space AG;Q is roughly n-connected
so the first map is an isomorphism on homotopy groups through dimension approximately
2n by the Freudenthal suspension theorem, hence also on homology and cohomology in this
range. The map EAG:;Q — AG +1,2 1s an isomorphism on cohomology through dimension
about 2n via the Thom isomorphisms for the two spaces (the suspension of a Thom space
is the Thom space for the sum of the given bundle with a trivial line bundle), using the fact
that the pair (G, 9,G,, o) is roughly n-connected via the earlier comparison of these
spaces with G 5. Since the map EAG:{Q — AGL_LQ is an isomorphism on cohomology
up to dimension about 2n, this is true also for homology (both spaces being finite CW
complexes) and so also for homotopy groups. Looping the map EAG:;Q — AG 41,2 loses
just one degree of connectivity, so the second of the two composed maps displayed above
is also an isomorphism on homotopy groups up to dimension around 2n.

Thus the composed map AGI’2 — QAGT +1,2 18 an isomorphism on homotopy groups
up to dimension approximately 2n, so after applying €y to this map we obtain iso-
morphisms on homotopy groups to dimension roughly n, hence also on homology and

cohomology groups. O

As this proof makes clear, the first two additive generators for H *(AG:[,Q; Q) corre-
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sponding to 1 and e in H” (G, 2) eventually disappear after iterated looping since they
corresponded to factors K(Z,0) that were canceled. Furthermore, we can see how the
remaining additive generators corresponding to the higher powers €2, e, -- become mul-
tiplicative generators of the polynomial ring Q[z,,x,,---] since under iterated looping,
more and more of the powers and products of these additive generators fall inside the
stable range of dimensions.

It should be clear how the preceding calculation generalizes to give a calculation of
H* (QSOAG;’d; Q) for d > 2. The input is the well-known calculation of H* (G, 4; Q) as
a polynomial ring on even-dimensional generators, the first approximately d/2 Pontryagin
classes plus the Euler class when d is even. An additive basis for H" (G, 4; Q) therefore
consists of the monomials in these classes. After restricting to G, , for large finite n,
the Thom isomorphism shifts these additive generators up by n — d dimensions. Then
the n-fold looping process shifts these additive generators back down by n dimensions,
deleting the generators whose dimensions become negative or 0. The surviving additive
generators correspond to monomials in H* (Goo.a; Q) of dimension greater than d, and
these become multiplicative generators of H™ (3" AG;FO’ 4 Q) which is a polynomial algebra
on even-dimensional generators when d is even and an exterior algebra on odd-dimensional

generators when d is odd, since the net shift in dimensions is downward by d.

To finish this appendix let us extend the rational cohomology calculation to the case
of nonorientable surfaces where, as we saw in section 5, the space AG, , is replaced by

its quotient EM obtained by ignoring the orientations of affine 2-planes in R*.

Theorem C.2. H*(ngm;z; Q) is a polynomial algebra Q[y,,ys, Y12, -] on genera-
tors y,; € H*.

Proof. The main obstacle to carrying over the previous proof directly is that we can no
longer apply the Thom isomorphism to compute H *(Ezz) with Z or even Q coeffi-
cients since we are now dealing with the Thom space of a nonorientable vector bundle.
Fortunately there is an easy way around this problem by using the classical transfer ho-
momorphism for finite-sheeted covering spaces. The projection AGTJ{,?, — A—G:’Q is not a
covering space at the compactification point, but this is no longer an issue if we consider
relative cohomology for the pairs consisting of the unit disk bundles and their boundary
sphere bundles, since these relative cohomology groups are isomorphic to the reduced ab-
solute groups for the Thom spaces. The basic properties of transfer homomorphisms work
equally well for relative cohomology, so we can say that H* (E:’Q; Q) is isomorphic to
the subgroup of H* (AG,J{Q; Q) consisting of elements invariant under the map induced by

the involution of AGTJ{,Q that reverses the orientation of each 2-plane. On G,, , this map
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sends the Euler class e to its negative, hence e’ is sent to (—1)’e’. The Thom class is
also sent to its negative. Since the Thom isomorphism is given by cup product with the
Thom class, we conclude that the invariant elements of H* (AG,J{Q; Q) in the range we are
interested in are the ones corresponding to odd powers of e. These occur in dimensions
n,n + 4,n+ 8,---. The class in dimension n corresponding to e itself disappears after
n-fold looping as before, so we are left with the classes corresponding to e3, e, 67, cee

which live in dimensions 4,8,12,---. O

Appendix D. The Group Completion Theorem

The goal of this appendix is to prove a version of the Group Completion Theorem
that suffices for many applications such as the Madsen-Weiss theorem. Some comments
on more general versions are given at the end.

As motivation for the plan of attack, recall an elementary fact about fibrations which
is Proposition 4.66 of [H1]: If F' — E — B is a fibration with E contractible, then there is
a weak homotopy equivalence F' — QB. This is proved by noting that a contraction of F
gives rise to a map from the given fibration to the standard path fibration 2B — PB — B
and so by the five lemma the map on fibers F' — QB is a weak homotopy equivalence.
One might hope to apply this fact when B is BM for a given topological monoid M. We
will construct a contractible space EM with a projection EM — BM whose fibers are
copies of M, but the projection will not generally be a fibration. However, in some cases
it is something a little weaker than a fibration that works just as well, a quasifibration.

The definition of EM is similar to that of BM, except that instead of starting with a
single vertex, one has a vertex for each element of M. In fact there is a more general con-
struction that will eventually be needed. Suppose we are given an action of the monoid M
on a space X , this being a right action, so each m € M givesamap X — X, z+— x-m.
Then we define the space FX to have X as its space of vertices, and with its space of
p-simplices the product X x M? | so there is a p- Tmime
simplex for each (p+ 1)-tuple (z,my,---,m,), s
with vertices labeled z,z-my,z-m;m,, - and
edges labeled m, m,, - as in the figure. Thus Mo
EX isaquotient of [[ A”x X xM? withidenti- *
fications similar to those in BM. In particular, m
when X is a point then FX is just BM. For a L
general X , forgetting the vertex labels gives a projection EX — BM with fibers X .
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A case of special interest is when X is M

acting on itself on the right. The space EM MMMy
is then contractible by letting each p-simplex m mmms
flow to the vertex corresponding to the iden-
tity element e in M by flowing linearly in the my
m

1)-simplex obtained b ing to th -
(p+1)-simplex obtained by coning to the ver o -

tex e.
Lemma D.1. If -m: X — X is a weak homotopy equivalence for each m € M then the
projection EX — BM is a quasifibration.

Recall the definition: a map p: E — B is a quasifibration if for each b € B the
map p,:m,(E,p ' (b),z,) — m,(B,b) is an isomorphism for all i and all z, € p~'(b).
These isomorphisms immediately yield a long exact sequence of homotopy groups for a
quasifibration that is formally identical to the long exact sequence for a fibration or fiber
bundle.

Proof of Lemma D.1. We will use Lemma 4K.3 of [H1] which gives three conditions each
of which implies that a map p: E — B is a quasifibration. These conditions can be stated

as follows:

(a) B is the union of two open sets over each of which p is a quasifibration, and p is also

a quasifibration over their intersection.

(b) B is the direct limit of an increasing sequence of subspaces B,, over each of which p

is a quasifibration.

(c) E deforms into a subspace E’ via a deformation F,: E — E that covers a deformation
of B into a subspace B’ such that p restricts to a quasifibration E' — B’ and the map
F,:p *(b) = p Y(F,(b)) is a weak homotopy equivalence for each b € B.

To apply these, let B, M be the subspace of BM formed from the products AP x M
for p < n, with E, X the preimage of B, M in EX. By (b) it suffices to show that
p:E, X — B, M is a quasifibration, which we do by induction on n. For the induction
step we apply (a), decomposing B, M into the two open sets U and V coming from
decomposing A" as the union of A" — JA™ and an e-neighborhood of 9A, in A",
respectively. Over U and U NV the space £, X is a product X x U or X x U NV.
For V', a deformation retraction of the e-neighborhood of 9A™ to OA™ gives rise to a
deformation F, as in (c), so by induction on n the only thing to check is the condition

that F) is a weak homotopy equivalence between fibers, which holds since each such map
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F, is -m:X — X for some m € M and these maps are weak homotopy equivalences by

hypothesis. O

Proposition D.2. If 71y is a group then the natural map M — QBM is a weak

homotopy equivalence.

Proof. For each m € M the map -m: M — M is a homotopy equivalence with homotopy
inverse -m’ where m’ lies in the path-component of M giving the inverse of the path-
component of m with respect to the group structure on m,M, since homotopies from the
compositions of -m and -m/’, in either order, to the identity are given by right multiplication
by elements along paths from mm’ and m'm to e. The previous lemma then implies that
M — EM — BM is a cofibration.

The contraction of EM described earlier gives a map from this cofibration to the
standard path fibration QBM — PBM — BM, using the unique vertex of BM as the
basepoint for the pathspace. Namely, the map EM — PBM sends a point in EM to
the path in BM which is the image in BM of the path in EM traced out by this point
during the contraction of EM. In particular, a vertex m € EM is sent to the loop in
BM defined by the edge in BM labeled m. This means that the restriction of the map
EM — PBM to the fiber over the basepoint is the canonical map M — QBM.

This map from the cofibration to the path fibration is the identity on the base spaces
and is a homotopy equivalence on the total spaces since both of these are contractible.

Hence by the five lemma the map is a weak homotopy equivalence on the fibers. O

The Group Completion Theorem generalizes the preceding proposition to certain cases
when 7, M is not a group. Initially we will assume myM = Z(, so the path components
Mp of M are indexed by integers p > 0. Choose an element m, of the path component
M, , so my generates oM. Then left-multiplication by mg gives maps mg-: M, — M, 4,
and we are interested in forming a limit object M_, with respect to these maps. If the
maps were suffficiently nice inclusion maps we could just take M, = U,M,, but to
deal with the general case we instead let M_ be the mapping telescope of the sequence
My = My - My — - where each map is mg-. Recall that the mapping telescope
is the union of the mapping cylinders of the maps in the sequence, and if the maps are
cofibrations, the mapping telescope has the same homotopy type as U,M,,. Since homology
commutes with direct limits, we have H, (M) = lim, H,(M,).

It will be convenient also to consider the larger mapping telescope of the sequence
M —M— M — - where each map is my-. We denote this telescope by 7M. Observe
that TM ~ Z x M, since TM is the disjoint union of a bi-infinite sequence of mapping
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telescopes of maps mg-: M, — M, ;. These are the telescopes of the diagonal sequences

of maps in the following diagram:
My M, M,

NN
My M M
NN N
My My, M,
NN

The monoid M acts on EM on the left, so we can form the telescope TEM of the
sequence of maps EM — EM — EM — - - given by left multiplication by m. Since left
and right multiplication commute, we can also form ETM using the right action of M on
TM, and we get the same space ETM = TEM. Since each space EM in the telescope
TEM is contractible, so is the telescope itself, and we can choose a contraction extending
the earlier contraction of the initial EM in the telescope. Having such a contraction allows

us to form the following commutative diagram:

M — EM — BM

l 1 |
™ — ETM — BM
l 1 |

QOBM — PBM — BM

The top row need not be a quasifibration as it was in the previous proposition since the
right-action of M on itself may not be by weak homotopy equivalences. (The action takes
Mp to Mp 41 and these two spaces can have different fundamental groups, as happens for
example for the M = M in the proof of the Madsen-Weiss theorem.) The middle row
may not be a quasifibration either for the same sort of reason since the right-action of M
on TM need not be by weak homotopy equivalences. (The same example illustrates this.)
However, we will show that the right-action of M on TM is by homology isomorphisms,
and this will lead to the Group Completion Theorem asserting that the downward arrow

in the lower left corner of the preceding diagram is a homology isomorphism.

Group Completion Theorem. If 7)M = L, and M is homotopy commutative, then
the map TM — QBM induces an isomorphism on homology. Restricting to one compo-

nent, the map M_, — Q,BM is a homology isomorphism.

Proof. First we check that the right action of M on TM is by homology isomorphisms.
It suffices to show this for the right action by mg. Since H, (TM) = lim H, (M) and

M is assumed to be homotopy commutative, we can instead use the left action of my
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on TM. We claim that this left action is a homotopy equivalence. This is a general
fact about the action of any map f: X — X on the mapping telescope of the sequence
X —- X — X — .- where each map is f. Namely, if ¢ is the map of the telescope shifting
each mapping cylinder to the next one, then fo = of is homotopic to the identity by the
homotopy that slides points one unit to the right along the line segments of the mapping
cylinders.

Next we have the fact that the suspension of any homology isomorphism f: X — Y is
a weak homotopy equivalence. This can be seen as follows. The suspension X f: XX — XY
induces an isomorphism on 7; since m; XX is free with basis corresponding to all but
one of the path-components X, of X, and similarly for XY, and f induces a bijection
meX — ’ﬂ'OY For the higher homotopy groups, lifting ¥ f to the universal covers gives
a map % f Y X — SY that induces an isomorphism on homology since Y X consists of
copies of the suspensions XX, glued together in a tree-like pattern, and similarly for YY
with the same tree-like pattern. The relative Hurewicz theorem then implies that f)vf
induces isomorphisms on homotopy groups, hence the same is true for X f itself.

Consider now the fiberwise suspension of the projection map ETM — BM. By
definition, this is the union of two copies of the mapping cylinder of ETM — BM with
the ends ETM identified. Let us write the fiberwise suspension as X;ETM. It has a
projection X ;ETM — BM with fibers the ordinary suspension XTM. Since the sus-
pension of a homology isomorphism is a weak homotopy equivalence, Lemma D.1 implies
that we have a quasifibration ¥TM — ¥, ETM — BM. We also have a quasifibration
YQBM — X, PBM — BM in view of the following general fact:

Lemma D.3. The fiberwise suspension of a fibration is a quasifibration.

Postponing the proof of this temporarily, let us finish the proof of the Group Com-
pletion Theorem. Since fiberwise suspensions are double mapping cylinders, the map

ETM — PBM induces a commutative diagram of quasifibrations

SXTM — EfETM — BM

1 1 |
YOBM —» EfPBM — BM

The map between the total spaces is a weak homotopy equivalence since both total spaces
are homotopy equivalent to BMYV BM by virtue of the contractibility of the middle spaces
ETM and PBM in the two double mapping cylinders. The five lemma applied to the
long exact sequences of homotopy groups for the two quasifibrations then implies that the
map of fibers XTM — XQBM is a weak homotopy equivalence, hence an isomorphism on
homology, so the map TM — Q2BM is also an isomorphism on homology. O
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Proof of Lemma D.3. Let p: E — B be a fibration with fiberwise suspension ¥;E — B.
Suppose we are given a homotopy h,: X — B with an initial lift hy: X — X E of hy. If
2B C X4 F is the subspace consisting of the two copies of B at the target ends of the two
mapping cylinders that make up ¥ ,F, then ¥ F — 2B is a product E x (—1,1). Part of
a lifting Et : X — X,F can be defined on X — Eal(QB) by taking its first coordinate in
E to be a lift of h, to E and letting its second coordinate in (—1,1) be independent of
t. On the rest of X we could let Et be just h, mapping to the appropriate copy of B in
2B. However, it is not clear that the resulting 7Lt is continuous on all of X since we have
defined it on two subspaces, one of which is open and the other is closed, rather than on
two subspaces which are both open or both closed.

To get around this problem we use the elementary fact that in order to have a quasi-
fibration it is not necessary to lift the homotopy h, exactly, it suffices just to lift a mod-
ification of h, obtained by reparametrizing the t¢ interval, namely by first letting h, be
stationary for ¢ in [0,1/2], then letting it do what it did before but twice as fast so
that it ends with the same h;. To construct the lifting ﬁt of the new h,, we first let
h, = r,hy during the ¢ interval [0,1/2], where r,: Y;E — ¥,;E is a homotopy that is
fixed on 2B and gradually expands the interval [—1/2,1/2] to [—1,1] in the second fac-
tor of B x (—1,1). Then for ¢ in [1/2,1] we take the composition r h, using the h,
constructed in the previous paragraph, with the ¢ interval reparametrized from [0,1] to
[1/2,1]. With these modifications the new Et is continuous since it is continuous on the
closed sets hgL(E x [-1/2,1/2]) and X — hg'(E x (=1/2,1/2)). O

A Modest Generalization

The condition that moM is Z., can be weakened to the assumption that m M is
just finitely generated. In this case, let mq,---,m; be a set of generators and let m
be the product m;m,---m; . With this m, we can again form the telescope TM. As
before, the right action of my, on TOM is by homology isomorphisms. This implies the
right action by any of the generators m, is by homology isomorphisms since the fact that
myms - - -my, acts as homology isomorphisms implies that m; acts injectively on homology
and m,, acts surjectively, but by homotopy commutativity this implies all the generators
act by homology isomorphisms. It follows that the right action by all elements of M on
TM is by homology isomorphisms.

The rest of the proof goes through unchanged to give an isomorphism H, (TM) =
H,(Q2BM). One can check that all the path-components of TM are homotopy equivalent.
Denoting this homotopy type by M_, (it does not depend on the choice of generators),
we then obtain an isomorphism H, (M) ~ H,(QyBM).
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With an appropriate reformulation of the theorem, the finite generation assumption
on myM can in fact be omitted. See [MS].
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