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A proof of the Smale Conjecture,
Diff(S®) = O@4)

By ALLEN E. HATCHER

The Smale Conjecture [9] is the assertion that the inclusion of the orthogo-
nal group O(4) into Diff(S®), the diffeomorphism group of the 3-sphere with the
C* topology, is a homotopy equivalence. There are many equivalent forms of this
conjecture, some of which are listed in the appendix to this paper. We shall prove
the following one:

THEOREM. A smooth family of C® embeddings g,: S — R>, t € S*, extends
to g,;: B> > R3, a smooth family of C* embeddings of the 3-ball, for any k > 0.

The case k = 0 is a strong form of the Schoenflies theorem in dimension
three, essentially due to Alexander [1], while the case k = 1 is Cerf’s theorem
7, Diff(S$%) = 7,0(4) [2] (which has the important corollary T, = 0).

Our general approach is the same as Alexander’s and Cerf’s: to cut g,(5%)
into a number of “simpler” 2-spheres by a sequence of surgeries in horizonal
planes. There are two sorts of complications which arise when k is large. First,
the “simple” 2-spheres produced by the surgery process, which we call primitive
spheres, are considerably more complicated than when k = 0 or 1. In particular,
an explicit enumeration as in [2] is not feasible. To analyze primitives effectively,
we take a viewpoint somewhat different from that of Alexander and Cerf. Instead
of projecting primitives onto a vertical line via the height function, we project
them onto a horizontal plane. This leads to the notion of contours which is
central to the proof. The second sort of complication which comes with larger
values of k is that when constructing the extensions g, it is no longer sufficient to
make discrete choices, as it was in [2]. One is forced to make continuous choices,
and to organize these choices a certain amount of machinery must be developed.

Reflecting these two sorts of complications, the paper is divided into two
parts. The first contains mostly the machinery reducing the proof to the study of
primitives, which is carried out in the second part. Each part has its own little
introduction, so we will say no more here about the proof.
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We refer also to [4], where the theorem was announced, for a few general
remarks on the proof.

PART I: Reduction to Primitives

Preliminary normalization
Factorization into primitives
Spherical models

Extending g,, to g,,

L

PART II: Primitive Spheres

Contours

Shrinking

An example

Large factors

Tongue patterns

10. Shrinking tongue patterns

11. The main construction: Local form
12. The main construction: Global form
13. Construction of g,,: S5 — ¢,

© P!

Appendix: Some equivalent forms of the Smale Conjecture

PART I: Reduction to Primitives

A quick outline of this part runs as follows. After two easy preliminary
normalizations of g, in Section 1, the surgery process is formalized in Section 2
into the construction of a family of spaces =,, for (¢, u) € S* X [0,1]. When
u=1732, = g,(S?). As u decreases to 0, =,, changes by surgeries on g,(S?) in
horizontal planes at discrete times u (depending on t). When u = 0, Z,, consists
entirely of primitive spheres. We extend 2,, to a family of spaces =,, by
adjoining disjoint copies of the open balls in R® bounded by the sphere factors of
S,,. In Section 3, nice spherical models S,, and S,, for =,, and =, are
introduced, using the spherical geometry of S3, with S, to serve eventually as
domain of a family of diffeomorphisms g,,: S,, — =,,. Since =,; = g,(5?) and
S,, = S2, the desired extension g, of the original g,: S> — R® will be g,,. This g,
is constructed by first constructing g,,, then extending to g,,,, then restricting to
u = 1. The construction of g, is the hard part, and this is what Part II achieves.
Extending g,, to g, is relatively straightforward, and is done in Section 4 of
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Part 1. (As a technical point, though, it is convenient to have first modified §tu
and =,, to “continuous” versions of themselves, S, and 2¢,.)

1. Preliminary normalization

We operate in the C* category. In particular, families of smooth objects are
to vary continuously in the C* topology.

Let S, € R3 be a family of compact embedded surfaces, parametrized by a
compact submanifold of S*, and with a chosen orientation of their normal
bundles (varying continuously with ¢). We say S, is a family of elementary
surfaces if the following conditions are satisfied:

(1) For each t, each component of JS, lies in a horizontal plane (different
components lying perhaps in different planes).

(2) For each t, each vertical line in R® meets S, in a connected set (which
may be empty).

(3) If S (S;) denotes the subset of S, where the positively oriented unit
normal vector to S, has strictly positive (negative) z-coordinate, then:

(a) The closures in R* X $* of U,7(S;") and U,#(S;") are disjoint,
where 7: R — R2 is vertical projection to a horizontal R2.

(b) The closures of U,S;" and U,S; in R® X S* are disjoint from
U, as,.

ProposiTioN 1.1. If g,: S2 > R3, t € S, is a family of embeddings, then
there exists a family of diffeomorphisms f: R*> — R3 and a finite collection of
closed k-balls B, C S*, each provided with a finite set of horizontal planes

Cas) Cap)

FIGure 1.1 AN ELEMENTARY SURFACE: SIDE AND TOP VIEWS
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Pi={(xy,2)|]z =2, j=1,..., n;, with z;; < --- < z,,, such that:
(@) Y,int(B;) = Sk
(i) B = Py if iy ) = (i ).
(iii) For each pair (i, j) with 1 < j<n, f,g(S%) N{(x,y,2)|z;,; < z'<
Z; j+1) is a family of elementary surfaces as t ranges over B;.
(iv) For each i and t € B,, {.g,(S?) lies between the planes P,; and P,.

Proof. Let U* C g,(S?) be the set of points where the outer normal to
g,(S%) makes an angle < /4 with the vector +(0,0,1). Let p,: g,(5%) — [0,1]
be a family of functions supported in U U U, with p, > 0 at points having a
horizontal tangent plane. Define the vector field v, on g,(5%) to be grad(h,) +
p, - (0,0,1), where h, is the height function on g,(S%). Thus v, has positive
zcoordinate on g,(S?) and can be extended to a vector field v, on R3 with the
same property. Let £ be a family of level-preserving diffeomorphisms of R®
taking the trajectories of v, to vertical lines in R>.

There exists a § > 0, independent of ¢, such that every vertical line segment
in R3 of length < & meets £,g,(S2) in a connected set (perhaps empty). This
follows because the vector field (0,0, 1) on f,g,(S%) can point to only one side of
£,2,(5%), locally. Namely, (0,0,1) points outward on f£,(U*) and inward on
£(U;"), these two sets being separated by some distance d > 0, independent of z.
We may suppose § < id.

For each t we may choose a finite number of horizontal planes F,; transverse
to f.g,(S%), adjacent planes being of distance < § apart and fg,(S2) lying
between the extreme F,;’s. These planes remain transverse to f,g( $%) in some
ball B, c S* about ¢. By compactness of S*, a finite number of these balls have
interiors covering S*. Relabel these balls B; and their associated planes P, i We
may suppose condition (ii) holds since each P, jmay be chosen from an open set
of horizontal planes.

By construction, for each i and ¢ € B;, the part of f,g,(S?) between adjacent
planes P;; and P;; satisfies the condition (2) for elementary surfaces. It also
satisfies (3a) since we have chosen § < 1d. Finally, we make f,g,(S?) vertical
near each plane P;; for ¢t € B; by a deformation supported near P,; This can
clearly be done without destroying properties (2) and (3a). O

From now on, “g,” will denote the family “f,g,” in the conclusion of
Proposition 1.1.

Let C// be the collection of circles (components) of g,(5%) N P;; for t € B;,
and let G = U *,G//and C, = U,C/, the union over all i such that t € B,.

PropostTION 1.2. The family g, may be isotoped, keeping the image spheres
g,(S?) setwise fixed, so that the circles of g; %(C,) are actual geometric circles on
S2 for all t.
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Proof. Let S%(n) be S? with any n disjoint closed discs removed, the
boundary of each disc being a geometric circle on S2. Let C(m, n) be the space
of m-tuples of disjoint smooth circles C,,. .., C,, in S*(n) each of which bounds a
disc in S%(n), and let Cy(m, n) C C(m, n) be the subspace in which all circles C;
are geometric circles in $%(n). We claim the inclusion Cy(m, n) — C(m, n) is a
homotopy equivalence. To see this, first consider the fibrations

C(p,q) X C(r,s)— C(m,n) — C(1,n)
U U V)
CO(p’ q) X CO(T’ S) - Co(m’ n) - CO(]-’ n)

obtained by restriction to one circle C, which (when n > 0) is outermost among
C,...., C,; ie, the disc C, bounds in S%(n) is not contained in the disc bounded
by any other C;. Since p < m and r < m, induction on m reduces us to the case
m = 1. From Smale’s theorem Diff(D?rel 3D?) = * it follows by standard
arguments (as in the appendix) that C(1,n) deformation retracts onto the
subspace of small geometric circles in S%(n) if n > 0, and onto the subspace of
great circles on S? if n = 0. The same is obviously true for Cy(1, n), so the
claimed equivalence Cy(m, n) = C(m, n) holds.

To prove the proposition we construct a family of isotopies of S? which
“round out” the circles of g; !(C,). This is done inductively over the multiple
intersections B; N - -+ N B, , proceeding from larger to smaller values of n. The
equivalences Cy(m,0) = C(m, 0) assure that no obstructions to extending round-
ings from n-fold intersections B; N --- N B; to (n — 1)Hfold intersections can
occur. O

2. Factorization into primitives

We may suppose the given family of embeddings g,: S* — R® has been
normalized as in Propositions 1.1 and 1.2. Recall also from Section 1 the
definitions of the sets C/J, C}, and C,. Choose a (smooth) family of functions ¢,:
C,— (- 1,1), t € Sk, satisfying:

(1) @,|Ciis injective, giving a linear ordering of C;/ such that ¢,(c) > ¢,(¢’)
if c lies inside ¢’ in ;.

(2) ¢(C}) > Ofort € B/, where B; is a closed ball in int(B;) and U, int(B;)
= Sk,

3) ¢,(C}) < 0 for t € 9B,.

We may assume all the graphs Z'(c) = {(¢, p,(c))|t € S*) € S X (— 1,1) have
general position intersections with each other and with S* X (0). Let Z(c) =
Z'(c) N S* x [0,1] and Z(c) = Z(c) N S* X {0). The intersections of the vari-
ous Z(c)’s give a stratification S of S* X [0, 1], which intersects S* X {0} in a
stratification S, of S* X {0). Relative product neighborhoods (Z(c), Z,(c)) X
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[— 1,1] of (Z(c), Zy(c)) = (Z(c), Zy(c)) X {0} in (S* X [0, 1], S* X {0}) can be
chosen so that

Z(c) X (s} ={(t,u) € S* x [0,1]ju = @,(c) + s¢)

for some constant ¢ > 0, chosen small enough that different Z(c) X [— 1,1]’s
intersect only near the intersections of the corresponding Z(c)’s.

Let 8 > 0 be chosen so that g,(S2) is vertical within distance § of each P, j
for which ¢ € B,, and so that any two P,;’s are of distance greater than 26 apart.
For each ¢ € C, choose §(c) € (0, §), independent of ¢, so that §(c) > 8(c’) for
each pair ¢, ¢’ € G/ with ¢ inside ¢’ in P, Define the collection C,, of level
circles on g,(5%) for (¢, u) € S* x [0,1] by:

(4) A circle ¢ € C, belongs to C,, for u = ¢,(c).

(5) The two circles parallel to ¢ € C,, above and below at distance

8(c) - min{s, 1}, belong to C,,, for u = ¢,(c) — s¢, s > 0.
For (t, u) € S* X [0,1], let &, be the family of spaces obtained from g,(5%) by
first removing the open vertical annuli between pairs of parallel circles of C,,, in
(5), and then adjoining to each circle of C,, the horizontal disc it bounds. (Note
that these discs are all disjoint for fixed ¢ and u.)

Thus as u decreases from u > @,(c) to u < @,(c), g,(5%) changes by surgery
along ¢ using the horizontal disc bounded by c. See Figure 2.1.

We define a factor of ,, to be a 2-sphere (with corners) contained in Z,,
obtained from the closure of a component of g,(S?) — C,,, other than an annulus
thrown away when doing surgery, by capping off its boundary circles by the
horizontal discs they bound in 2, . As (¢, u) varies over a (connected) stratum of
S, each factor of =, varies only by isotopy. Restricting to u = 0, we see by
condition (2) above that as ¢ varies over a stratum of &, the factors of 3,, form
families of primitive 2-spheres, according to the following:

Definition. A family of 2-spheres with corners =, C R3 is called a family of
primitive 2-spheres if there is a family of elementary surfaces S, C 2, such that

=
=

u > g@c) u > @(c) u > @c)

Ficure 2.1
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cl(Z, - S,), the closure of =, — §,, consists of finitely many disjoint horizontal
discs, called faces of X,, for each t. The only corners of X, occur at the
boundaries of these faces, i.e., at d5,.

Let =,, be the space obtained from the disjoint union of the balls in R®
bounded by the factors of Z,, by identifying their horizontal faces as they are
identified in =,,. Thus £, C 3,,.

Define T, to be the graph whose vertices correspond to the factors of Z,,,,
and whose (open) edges correspond to the common horizontal faces between
factors. An edge e corresponding to a common face A belongs to I, for
(t,u) € Z(e) = Z(dA). For (t, u) € Z(e) X {s} with s > 0, the edge e collapses
to a single vertex of T,,, while if s < 0, ¢ is deleted from I},. On strata of &
(which by definition are connected), I’,, is constant.

The components of I, are trees, since every circle on a 2-sphere separates.
A component y of I, corresponds to a connected component X, (y) of X, ,
varying continuously with (¢, ) in the given stratum of & over which y is
constant. The factors of 2, (y) are partially ordered by the inclusion relations
among the balls they bound in R3. The maximal factors in this ordering
correspond to the vertices of a subtree of v, clearly. A common face A of two
factors =, and =, of =, () is a sum face if 2, and =, bound balls in R® meeting
only in A. In the opposite case, A is a difference face, and there is an inclusion
relation between the two balls bounded by X, and Z,.

It will be convenient to extend the domain of definition of X, (y) from
(¢, u) in the given stratum of & over which y is constant to (¢, ©) in the closure of

this stratum, by continuity. With this done, certain inclusion relations ,,(vy) C
2,,(Y) result.

3. Spherical models

In this section we shall be doing some constructions using 3-dimensional
spherical geometry. Thus the ambient space is S3, the unit sphere in R*, and
“circles” and “spheres” in S® mean intersections with affine subspaces of R* of
the appropriate dimension. In particular, we fix $2 C S* to be the unit sphere in
R® = {(x, y, z,0)) C R%, and we let B3 and B2 be the balls bounded by S2 in S°.
For any circle ¢ on S%, we let S2 be the 2-sphere orthogonal to S* with
2N S%=c.

By Proposition 1.2, we have the collection g, }(C,) of circles on S2 The
components of g; }(C,,) are near the circles of g; '(C,), so we may take them to
be actual circles too. For each circle ¢ € g; '(C,,), we choose the spherical disc
D, to be S2 N B3 or S2 N B , according to whether the horizontal disc of 2,
bounded by g,(c) points inside or outside g,(S?) at its boundary. For fixed (¢, u),
these discs D, are disjoint since their boundaries are disjoint. In analogy
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with the definition of =,,, we let S,, be obtained from S? by adjoining all the
discs D, for ¢ S g; %(C,,), and by deleting the open annuli in S% whose g-images
were deleted in the construction of 2, .

Factors of S,, are defined analogously to factors of X, and correspond
bijectively via g,. For each factor S of S,,, let S € $3 be the topological 3-ball
bounded by S, chosen so that the normals to S N $2 pointing into S point into B3
or B2 according to whether, for the corresponding factor = of £, , the normals
to = N g,(S?) pointing into = point into the ball in R3 bounded by g,(S2) or not.
We let S_,u be the disjoint union of all such 3-balls S, with the discs D, in their
boundaries identified as they are in §,,.

Let S be a factor of S,,,, having corners at the circles c,,..., ¢, C S Thus
SN S*H=c, U---Uuc, c being capped off by the disc D, C S which we call
a face of S. Let B, C S° be the 3-ball bounded by S2, with B, N S = D,. These
B/’s are disjoint since they intersect S> in disjoint discs, the components of
cl(S* — S). Define the core of S to be cl(S — U B;) — S

Components §,,(v) of §,, correspond via g, to components X, (y) of Z,,,.
The factors of S, (y) are partially ordered: S, < S, if S, € S,. This ordering
corresponds under g, to the ordering on factors of Z,,(v) described in Section 2.
As with 2, (v), we extend the domain of definition of S, (y) to be a closed
subset of S* X [0, 1], yielding some inclusion relations S, (y) € S, ,(Y").

The goal of the rest of this section is to construct families S, and S, which
are continuous versions of S,, and S,,,, together with a family of one-dimensional
foliations F,, on S7,. Roughly, the idea is that discontinuities in S,, occur when a
common face is deleted, as in Figure 2.1 when u increases from u = ¢,(c) to
u> @,(c). To remedy this, we wish to isotope the common face across an
adjacent factor, rather than simply delete it. (Notice that only the deletion of
difference faces causes discontinuities in S,,.) The foliations F,, will actually be
defined on S,, as well as S’,, and will be used to construct S¢, and also g,:
S, — =¢,, eventually.

A point p € S3 — $2 determines a polar foliation F on S® whose leaves are
arcs of circles through p orthogonal to $2. There are two “pole” singularities of
F, one at p and one at a dual point p’. Our next task is to construct families of
polar foliations F, (y) for y a component of I, F, (v) being defined and varying
continuously for (¢, u) in the closure of the stratum of & over which v is defined.
We shall require the foliations F, (y) to satisfy:

() F(v) = F(v) if §,,(v) € 5,(v).

(2) F,,(v) has a pole in the core of a maximal factor of S,,(y) unless (¢, u) is
near the boundary of the stratum where v is defined.

(Here F, (v) is a foliation of S3. The foliation F,, mentioned in the preceding
paragraph will be the pullback of all the F, (y)’s by the natural projection
Siu = 8%)



A PROOF OF THE SMALE CONJECTURE 561

Such foliations F,,(y) can be constructed inductively over the strata of S.
For an i-stratum X and a component y of I, defined over X, condition (1)
determines F, (y) over dX. The union U of the cores of the maximal factors of
S,.(v) is a deformation retract of int(B3) or int(B?), since these factors corre-
spond to the vertices of a subtree y, of ¥y whose edges correspond to common
sum faces between factors. Using a monotone deformation retraction of int(B%)
onto U we can push the poles of F, () into int(U) as (¢, u) goes from dX into X
monotonically with respect to the bicollars Z(e) X [— 1,1]. Then we extend
F, (v) over the rest of X, keeping a pole in int(U), which is possible since int(U)
is contractible.

LemMma 3.1. For each (t, u), one of the following holds:

(a) F,,(v) has a pole in the core of a factor S, of S,,(y) corresponding to a
vertex of Y,, and no other factor of S,,(y) contains a pole of F, ().

(b) F,(v) has a pole in a common sum face of S,,(y) corresponding to an
edge of v,, and the two factors of S,,(y) containing this common face are the
only factors of S, (y) containing a pole of F, (y).

(c) No factor of S,,(y) contains a pole of F, (y), but a factor S, correspond-
ing to a vertex of v, has a preferred face D, such that the poles of F, (v) lie in
int(B;), B, being the 3-ball such that B, N S, = D,. O

These three possibilities are shown in Figure 3.1, in which S, (y) is
represented by the solid lines and U is shaded. (In the limiting case of (c), a pole
of F, (v) could lie in D, — dD,. But by definition, D, — dD; is contained in the
core of S, so this is really case (a).)

We may assume by transversality that case (b) of Lemma 3.1 holds for the
common face corresponding to a given edge e for (¢, u) in a codimension one
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submanifold Y(e) of Z(e), and that the pole moves across this common face as
(t, u) crosses a bicollar neighborhood Y(e) X [— 1,1] of Y(e) = Y(e) X {0} in
Z(e). Via the projection Z(e) X [— 1,1] = Z(e), we can pull back Y(e) to a
codimension one submanifold Y(e) = Y(e) X [— 1,1] of Z(e) X [— 1,1] with
bicollar neighborhood 17(6) X[—1,1] in Z(e) X [— 1,1]. In general position
Y(e) will be transverse to the stratification of Z(¢) induced by &, and we may
assume different Y(e)’s have general position intersections with each other and
with S* X {(0}. So the various Y(e)’s and Z(e)’s together determine stratifications
S’ subdividing & and & subdividing .

Case (c) of Lemma 3.1 can hold only near the boundary of a given stratum
of &'. As (¢, u) moves away from the boundary of the stratum, a pole of F, (y)
moves inside the factor S,, and we are in case (a). The vertex of y corresponding
to this factor S, we call the base vertex of y; it does not change as (¢, u) ranges
over the given stratum of &’. The only other possibility for a stratum of & is that
case (b) holds for all (¢, u) in the stratum. Then the edge of y corresponding to
the common face containing a pole of F, (y) we call the base edge of v.

For a factor S of S,,(v), if the core of S contains a pole of F, (y), then the
leaves of F,,(v) in S are the trajectories of a flow on S in which all points move to
the pole, staying in S. To see this, apply a circle and sphere preserving map of $3
leaving S? invariant and taking the pole of F, (y) in S to (0,0,0, — 1). Then
under stereographic projection from (0, 0,0, 1), F, (y) becomes the foliation of R®
by lines through the origin, and the assertion is then obvious. Similarly, if S
contains neither pole of F, (), then the leaves of F, (y) in S are arcs with one
endpoint on a preferred face of S. The latter type of foliation of § we call facial,
the former type polar. By Lemma 3.1, the restriction of F, (v) to each factor of
S,.(v) is either polar or facial.

Let Vi c S* x [0, 1] be the set of points lying in exactly i subsets Z(e) X
[0, 1]. Each component V¥ of V* corresponds to a unique stratum S'/ of S, if we
replace the sets Z(e) X [0, 1] which define V/by their subsets Z(e) = Z(e) X {0).
Let v be a component of T}, for (¢, u) € $*. We modify S,,(v) to a family S/i(y)
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by having its common faces lie over V*/ rather than S*/. This is certainly possible
if the collars Z(e) X [0, 1] are chosen small enough, i.e., if the € in Section 2 is
small. The foliations F, (y) extend naturally to foliations F:i(y) on S/i(y).

Using these foliations F,}i(y) we form, by an inductive procedure, families of
deformations S5,(t,,..., t,), 0 < t,, < 1, of the factors S, of S}/(y), where Dy,...,
D, are the common faces of S/J(y). To start, suppose S, is a minimal factor such
that Fi(y) is facial on S,, with preferred common face D,. As ¢, goes from 0 to
1, let D, move monotonically across S, to S, — int(D, ), keeping dD, fixed and
staying transverse to F,}{(y) (except at the end of the isotopy, when D, has moved
to S, — int(D,), which is not transverse to F;{y) at its corners). This gives the
deformation S,(0,...,0,¢,) of S, and also a deformation S,(0,..., 0, t,) of the
other factor S, of S}J(v) having D, as a face. For all other factors S, of S'i(y), let
5,(0,..., 0, t,) be independent of ¢,. Next, one proceeds to a factor S,_, minimal
among the remaining factors with F}{(y) facial on S,_,, and constructs the
families §,(0,..., 0, ¢,_,, t,), and so on. The process can be iterated since at each
time the property that F}i(y) is facial on a factor S, is evidently preserved. For
the final step of deforming the common face D, of S'i(y), we note there is a
two-fold ambiguity in which factor to push D, across in case F,i(y) has a pole in
D,.

Over V', we form S, from S, by replacing each factor S, of each
component S;/(y) by its deformation S,(¢,,..., t,), where (t,u) € Z(e,) X {t,)
C Z(e,,) X [0,1], for each edge ¢, of v, m = 1,..., n. The twofold ambiguity
mentioned in the preceding paragraph concerns a sum face, so S¢, is unaffected
by which choice is made. To form S¢, globally, for all Vi’s, we proceed by
induction on i. For the induction step we can extend families of deformations
Si(ty5.- -5 t,) over V' since at each step in the formation of S(t,,..., t,), the
space of permitted deformations of a face D,, transverse to F'{(y) is contractible.

We note that the foliations F:(y) on the components Sii(y) determine
automatically a foliation F,, defined on SZ,, which is also either polar or facial on
each factor of S¢,.

The definition of S, also defines a family S, modulo the two-fold ambigu-
ity of how to push a common face D, which contains a pole of F,,. If D,
corresponds to the edge e, of I}, this ambiguity occurs for

(t,u) € Y(e;) X {0) x [0,1] € Z(e,) X [0,1].

We resolve the ambiguity by splitting D, into two copies of itself and taking both
deformations of these for (¢, u) € Y(e,) X {0} X [0, 1].

The resulting family S, has discontinuities at such sets Y(e,) X {0} X [0, 1],
as one of the two deformed copies of D, is deleted in passing to Y(e,) X {s} X
[0, 1] with s # 0. For later purposes, in Section 13, it will be convenient not to
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have such discontinuities, mild as they are. So we enlarge S;, to a continuous
family, which will still be called S;,, as follows. Rather than delete one of the
deformed copies of D, as s goes from s = 0 to s > 0, say, in Y(e;) X {s} X [0, 1],
we adjoin to S, the stage t; — s deformation of D,; across the appropriate
adjacent factor of (the unenlarged) S;,, for (¢, u) € Y(e;) X {s} X {t;}). See the
upper right quadrant of Figure 3.3, where this adjoined deformation of D, is
indicated by the dashed line; and similarly for the other copy of D, in Y(e,;) X
[— 1,0] X [0,1].
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This still leaves a discontinuity in the (enlarged) family S¢,, as one of the
deformed copies of D, is deleted as ¢, goes from ¢, = 0 to ¢, < 0. To eliminate
this discontinuity we continue the deformation of the two copies of D, for
t, <0, as shown in the lower half of Figure 3.3. This can be described as
follows. As t; goes from 0 to — 1, a pole of F,, crosses the face D,. When this
happens, we deform D, across the factor into which the pole is moving, the
deformed D, staying ahead of the pole, like a shock wave. This deformation of D,
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starts the instant the pole hits D, and finishes before ¢, = — 1. See Figure 3.4.
We adjoin this deformation of D, to S;,. To be continuous, we then adjoin this
“shock wave” deformation of a face D, being punctured by a pole, not just in
Y(e,) X [— L1,1] X [~ 1,0], but in all of Z(e,;) X [— 1,0] in fact. There are no
problems with interactions of such deformations of different D,’s since they
occur in separate factors of (the unenlarged) S;,.

4. Extending g,, to g,,

ProposITION 4.1. Given a family of maps g,: Si, = R® which restrict to
embeddings on the factors of S, and which agree with g, on S N S, C S,
there exists a family g,,: S5, = R>, 0 < u < 1, extending g,, which also restricts
to embeddings on factors and agrees with g, on $> N S,, C §,,.

Since S5, = S? and hence S, = B®, this reduces the proof of the theorem to
the construction of g,,,.

Note also that given g,,: S5 — R® an embedding on each factor, we can
construct a family of spaces 2¢, by taking the disjoint union of the images of the
factors of S¢ and then identifying points in their boundaries whenever their
pre-images in S, are identified. Then g, gives a family of maps g,,: S, —> =,
which are diffeomorphisms on factors. Conversely, given such a family g,
S¢, — 3¢,, we can recover gZ,,: S, = R® by composing with the natural projec-
tions =, = R°.

For the proof of the proposition we shall use the following elementary result.

LEmMa 4.2. Given maps fi,. .., f,,: X — [0, 1], there exist maps u,,. .., u,:
X — [0,1] such that for all x € X,

u(x) < - <ufx) and {w(x)i=1,...,n}={f(x)j=1,...,m}.

Proof. For j=1,...,m — 1, let f{ = min{f;, f..) and f;" = max({f;, f,}- By
induction on m, we apply the lemma to the collections { f;} and { Vi separately
to produce functions #} < --- < wu,and uf < --- < u] with

(wi=1,....ry={fix)j=1,....,m - 1}
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and

{uy(x)i=1,...,s}={f(*j=1,...,m - 1}.

Then the desired u;’s are the functions 4] < --- <u, < f <u/ < --- <ul.

O

Proof of Proposition 4.1. We apply the lemma to the collection of all
functions ¢;(c¢) and @;(¢) + ¢ from S* to [0, 1], where ¢, = max{g,, 0} and ¢ is as
defined in Section 2. Using the resulting functions u;: S*¥ — [0, 1], we construct
g,, inductively, the induction step being to extend from u < u,(¢t) tou < u,, ,(¢).
So we suppose g,, has already been constructed for u = u,(t). As u increases
from u,(t) to u, (t), S, changes in two ways. First, if [u,(t), u,, (¢)] is
contained in an interval [@,(c) — &, ¢,(c)], then there are two parallel horizontal
faces of 27, ,, with boundary circles near ¢ € C,, and in Z,, these two faces
move toward each other as u goes from u,(t) to u,, ,(¢t). There is a corresponding
moving pair of faces in S,,. It is easy to extend g,, ,, over [u,(t), u,,(¢)] near
these faces. If u,, ,(t) = ¢,(c), then the moving pair of faces converges to a
common face when u = u, (t), and we can use contractibility of
Diff( D*rel dD?) to assure that g,, ,, is well-defined on the common face. And
we can arrange that g,, ) be smooth across such a common sum face. Doing
this for all intervals [@,(¢) — & @,(c)] D [u(t), u,,(t)], call the resulting family
g0 § > Z), for u € [u(¢), u;,((t)). Thus S,$ differs from S, only to the
extent that such pairs of parallel faces move together, and similarly for ={?) and
2:u,v(t‘)'

The second way in which S;, changes as u goes from u,(t) to u, . ,(t) occurs
when [u,(t), u;, ,(t)] is contained in intervals [¢,(c), ¢,(c) + €] corresponding to
common difference faces of S¢, () moving across adjacent factors. (Sum faces are
invisible in S7,, and g!!) is already defined across sum faces.) To handle these
difference faces we operate on each component of Eiui(t) separately. (With
varying ¢, the splitting of 27, ) into its components can change only when
u,(t) = u, . ,(t), where the induction step is vacuous.) The common difference
faces Ay(t,u),..., A, (t,u) of a component of () split it into factors
Zo(t, u),..., =, (t, u), where the numbering is chosen so that if the natural
projection of b o(t, u) to R® contains the projection of = 4(t> u) then p < g, and
A {(t, u) is the face of E(t u) separating it from the adjacent larger factor

2(t,u), j <j.

We shall by an inductive procedure construct for each (¢, u) with u €

[u,(¢), u;,(2)] a family

gtu(sl’ . ) tu(Sl’ M Sm) - Etu(sl""’ Sm)

having common difference faces A (t u, $y,-..,8,) and factors = (t u, sl, e,
), Where s, € [s), s7], and s, s} are defined by wu,(t) = q)t(f)A,) + s)e and
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u;,1(t) = ¢,(dA,) + sje. We begin with the family g: §,() - ={) when s, = s?
for all I. For the induction step we wish to let s jvary from s? to s;, assuming we
have already made the construction for s, € [s}, s}], I > j. The family S, (s,,...,
s,,) we have in fact already constructed in the process of forming the family S,¢;
namely, the j common difference face of S, moves across the smaller of the
two adjacent factors, always staying transverse to the foliation F, , as s j8oes from

s] to s;. Via g,(s,.., 87,815 8,), this yields also an isotopy
Aft, u, $Y,.. ., s?_l, Spers8y) of Aft, u, SV, ns s?, Sjr1se > ) 8 € [s?, sjl.],
and so defines Etu(s?,...,s?_l, Sj+++»> Sy). It remains to extend g,.(s,...,
80> 8js1s-++» ) 10 8; € [s7, s]]. For the factor

Ej(t, u,sy,..., s?_l, Sjpenes sm) c fj(t, u,sd,..., s?, Sitloen s sm),
(155 87 15 85.-, 8,,) is defined by restriction. On the adjacent factor

Ej,(t, u,sd,..., Si 15 8jp--+> 8,), aS §; goes from s;.’ to s} this factor is shrinking
by isotopy. On the boundary of this factor, g,,(s!,..., s?_l, Sjp- > S,) Is already
defined, and we can extend over the interior by isotopy extension.

Having the family

Zu(s1e 5 80): Sy (8150005 8) = Zy (51505 8,

we define g, : S, —> =¢, for u € [u,(¢), u,, (t)] to be

gu(stsosn): (st nsn) = 20t oo s0)
where s is defined by u = ¢,(dA;) + sji'e. This completes the induction step in
the construction of g,,,: S/, = 27, foru € [0, 1]. O

On one later occasion the following “blowing up’ operation will be useful.
Let J be a triangulation of S* in which the closed strata of S, are subcomplexes.
There is a well-known way of associating to & a handle structure on S*, in which
i-handles H' = D X D*~* are ¢-neighborhoods of i-simplices o' of &, minus
points in previously constructed handles of smaller index, and ¢, > ¢, > - .-
> g,. Let h: S* > S* be a map which collapses each set {x} X D¥"' c Hito a
point h(x) € ¢'. Since h is homotopic to the identity, the map ¢t — g, is
homotopic to ¢ — g, ,,. We can go back now and replace the family g, by the
family g, ,, keeping the same functions g,, stratifications &, &', etc. The net
result is that we may assume the new family g, is constant on slices {x} X D*~* of
the handles H*, which will prove to be a useful property in Section 12.

PART II: Primitive Spheres

In the spherical models S,,, the geometry of S provided naturally the
foliations F,, by means of which the family S;, was easily formed. For the family
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2,0, constructing foliations ®,, with qualitative behavior like F,, is not so simple
or natural. To obtain a polar ®,, on a factor X of =,, the idea is to construct a
monotone shrinking isotopy =, of the ball £ down to a point in its interior, then
take ®,, on £ to be transverse to the boundary spheres = . To obtain a facial @,
on 3, we do a similar thing using a monotone shrinking of = to its preferred face.
So the problem becomes finding shrinkings =, for the primitive factors = of Z,,
(in a way which varies continuously with ¢, of course). This is done by
considering a natural 2-dimensional quotient C(Z) of =, called the contour of =.
In Section 5 we show that the contours of a family of primitive spheres have a
very simple structure. In particular, contours of primitive spheres are shrinkable,
and in Section 6 we obtain shrinkings of factors = by lifting shrinkings of their
contours C(Z).

A difficulty arises however when one tries to piece together the resulting
foliations ®@,, for different strata of S, because such ®,,’s are not automatically
compatible with the surgeries which occur in ,, with varying ¢. An example
illustrating this problem is given in Section 7. The solution is to choose the
shrinkings of contours with much greater care. This is worked out in the more

technical Sections 8-12, before the final Section 13 where we construct g,:
S = Zio-

5. Contours

For the rest of the paper we shall be dealing with embedded 2-spheres in R3
which have corners. But the corners will always be of the simplest sort: the
bending locus will be a one-dimensional submanifold along which there are
exactly two tangent planes. Further, the surface will be vertical, i.e., have vertical
tangent planes, at all nearby points on one side of the bending locus.

If = c R3is a 2-sphere (with corners) bounding the closed ball =  R3, we
define its contour C(Z) to be the quotient space =/ ~ , where x ~ y if there is a
vertical line segment in X joining x and y. In other words, C(Z) is the space of
leaves of the foliation of = by vertical lines. The quotient map is denoted C:
S - C(2). (Note that C restricted to = is surjective.)

Example 5.1. In Figure 5.1 a primitive sphere is shown, whose contour is a
disc with a “tongue”.

A disc with tongues is a space C which is expressible as the union of finitely
many 2-discs, C = Dy U D, U - -+ U D,, where for each i > 0, D, N (U,_,D)))
is a subdisc d; of D, meeting dD, in at least an arc. The topology on C is the
natural quotient topology. Further, there is assumed to be present, if not always
explicitly given, a projection map 7: C — R® which is an embedding on each D,,
such that the discs 7(D,) and 7(d,) are smooth subdiscs of R2. As a set, C is the
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disjoint union of the initial disc D, with the tongues T, = D, — d,. We call
cl(dD; — dd;) the free edge of T, and cl(dd; — dD;) the attaching edge. The
union of the free and attaching edges of T is denoted d7T;. Points in both the free
and attaching edges of T, are cusp points. A disc-with-tongues structure on C is
the decomposition of C into the initial disc D, and the (unordered) collection of
tongues 7T,. In particular, the discs D, and d; for i > 0 are not part of the
structure, only their differences, the tongues. However, the existence of d; in
D,U T, U---U T_, imposes a non-trivial condition on how the tongue T, can
be attached.

We regard two disc-with-tongues structures as equivalent if one is obtained
from the other by deleting empty tongues.

A tongue T, need not be connected. In fact, dT; can have infinitely many
components. However, the finite character of a tongue is retained if it is regarded
always as the difference between two discs. (Very likely, a preliminary normaliza-
tion of the family g,(S?) could be made to eliminate the necessity of considering
tongues with infinitely many components, but there seems to be no particular
advantage in doing this.)

A family of discs with tongues is a family of spaces each decomposed into
an initial disc D, and finitely many tongues T, such that, locally in the parameter
space:

(a) D, varies smoothly, when projected into R2.

(b) The discs D, and d; whose difference is a tongue T, can be chosen to
vary smoothly, when projected to R?, and d; N 4D, contains a smoothly varying
arc.
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For a family of tongues T, = D, — d,, JT, is defined by the condition that
U.((dD, — dd,) U (dd, — 8D,)) have U, 9T, as its closure.

Locally in the parameter space the tongues can be attached in a definite
order, but this order is not part of the data of a disc-with-tongues structure, and it
need not be the case that one order of attaching tongues suffices globally in the
parameter space.

If {(D,,T;} is a disc-with-tongues structure, we say a disc-with-tongues
structure { Dy, T} ;} on the same underlying space subdivides { D,, T;} if, when we
represent T, as D, — d,, there are discs d; = D,y € D;; € --- c D,, = D, such
that T,; = D;; — D, ;_,. When i = 0, d, is undefined, and Dy, € D) C -+ C
D,,, = D, gives a disc-with-tongues structure { Dy, T, ;} on D,

A tongue T, is of type I if:
(1) =(dT;) N m(dD,) = B, where D, is the initial disc.
(2) m(0T;) N w(dT;) = 2, for each tongue T}, j = i.

Example 5.2. A disc with three type I tongues is shown in Figure 5.2a.
(Ignore the shading for now.) The 7-images of the boundaries of these tongues
and of the initial disc are shown in Figure 5.2b.

A disc with type I tongues structure on a space is very nearly unique. The
initial disc is certainly unique, and the only ambiguity arises from the possibility
of regarding a tongue T, for which JT; is not connected as more than one tongue.
In any case, two disc with type I tongues structures on the same space have a
canonical common subdivision, whose tongues are the intersections of the
tongues of one structure with the tongues of the other structure.

Here is the main result of this section:

ProposiTiON 5.1. The contours of a family of primitive 2-spheres =, C R®
have the structure of a family of discs with type 1 tongues, m: C(Z,) = R being
induced by vertical projection.

%

@) (®)

Ficure 52
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We will prove this only for a fixed value of the parameter ¢, leaving it to the
reader to check what happens under (small) variations of .

Before starting the proof, we make some preliminary observations. Let S be
an elementary surface, with d_ S denoting the components of dS near which S
lies above 35, and 4, S the remaining components. Vertical projection 7: S —> R?
restricts to an embedding on d,S and on d_S. Let C , = 7(3d_,S). These systems
C. and C_ of disjoint simple closed curves in R satisfy the following conditions:

(i) C, meets C_ tangentially.

(ii) Locally, C, lies on only one side of C_ .

(iii) C,_U C_ is orientable; in fact, if C_ is oriented as the boundary of a

compact subsurface of R, this orientation extends over C,.
Conditions (i) and (ii) follow immediately from condition (3) in the definition of
elementary surface. To see (iii), note that C, U C_ is contained on the 7-image of
the subset of S where S has vertical tangent planes, so a normal orientation for S
in R® projects to a normal orientation for C,U C_. Hence C, U C_ is also
tangentially oriented. This orientation restricted to C_ bounds, in the sense of
(iii), since we can enlarge S to a surface S* C R® by adding all points (x,, Yy, 2)
such that either (x,, y,, 2,) € d_S for some z, > z or (x,, y,, 23,) € 9, S for
some z, < z. This S* separates R?, and C_= S$* N (R? X {z)) for z < 0.

Each component of R> — (C, U C_) is bounded by a simple closed curve
which is smooth except for a finite number (which is even, by (iii)) of outward-
pointing cusps. For all but a finite number of these regions of R> — (C,U C_),
the number of cusps is two. The image 7(S) is the union of C,U C_ with some
of these regions of R — (C, U C_), including all regions whose boundaries have
cusps (see Figure 1.1). In particular:

(iv) The unbounded component of R? — (C, U C_) has smooth boundary.

(The reader may wish to convince himself that, conversely, given two
systems C, and C_ of disjoint smooth circles in R? which satisfy (i)—(iv), there is
an elementary surface S with C_ = #(d,5).)

We label the closures of the components of R> — C_ with the symbols +
and — , the unbounded region being + and adjacent regions having opposite
signs. By condition (3) of Section 1, S can be expressed as the union of two
compact subsurfaces S* and S~ which intersect each other in a finite number of
vertical line segments, such that 7(S™) is contained in the + regions and #(S™)
in the — regions. Another way of saying this is that, if S is given the correct
normal orientation, then normal vectors pointing in the direction of this orienta-
tion have z-coordinate > 0 on S* and <0 on S~. For example, for the
elementary surface of Example 5.1, S* can be chosen to be the left half of S and
S~ the right half; see Figure 5.3.
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Ficure 5.3

Now let = be a primitive surface, the union of an elementary surface S with
horizontal discs, the faces of Z. Such a face A is called lower if JA € d_ S, upper
if A < 4. S. Further, A is outer if the corner angle of 2 at JA, measured in 3, is
90°; A is inner if this angle is 270°.

Figure 5.4 illustrates the various possibilities for how an upper and lower
face give rise to tangencies of C, and C_ .

Q\QN

(@) (b)

Ficure 5.4

In (a), if the upper and lower faces shown are both outer faces, then the heavy
line becomes a free edge of C(Z). In the opposite case that both faces in (a) are
inner faces, then the heavy line becomes an attaching edge in C(Z). In both
cases no cusp points are present. In (b), whether = lies on one side of the part of
S shown or the other side, the heavy line becomes in C(Z) a free edge and an
attaching edge meeting at a cusp; the attaching edge comes from the boundary
of the inner face, the free edge from the boundary of the outer face. We conclude
from this that C(Z) is locally a disc with type I tongues.
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Let C’'(2) € C(2) be the set of non-regular (i.e., free edge, attaching edge,
and cusp) points of C(X). From Figure 5.4 we can also deduce that « restricts to
an embedding of C’(Z) into R, since above and below the part of S shown there
can only be points of £ — S.

Also, one can see from Figure 5.4 that free edge points of C(Z) project to +
regions of R?, attaching edge points to — regions.

Proof of Proposition 5.1. The components of S*N dS we call segments. The
proof will be by induction on the number of segments and faces of Z.

Let A be a face of = such that #(dA) is an innermost circle of C_ if A is a
lower face, or C, if A is an upper face; we call such a A innermost. For
definiteness, let A be an innermost lower face. There is a well-defined finite set of
disjoint discs D; C m(A) such that:

(i) #(S) N a(A) = 7(A) — UJ.int(D].).

(i) Each 0D, s a (finite) union of 7-images of segments, coming alternately

from 3, S and d_S as one proceeds around 9D,
A typical example is shown in Figure 5.5. We label the segments of 0JA
alternately inner and outer, where if m(A) is a + region, inner segments come
from S* and outer segments from S *. In Figure 5.5 the segment s, is inner if i is
even, outer if i is odd. Outer segments are contained in Dj’s.

(1) If JA is a single outer segment, we can change £ to another primitive 2’
by taking the elementary surface S’ € 2’ to be S U A, with the corner at JA
smoothed. Clearly C(Z) = C(ZX’), and £’ has one fewer segment than 2. So we
may assume JA has inner segments.
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(2) If some D; meets no outer segment, e.g., D, or D; in Figure 5.5, then
D; = =( A’) for an upper face A’ to which (1) is applicable. Hence we may assume
each D]. meets, hence contains, an outer segment.

(3) If the number of D/’s in a(A) is zero (for example, if 3 has only one
segment, dA), then 7(A) € #(S), and in fact #(A) = #(S) since JA is a single
segment and 7(S) is connected (since S is). In this trivial case C(Z) = C(A), a
disc. So we may assume the number of D;’s is non-zero. By (2) this means JA has
outer segments, as well as inner ones.

(4) Suppose there is an inner segment s of JA for which both adjacent outer
segments (which may coincide) project into the same D;, e.g., s¢ in Figure 5.5.
There are two possible configurations, shown in Figure 5.6.

Ficure 5.6

We can change 2 to another primitive 2’ by replacing the component S, of S*
containing s by a vertical strip S| above s (shown dotted). In Z’, S| can be taken
out of (S)* and put in (S)¥, thereby amalgamating s with the adjacent
segments of JA. In case (a) C(Z) = C(Z’), while in (b) C(X) is C(Z’) with a
tongue attached, of type I since we know 7 restricts to an embedding of the
non-regular points of C(Z). So we may assume no segments s of the type just
considered remain in JA.

(5) If there is only one D;in «(A), then (4) would apply. So we may assume
there are at least two Dj’s. Hence there are two Dj’s, say D, and D,, which
contain the 7-image of just one outer segment each, say s; and s,. Let S,
(i = 1,2) be the component of S¥ containing s,. Then S, cannot meet any other
(outer) segment of dA, for if it did, dD; would be the 7-image of a non-separating
circle C C 2, as in Figure 5.7.

(6) If S, meets another lower face A’ with #(A) N m(A") = &, lying, we
may assume, in the same horizonal plane as A, then A and A’ can be amalga-
mated into a single lower face by pushing a neighborhood of an arc in §; joining
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A and A’ down to the level of A and A’. This yields a new primitive 2’ with the
same contour as = but one fewer face.

(7) If both S, and S, meet a non-innermost lower face A’, with 7(A) C 7(A’)
necessarily, then just as in (5), £ would contain a non-separating circle. Thus we
may assume S,, say, meets no other lower face besides A. For the upper face A’
with dD;, — #(dA) C 7(9A’) there are two possibilities, shown in Figure 5.8:

CO=) i)

(@) (b)

Ficure 5.8

either (a) D, C m(4"), or (b) 7(A) — D, € w(A’). Case (b) reduces to case (a) by
passing from S, to S,. In case (a), by applying (1) to upper faces we may assume

A’ is innermost. Since D, is the only D ” for A’, our previous steps apply to A’ to
reduce the number of segments of 3. O

Remark. 1t seems likely that every disc with type I tongues occurs as the
contour of some primitive 2-sphere.

We shall also need a relative form of Proposition 5.1, and this requires
a new type of tongue. We say a tongue T, in a disc with tongues structure



576 ALLEN E. HATCHER

{Dy, Ty,. .., T,} is of type II if:

(1) The attaching edge of T, lies in the initial disc D,, and near its cusp
points lies in dD,.

(2) The free edge of T, projects disjointly from 7(D,) except for its cusp
points.

(3) 7(dT;) N 7(dT)) = @ for j= i.

Example 5.3. For the disc with type I tongues shown in Figure 5.2a, if the
shaded region is regarded as the initial disc, we obtain the structure of a disc
with three type II tongues and one type I tongue. Figure 5.9a shows the 7-images
of these tongues. For comparison, Figure 5.9b superimposes Figures 5.2b and

D) JID)

@ ®)

Ficure 5.9

A disc with type I and II tongues structure enjoys the same uniqueness
properties as a disc with type I tongues structure does, once the initial disc is
specified.

A face A, of a family of primitives X, is called large if, locally in t,
w(A,) N dm(Z,) contains a smoothly varying arc. In other words, C(A,) meets
the boundary of the initial disc of C(Z,) in at least an arc (which varies smoothly
with ). A large face is necessarily an outer face.

ProposiTiON 5.2. If A, is a large face of the family of primitives Z,, then
C(Z,) has the structure of a disc with type I and II tongues, with C(A,) as the
initial disc.

We shall refer to this disc-with-tongues structure as a structure on C(Z,, A,),
to distinguish it from the disc with type I tongues structure on C(Z,) itself given
by Proposition 5.1.

Proof. Consider the unparametrized case (the parametrized case will follow
immediately). From Figure 5.4 and the fact that A is outer, C(dA) meets the
attaching edges of C(Z) only in their cusp points, and near such a cusp point
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C(0A) lies in the abutting free edge. Further, by condition (3) for elementary
surfaces, 7(C(dA)) N 7(C'(Z)) = #(C(dA) N C’(X)). The result follows by ob-
serving:

(1) If C(A) meets a type I tongue T of C(Z), then T — C(A) is a type 11
tongue attached to C(A).

(2) For the initial disc D, of C(Z), D, — C(A) is a type II tongue attached

to C(A).
(3) All type I tongues of C(Z) disjoint from C(A) remain type I tongues of
C(Z, A). |

For use in Section 9 we have the following:

LemMa 5.3. Let 2 be a primitive 2-sphere, with A, a lower face and A, an
upper face. If 7( BAl) N w(dA,) = &, then in the extended plane R=R2U {00},
the components of R? — (m(dA,) U m(dA,)) each have two cusps (necessarily
pointing outside) except for two components whose boundaries are smooth
circles.

Thus two sorts of configurations for #(dA,) U #(dA,) are permitted, as
shown in Figure 5.10a below. Excluded are configurations such as those in Figure
5.10b.

00 D8

Ficure 5.10

Proof. Let a be a component arc of #(dA;) N int(7(A,)). (If no such arc
exists, then 7(A,) C 7(A,) or 7(A,) € R? — int m(A,); in these cases the lemma
is obvious.) Let &’ be a copy of a pushed off 7(JA,) slightly, in the direction
which makes the endpoints of a’ lie outside 7(A,), so that &’ N 7(A,) is a closed
subarc a” of a’. There is a disc D € R® with #(D) = «’, dD consisting of four
arcs: two vertical ones projecting to the endpoints of a’ and two horizontal ones
projecting to o, in levels just above the levels of A; and A,. See Figure 5.11. By
construction dD N 2 = &, and we may suppose D meets 3 transversely. One
component of D N X is a circle C with #(C N A,) = a”. Since 2 is a 2-sphere, C
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T(3A,) D
an, 7

Ficure 5.11

must separate Z. It follows that one component of 7(A,) — & must be disjoint
from 7(dA,), and that the component of R — (7(dA,) U 7(dA,)) containing o’
has just two cusps on its boundary.

To finish the proof there are two cases:

Case 1. Both A, and A, are outer faces, or both are inner. This means that
7(A,) and 7(A,) lie on the same side of w(9A ;) N w(dA,). In this case what we
have shown is that the components of m(A,) — 7w(A,) are 2-cusped. If we remove
them from w(A,), we are left with a smooth subdisc of w(A,). In effect, this
reduces us to the easy case m(A,) C w(A)).

Case II. One of A, and A, is inner and the other is outer. Now the
components of w(A,) N w(A,) are 2-cusped, and removing them from w(A,)
reduces us to the easy case m(A,) C R? — int w(4A)). O

6. Shrinking

Let C, be a family of discs with tongues. By a shrinking of C, we mean a
family C,, of discs with tongues, s € [0, 1], such that:

(1) Go =G..

@) C,cC,ifs>s"

(3) For each tongue T, of C,, T, N C,, is a tongue of C,,.

(4) If D, is the initial disc of C,, then D, N C,, is the initial disc of C,.

LemMa 6.1. Let =, C R3 be a family of 2-spheres with corners (of the type
described in § 5) such that C(Z,) is a family of discs with tongues. Then a
shrinking C,, of C(Z,) = C,, lifts to an isotopy Z,, of Z, = Z,, such that (i)
CE,,) =C,, (i) T, c Z,, if s > &, and (iii) =,; is smooth for s > 0.
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Proof. It suffices to consider the case that the tongues of C, attach in one
order independent of ¢. For if {(y,}, i = 1,2,..., is a partition of unity sub-
ordinate to a cover of the parameter domain in each of whose sets a single order
of attaching is possible, then we can lift the shrinking C,, inductively over the
intervals ¥, ., < s < X,_,¥;; in this I' interval we use the order associated to
the support of y,.

Suppressing t from the notation, let T,..., T, be the tongues of C, attached
in that order, and let D be the initial disc of C. From the shrinking C, we define a
family of discs with tongues C(s,,...,s,) CC,for0 <s, < --- <s, <1, by
the conditions C(s,...,s,) N T, = C, N T; and C(s,,...,s,) N D =C, ND.
We view C(0,...,0,s;,s;,,...,8,) fors, € [0, s,,,] as a shrinking of C(0,...,
0,s;,1--.,8,) If we assume inductively that a family 2(0,..., 0, s,, ,..., s,)
has already been constructed with contour equal to C(0,..., 0, s, ,..., s,), it
suffices to lift the shrinking C(0,...,0,s;,s;,.1,...,5,), s; €[0,s,,,], to a
shrinking isotopy 2(0,..., 0, s;, s;,1,..., s,) of 2(0,..., 0, s, ,..., s,). For the
desired shrinking X _ is then Z(s,..., s).

Thus we have reduced to two cases: either only a single tongue T = T, — G,.,
is shrinking (and no other tongues attach to this tongue), or only the initial disc is
shrinking. We consider the first case, the second case being similar. As a
preliminary to lifting such a shrinking C,, we construct a small shrinking isotopy
2’ of 2 = Z{ such that:

(a) X/ is smooth for s > 0.

(b) Z/ has no vertical tangents at points projecting to int(T).

(© C(E) = C(3), _

Figure 6.1 indicates how to achieve (a), where the shaded region is =.

W 7
i d -

Ficure 6.1

To achieve (b), let V be the set of points of = having vertical tangent planes and
projecting to points of int(T'). Let V, (V_) be the subset of V where an upward
(downward) directed vertical line passes from inside = to outside =, as in Figure
6.2. Notice that V, and V_ are disjoint, relatively closed sets in C~!(int(T)),
where C: £ — C(X) = C is the quotient map. So we can find a vector field v on
R3 (smooth, and varying smoothly with ¢) such that:

(i) v|Z is non-zero only on C~ }(int(T)).
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(ii) 0|2 is orthogonal to 2, pointing inside where it is non-zero.

(iif) 5;|v| > 0on V, and a—z|v| <OonV_.

Ficure 6.2

Having v, we obtain 2’ by flowing along v for a sufficiently short interval
s € [0, ¢], then standing still for s € [g, 1].

The desired shrinking =, of = is obtained by setting =, = C~Y(C,), where
now C: 2/ — C is the projection. This £, has corner points which project to the
free edge of T N C,, but these can easily be smoothed without affecting the
contour, as in the left half of Figure 6.1. O

Obvious modifications of the preceding proof yield:

Addendum 6.2. If 3, contains a horizontal disc A, with A, a corner of 2,
then a shrinking of C(Z,) to C(A,) lifts to a monotone isotopy of =, — int(4A,),
rel 9A,, across =, to A,.

If T, is a family of tongues, the difference between discs d, C D,, then by
a shrinking of T, we mean a shrinking of the disc-with-tongues structure D, =
d, U T, down to its initial disc d,. Thus a shrinking of T, amounts to a monotone
family of subtongues of T, whose attaching edges are contained in the attaching
edge of T,. Different shrinkings of T, which yield the same monotone family of
subtongues will be regarded as equivalent; they differ only in the rate at which
the shrinking occurs.

LeMMA 6.3. Given shrinkings of the individual tongues of a family of discs
with tongues C,, there is a shrinking of C, down to its initial disc, whose
restriction to each tongue of C, is the given shrinking of that tongue.

Proof. As in the proof of Lemma 6.1, a partition of unity argument easily
reduces to the case that the tongues of C, attach in a single order, independent of
t. Then we can just shrink the tongues of C, one at a time, in the reverse of the
order of attaching, using the given shrinkings of these tongues. O
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7. An example

Suppose a component 2(y) = Z,,(v) of Z,, has a single common horizontal
face A, which factors the primitive £ C Z(y) as the difference of two primitives
2y, 2, © 2(y) (see Figure 7.1).

We might hope that our prescription for constructing the foliations ®,, on =, =,
and 21 mentioned in the introduction to Part II, as transversals to shrinkings of =
and I, to a point and 2, to A,, would have the property that the restriction to =
of ®,, on =, would equal ®,, on =. This happens in the spherical models, and it
would happen here if there were some sort of compatibility in the shrinkings of
=, 3, and I,. However, shrinking =, to A, has the effect of expanding = rather
than shrinking it. At the very least, one would want C(2) to keep its structure of
a disc with tongues as > expands. The point of this section is to show an example
where C(Z) loses its disc-with-tongues structure as = expands, and to suggest the
remedy: subdividing tongue structures before shrinking.

We remark that this problem does not arise in a generic family g,: $* — R®,
t € Sk with k < 2, since the disc-with-tongue contours which one has to consider
in these cases are very simple. (The projection 7: C(Z) — R2 is at most 2-to-1.)
Hence our proof could be considerably shortened if one were interested only in
showing 7, Diff(S3) = m,0(4) for i = 0, 1.

The elementary surface part S of the primitive 2 of our example can be
described, as in Section 5, by its image #(S) shown in Figure 7.2a. Thus d_S

(@) =(8) (b) m(S1) () 7(So)
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consists of three circles C,, C,, C; with nested 7-images. Four handles A, B, C, D
are attached to the top edges of vertical collars on C,, C,, and C;. These handles
have the effect of doing surgery on C;, U C, U C; to obtain three other circles.
Adding vertical collars above these three circles, we reach the three circles
Cs, C5,Cg of 0.S, whose 7-images are also nested. A full picture of S is
attempted in Figure 7.3.

AVN
N

/

Ficure 7.3

We obtain the factorization 3 = =, — 2, by putting the handles A and B in
a level above the level of C and D, and choosing dA; C S as a horizontal circle in
an intermediate level, such that dA; separates A and B from C and D on S. The
elementary surface parts S, C 2, and S; C 3, are shown in Figure 7.2b, c¢. Note
that S, and S, are essentially isomorphic.

From Figure 7.3, or by more general considerations using Figure 7.2a, one
can see that C(Z) is a disc D, with a type I tongue T, attached to the top side of
D,, then a type I tongue T, attached to the bottom side of T,. Figure 7.4a shows
the 7-images, with free edge points of T, and T, paralleled by dotted lines and
attaching edge points by dashed lines. Also we see that C(Z,, A,) consists of a
single type II tongue T; attached to the underside of the disc C(A,). This is
shown in Figure 7.4b, dC(A,) being indicated by the heavy line.
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@ C(2) (b) C(24, 4y) ©

Ficure 74

Figure 7.4c shows the 7-images of D, T|, and T,, with #(T;) superimposed
(shaded). A diffeomorphic but visually simpler form of this configuration is
shown in Figure 7.5a.

\
)
D

N
=

Y

§\
7
¢
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7

Ficure 7.5

Suppose we begin to shrink T; in the way shown in Figure 7.5b. At first during
this shrinking of T;, the effect on C(2) is to pinch T, to D,, and what is left of T,
remains a tongue. But then, when the part of T; being shrunk has 7-image
meeting 7(T;), we are pinching T, to D,. When all that is left of T, is the shaded
part in Figure 7.5b, then what remains of T, has two components, which are both
discs topologically. One of these (on the right in Figure 7.5b) has no free edge, so
it cannot be a tongue. (A further difficulty is that what remains of T, is not even
simply-connected, so it cannot be a tongue either.)

The way to avoid this problem is to use Figure 7.5a to subdivide T, into
three tongues T}, T}y, T)3 and to subdivide T; into two tongues Ty, and Ty, as
indicated in Figure 7.6. The tongue T, we leave unsubdivided. Then shrinking
T,, pinches Ty, bit by bit to D,, T}, remaining a tongue throughout the process.
And similarly, shrinking T;, pinches T, to T,, so that it remains a tongue
throughout too.



584 ALLEN E. HATCHER

Ficure 7.6

8. Large factors

Consider a family 3(y) = Z,(y) = Z,,(y) C Z,,, as defined in Section 2.
Thus Z(7) is the union of a primitive 2-sphere £ with certain horizontal discs
A,,..., A, which split = into primitive factors Z,..., Z,. The A;’s correspond
to the edges ¢, of v, the =,’s to the vertices v,. The maximal factors Z; correspond
to the vertices of a subtree v, of y. The edges of v, correspond to sum A;’s.

A family of subsets X, C 2,(vy) is called large if, locally in ¢, #(X,) N
dm(Z,(v)) contains a smoothly varying arc. (Note that 7(2,(v)) is a disc since =
is primitive.)

Lemma 8.1. The large factors 2, of Z,(y) correspond to the vertices of a
non-empty subtree \, C v, C y (A, can vary with t).

Proof. We shall use the notation and terminology introduced to prove
Proposition 5.1. First we verify that large factors exist. The boundary of the disc
m(Z) is the union of finitely many arcs lying in either 7(S*) or 7(S™). Let a be
such an arc, say in #(S*). Then J,S contains an arc & with 7(&) = a. The
component of d, S containing & lies in some factor Z;, which is therefore large.

Large factors of Z(y) are clearly maximal.

Let 2, and 2, be large factors and suppose A, is a (sum) face corresponding
to an edge of y which lies on the path in y joining the vertices v, and v,. We
claim that A, is large. From this it follows that the two factors of Z(y) having A,
as their common face are also large. Hence all the vertices of y on the path from
v, to v, correspond to large factors, so the vertices of y corresponding to large
factors are the vertices of a subtree of vy.

To see that A, is large, we may as well assume that 2, and 2, are the only
factors of 2(y), since discarding the other faces A,,..., A, can only enlarge
7(Z,) and 7(Z,). Say A, is an upper face of 2 and a lower face of 2,. Suppose
m(dA,) were not an outermost circle of #(d_S;). Then 7(A,) C int(7(Z,)), and
in the contour C(2) = C(Z,) U C(Z,), with C(Z,) N C(Z,) = C(4A,), the initial
disc of C(Z,) would also be the initial disc of C(Z). Hence 2, could not be large,
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or else C(Z) would not be a disc with type I tongues. So 7(dA,) is an outermost
circle of #(d_S,), and likewise of m(d, S,). If dA; C S*, then #(Z,) C 7(4,), so
A, is large since 2, is. Similarly, A, is large if dA; C S™. So we may assume JA;
meets both S* and S~ . Considering 2, and X, separately, we see that

7(dA, N STN S7) C In(Z,) N an(Z,) c dn(Z).

Thus 7(A,) meets dn(Z), in at least an arc in fact, since we may take S* and S~

to be vertical in a neighborhood of S*N S~ . See Figure 8.1. O
~—_ 9O
+/ \\ \\‘\\\\\\ N\ \\\\\\\
5 . . \\'t(A DRRNN
| fr(s*){ }msv
T~ S” an(L)

a5

Ficure 8.1

Let us restrict now to an open subset of the parameter domain over which
some factor 2, of 2(v) is large. The other factors we relabel so that A, is a face of
3, fori=1,..., n. Each A, splits = as a sum or difference of two primitives =
and ‘=, where 2 U'S = Z U A, and 2 N'E = A,. One of 2 and ‘Z, say =,
meets 2, in more than just the face A,. We call 2’ a cofactor of =(y). For
convenience we regard = as the cofactor =°. The cofactors =’ are partially
ordered by defining 2 < 2/ to mean ' — A, C =i. In particular =¢ < 2° for
all i > 0. (Cofactors turn out to be more useful than factors in constructing =¢,
and gtO: StCO - 2;‘:0)

Lemma 8.2. A, is a large face of = that is, m(A;) N dn(Z*) contains an arc
which, locally in t, can be chosen to vary smoothly with t.

Proof. Since the A/’s with j# i are irrelevant here, we may as well assume
n =i = 1, so that A, splits 2 into the factors 2 and =, with 2 large. Say A, is
an upper face of , and a lower face of Z,. Suppose 7(dA,) were not an
outermost circle of #(d_S,). If A, is a sum face, we reach a contradiction just as
in the proof of Lemma 8.1. If A, is a difference face, then the boundary of the
initial disc of C(Z,) would create a circle of attaching edge points in C(Z), which
is impossible in a disc with type I tongues. Hence 7(JA,) must be an outermost
circle of m(d_S,).
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Suppose now that A, is a sum face. (The argument from here on in the
difference case is just the same, but with S* and S~ interchanged.) If dA; C S,
then m(Z,) C m(A,), so A, is large in Z(y) since =, is, and a fortiori A, is a large
face of Z,. So we may assume JA, meets S™; hence dA; N S~ contains an arc.
Since m(dA; — S¥) € dm(Z,), A, is then a large face of =,. O

As an application of these lemmas, we refine condition (2) in the construc-
tion of F, (v) in Section 3 to be:

(2) F,,(v) has a pole in the core of a maximal factor of S, (v) (and
moreover, a maximal factor which corresponds to a large factor of 2,,(v) if
u = 0) unless (¢, u) is near the boundary of the stratum where vy is defined.

Lemma 8.2 then guarantees that the factor S, of S,,(y) in (a) and (c) of Lemma
3.1 corresponds to a large factor of =,,(v).

Thus for a stratum of 5(/) over which y has a base vertex (see § 3), this vertex
determines a large factor 2, of (). In the opposite case that y has a base edge,
both factors of Z(y) containing the common face A, corresponding to this edge
are large, as is A, itself, as we showed above. The most convenient thing to do in
this case is to choose for “Z,” the cylinder between two infinitesimally displaced
parallel copies of A,.

9. Tongue patterns

We continue with the situation of Section 8.

Each subtree 7 of y determines a primitive 2-sphere 2_ C 3(y), which is the
union of the factors 2, corresponding to the vertices of 7, minus the interiors of
the faces A; corresponding to the edges of 7. In case the base vertex or edge of y
does not lie in 7, = has a preferred face A, which is the A, corresponding to the
edge of y — 7 abutting 7 in the direction of the base vertex or edge of y. Note
that A = A, is a large face of =_since 7(Z,) C #(Z) and A, is a large face of =
by Lemma 8.2.

The main purpose of this section is to describe a certain compatibility
relationship which holds among all the disc-with-tongue structures C(Z.) and
C(Z,, A,) as 7 ranges over subtrees of y. This compatibility will be measured via
the projections 7: C(Z,) - R? and 7: C(Z,, A,) — R2

Some definitions are needed first. A subset P of R? is called a tongue pattern
if it is the union of a finite number of disjoint subsets P, called tongue blocks or
just blocks, each of which has the form P, = U,dT;;, where the T;/s are the
tongues of a subdivision of a single tongue T, C R% (See the definition of
subdivision in §5.) A family of tongue patterns is obtained by taking families of

tongues T; and T;;, as in Section 5.
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As a simple example, if 2 is a primitive 2-sphere and T3,..., T, are the type
I tongues of C(Z), then P(2) = U, m(3T}) is a tongue pattern. Similarly, if A is a
large face of = and T),..., T, are the type I and II tongues of C(Z, A), then
P(Z,A) = U,7(dT)) is a tongue pattern. Less trivially, P(Z) U P(Z, A) is a
tongue pattern. This can be deduced from Proposition 9.1 below, or seen
directly. For example, the solid lines in Figure 5.9b show P(Z) U P(Z, A) where
2 has contour shown in Figure 5.2a, with C(A) the shaded disc.

A tongue block P, can be characterized as follows. Each component of P, is
obtained from a component of the boundary 97, of a tongue T, C R? by adding a
bounded number n of arcs a; C T, U 9T}, with da; C dT;, such that the compo-
nents of T, — U, are all 2-cusped. For, given such arcs a;, each «; subdivides T;
into two subtongues, and the various n-fold intersections of these subtongues
form the tongues T;; of a subdivision of T;.

We note also that different subdivisions (T;;} and (I;},} of T, can have
P, = U, 9T,;= U, 9T}, However, in this case {T;; N T};.} is a common subdivi-
sion with P, = U, &(T;; N T}.).

Returning now to the situation at the beginning of this section, we define

P(y)= U (P(Z,) UP(Z,, A,)),

TCYy

the union over all subtrees 7 of v, it being understood that the term P(2_, A)) is
omitted when it is undefined, namely when 7 contains the base vertex or edge
of y.

ProposiTion 9.1. P(Y) is a family of tongue patterns.

Proof. Consider first a fixed value of ¢. Let P*(2) = P(Z) U w(dD) where
D is the initial disc of C(Z). Intrinsically, P*(Z) is the projection to R? of all the
non-regular points of C(X), i.e., points where C(X) is not locally homeomorphic
to R% Let P*(y) = P(y) U P*(Z). P*(y) is orientable, via a continuous field of
non-vanishing tangent vectors. Namely, P*(y) is contained in the m-image of the
subset of 2 where = has vertical tangent planes; so a normal orientation for
projects to a normal orientation for P*(y).

Before beginning the proof proper, we make three preliminary observations.
Let S(2,, A,) € m(dA,) consist of points of 7(JA,) lying on or inside blocks of
P(Z,,A,). Thus S(Z,,A,) C P(S,) UPZ,, A).

() P(y) — P*(2) c US(Z, A,). To see this, consider x € P*(y) —
P*(Z) c P(y), say x € P(Z_) U P(Z_,A)). From Figure 5.4 we see that x €
m(9A) for some horizontal face A of .. (There are at most two faces A of =_such
that x € 7(dA), since = is primitive.) If x & m(dA,;) for any i, then x € P(Z))
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(since P(2,,A,) — P(Z,)C w(dA,) and A, = A, for some i), and x lifts to a
non-regular point of C(X,) in dA which remains non-regular in C(2) (see Figure
5.4); hence x € P*(Z), a contradiction. So we may assume x € 7(dA,;) with A; a
face of =_; this can happen for at most two A,;’s. If either of these A;’s is A , then
x € S(2,,A)c S(Z, A,). If neither A; is A, then A; is a common face
between =_and =¢. From Figure 5.4 again we see that if x & S(2¢, A)), « lifts to
a non-regular point of C(Z.) in dA; which remains non-regular in C(Z, + =),
hence also in C(ZX), a contradiction.

By a shadow arc we mean a maximal connected subset of S(Z%, A,), for
some .

(2) A shadow arc of S(Z¢, A,) can enter a tongue of P(Z) from outside only
at the cusp points of that tongue. In fact, from Figure 5.4 we see that 7(dA;) can
meet an outer collar (see Figure 9.1) on the tongue of P(Z) only at points in the
boundary of the tongue.

Ficure 9.1

(3) A shadow arc @ C S(Z, A,) has both its endpoints on one component of
P*(Z), and:

(a) If the endpoints of a lie on 7(dD) for D the initial disc of C(X),
then a subdivides (D) into a disc and a tongue.

(b) If the endpoints of a lie on 7(dT) for T a tongue of C(X), then a
subdivides 7(T') into two tongues.
This is because the endpoints of « are also the endpoints of 7( A) for an arc A of
free edge points of a type II tongue of C(Z%, A,). The region between a and
7(A) is a tongue T’, and w(A) € P*(Z). If n(A) C m(dD), then 7(D) — T"is a
disc and (a) holds. If #(A) C #(3dT') for a tongue T of C(Z), then T" C =(T) by
(2), so #(T) — T’ is a tongue and (b) holds.

Consider now 7(dT) for a tongue T of C(Z). Let a},. .., a), be shadow arcs
whose endpoints lie on or outside 7(dT'), and let a, be the part of a; on or inside
7(dT). (Thus a, = « if the endpoints of «; are on 7(dT).) We claim that
7(dT)U a; U -+ U a, is a tongue block. This will be shown by induction on
m. Since w(dT) U - - - U a,, is orientable, it could fail to be a tongue block only if
it contained a smooth circle.
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m = 1. If the ends of ] are outside 7(dT'), then the ends of a, are at the
cusps of m(dT) and clearly #(dT) U a; can contain no smooth circle. The other
possibility, that the ends of a; = &, are on 7(9T'), was handled in (3) above.

m=2 U a,Na,= @, this case follows from the preceding one. If
o, Na, = @, then o, and @, come from two different shadow sets, say
S(=1, A,) and S(=2, A,). Applying Lemma 5.3 to a primitive 2, having A, and
A, as faces, we see that m(dA,) U 7(3A,) is a configuration as in Figure 5.10a. As
we saw in (2) above, m(dA,) and 7(dA,) are disjoint from an outer collar on
a(dT). We distinguish two cases:

(a) If w(dA,) or m(dA,), say m(JA,), goes outside 7(dT) at the cusps of
7(dT), then the claim we are trying to establish for m(9T) U a; U a, could fail
only if there is a smooth circle in 77(T') consisting of arcs a« C a, and &’ C 7(dA,)
(see Figure 9.2a). Lemma 5.3 implies that if we orient 7(dA,) U 7#(dA,) and use
this orientation to assign a cyclic order to each triple of distinct points in 7(dA,),
or each triple of distinct points in 7(dA,), then for triples in 7(dA;) U 7(dA,)
these two cyclic orderings agree. As a result, m(dA,) can meet 7(JdA,) only in «’.
Prolonging a to a,, whose endpoints lie on 7(dT), and using the orientability of
7(dT) U a,, we see that m(dT) U a, contains a smooth circle, contrary to the
case m = 1.

m)
N\ 3 ( @
/ ¥~ °‘2)\ L)
/
€))

R

T(3A,)
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Ficure 9.2

(b) If w(dA;) U m(dA,) C m(T), we can without loss of generality pinch
m(dA,), m(dA,), and m(JT) together to eliminate any 2-cusped regions in the
complement of their union. This leaves only the two configurations for 7(97T) U
w(dA,) U m(JA,) shown in Figure 9.2b. In these cases the result for m =1
clearly implies the result for m = 2.

m > 2. Suppose inductively that #(dT)U a; U --- U a,,_, is a tongue
block. If there is a smooth circle in 7(dT) U a; U - - - U a,,, then in some tongue
of the tongue block 7(dT) U a; U - -+ U a,,_, there is a configuration like that
in Figure 9.3a: a smooth circle consisting of an arc a C «,, and an arc a’ C
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m(dT)Ua; U -+ U a,_,;. We may assume the interior of the disc bounded by
a U o is disjoint from m(dT) Ua; U -+ U a,,_;.

Ficure 9.3

The endpoints of a cannot both lie on 7(dT), else 7(dT) U a,, would contain a
smooth circle. Orient P*(y) so that the head of « is not on #(dT). There are
smooth arcs 8 C w(dT) U a,, and B’ C 7(dT) U a;, for some i < m, such that
the tail of B is the head of a, the tail of B’ is the tail of «, and the head of B is the
head of B’. The two possible configurations for « U «’ U 8 U B’ are shown in
Figures 9.3b and 9.3c; the distinction is whether a’ lies outside or inside
a U B U B In 9.3b there is some a;, j< m, entering at the head of & from
outside the disc bounded by a U «'. Following this a; backward we must
eventually meet either 8 or B’. If we meet 8, then there is a smooth circle in
a;U B Ca(dT) VU a;V a,, contradicting the case m = 2. If we meet B’, then
there is a smooth circle in ¢;U &’ U B C7(dT) U, U --- U a,,_,, contrary
to the induction hypothesis. In 9.3c we follow «,, backwards from the tail of «
until we meet either 8 or B8’. Again a contradiction results in either case. Hence
m(dT)Va; U -+ U a, is a tongue block.

Now let a;,. .., a,, be shadow arcs whose endpoints lie on 7(dD), where D
is the initial disc of C(Z). Define a disc block to be a subset of R? of the form
dD, U dT, U - -+ U JT,, where (D,, T},..., T,} is a disc-with-tongues structure
on a disc D; € R?, such that 3D, N 3D, contains an arc (which can be chosen to
vary smoothly with the parameter ¢, at least locally in ¢). The claim is that
7(dD) U a; U -+ U a,, is a disc block.

If the arc «; arises from A p S0 a; C (A j), then A j must be a sum face
splitting off 24, since a; goes out to #(dD). Let T(a;) C m(D) be the tongue cut
off m(D) by a;. (T(«;) exists because m(dD) U a, is orientable.) The components
of 7(D) — U,T(«;) are smooth discs, since they arise by intersecting the smooth
discs (D) — T(«a;) whose boundaries meet tangentially with consistent orienta-
tions. The intersection of one disc component of 7(D) — U T(«;) with #(dD)
must contain an arc A, since points of m(dD) — U, T(«;) are projections of free
edge points of the initial disc of C(Z,) which remain free edge points of the
initial disc of C(X), and =, was chosen to be a large factor of Z(v).
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Note also for future reference that #(3D) — U, T(e;) = P*(y) — P(y), so
that P(y) will be a tongue pattern if P*(y) is a disc block with disjoint tongue
blocks in its interior.

We check that #(dD) U a; U - -+ U a,, is a disc block by induction on m.
The case m = 1 is obvious. For m = 2, we suppose as before that «; and a; come
from the common faces A; and A,. Of the two types of configurations for
m(dA;) U m(dA,) shown in Figure 5.10a, the second is ruled out here since
w(dD) U 7(dA;) U m(dA,) is orientable and both 7(dA,) and 7(dA,) lie in 7(D)
and must meet 7(dD). For the first configuration the result is obvious. For
m > 2 we assume m(dD)Ua; U - U a,,_, is a disc block. To show that
m(dD) U a; U - - - U a,, is a disc block we must show that every smooth circle in
m(dD) U a; U - - - U a,, contains the arc A C «(dD). Suppose not. Then there
is a smooth circle disjoint from A, consisting of an arc a C a,, and an arc
o Ca(dD)Ua, U--- U a,_,. The endpoints of a cannot both lie on 7(dD),
since if they did, either &« U 7(dD) or &’ U 7(3dD) would contain a smooth circle
disjoint from A, contrary to the induction hypothesis (see Figure 9.4).

(3D) Tt(dD)

Ficure 9.4

The rest of the argument that 7(dD) U a; U --- U a,, is a disc block proceeds
just as in the earlier argument that #(dT) U a; U - -+ U a,, is a tongue block,
with 7(dT) replaced now by m(dD) — A.

The proposition now follows by an inductive argument. Upon the disc block
7(dD)Ua; U --+ U a,,, Where a,,..., a, are all the shadow arcs with end-
points on 7(dD), one first superimposes the largest tongue 7(dT) which meets
m(dD)U a; U - - - U a,,, together with all shadow arcs with endpoints on 7(3T).
The result is again a disc block, since it decomposes 7(D) into regions all of
which are 2-cusped except for one smooth disc. On this disc block one superim-
poses the next largest m(9dT) meeting this disc block, with its shadow arcs, etc.
Thus the component of P*(y) containing 7(dD) is a disc block. Then one repeats
the argument for the largest remaining tongue #(dT'), and so on. Thus P*(y) is a
disc block with disjoint tongue blocks in its interior. As mentioned earlier this
implies that P(y) is a tongue pattern—a disjoint union of tongue blocks.

For the preceding argument we have had in mind a fixed parameter value
t,. But letting ¢ vary presents no problems; we are just adding shadow arcs to
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P*(X), which have their endpoints on P*(X). Such arcs vary continuously with ¢,
except when they are absorbed into P*(X). a

We shall use the notation 2 ,(y) < Z,(y’) to mean that 2,(y) C 2,(y’) and
the closure of the stratum of S(,, over which X () is defined contains the stratum
over which 2 (v’) is defined.

LemMma 9.2. If 2(v) < 2,(Y'), then P(y) C P(Y’).

Proof. Since 2(y) € 2(Y’), each term P(2,) appearing in the definition of
P(y) appears also in P(y’). It remains to check that this holds also for terms
P(Z_, A)). It suffices to consider the case that the strata of 2(y) and 2(y’) have
dimensions differing by one. There are three subcases:

(a) 2(v) is obtained from Z(y’) by deleting a common face A,.

(b) 2(y) is obtained from 3(y’) by splitting into two components along a
common face A,.

(c) 2(y) = 2(v’), 2(v’) has a base edge, and 2(y) has a base vertex at one
end of this edge.

In each of these subcases the desired conclusion follows immediately from the
definitions, as the reader can easily check. O

10. Shrinking tongue patterns

For a tongue T < R? in a tongue block, there is a dual tongue T* < R? with
dT* = dT, obtained by interchanging the free and attaching edges of T. Shrink-
ings of T and T* correspond bijectively, in the obvious way, and will in fact be
identified, for convenience. A shrinking of T has an associated tangent line field,
the lines tangent to the free edges of the various stages of the shrinking. The dual
shrinking of T* has the same tangent line field. Even for a C* shrinking, the
tangent line field will be only C°, not C!, since it has non-unique trajectories
through the cusps of T, and possibly also through some other points.

Two shrinkings of a tongue with the same tangent line field may not be
equivalent in the sense of Section 6. For example, if we start with one shrinking
of the tongue shown in Figure 10.1, we can obtain inequivalent shrinkings by
independently varying the rate of shrinking in the two halves of the tongue. (Less
trivially, this same sort of thing could be happening in the interior of a tongue.)

Ficure 10.1
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However, if T, and T, are two shrinkings of a tongue T with the same tangent
line field, there is a canonical path of shrinkings connecting T, and T/, obtained
by first connecting T, to the shrinking T, N T, viathe path T, N T, 0 < r < 1,

then connecting T, N T to T, in the same way. The tangent line field is constant
along this path from T, to T,.

Proposrtion 10.1. There is a triangulation 9 of S* in which closed strata of
Sq are subcomplexes, such that for each simplex o of T and each family = (y)
defined for t € o, there exist:

(i) families of tongue blocks Q,(v), parametrized by t € o,

(ii) inclusion maps P, (v) = Q,(v), r = r(q), for the tongue blocks P,(vy)
whose disjoint union is the tongue pattern P(y),

(iii) families of shrinkings of the tongues of Q,(v) such that, if r, # r,, the
associated tangent line fields for the tongues of Q,(v) meet those for the tongues
of Q,(v) transversely for all parameter values t € ¢ — do.

Further, if o’ is a face of o, Z,(v’) is defined fort € o', and = (v) < Z,(v’) for
t € o/, then we have a diagram

P(y) = O(y)
) !
P (Y) = Q.(Y)
and the tangent line fields associated to the chosen shrinkings of the tongues of
Q,.(Y") restrict to those for the tongues of Q,(y).

Proof. To begin we choose a smooth triangulation J, of S*¥ with the
following properties:

(1) The closed strata of S, are subcomplexes.

(2) For each simplex o of 9, and each 3,(y) defined for ¢ € o, the tongue
pattern P(y) = P(y) is decomposed into well-defined disjoint blocks P ()
(depending continuously on ¢) such that, if 0 D ¢’ and Z,(y’) is defined for
t € o’, with Z,(y) < Z,(v’), then each P,(y) is contained in a (unique) P, ().
(Recall that blocks need not be connected, and this is why (2) is not automatic.)
We can achieve (1) and (2) as follows. For each 3 ,(v) defined over a closed
stratum X of S, we can certainly choose well-defined block decompositions
{P,(v)}; of P(y) locally in X, say in the intersections of X with finitely many
PL k-balls B(X) C S* whose interiors cover X. Let 9, be such that (1) holds and
all these B(X)’s are subcomplexes. Then over a simplex o of 7, in X, we take as a
first approximation to (P(y)} the block decomposition of P(y) obtained by
intersecting all blocks of the decompositions (P, (y)) j such that o — do C
int( B].(X )). Further, if some face 6’ of o lies in a closed stratum X’ and
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2(y) < Z(v") for Z(v’) defined over X’, then the blocks of the decomposition of
P(7y’) can be used to further decompose (by intersection) the blocks of (P, (y)),
certainly for t € o’, but also for ¢ € o if the balls are chosen small enough. With
this refined definition of { P,(v)}, it is clear that (2) holds.

For a tongue block P (), let P (v) be the union of P (y) with the bounded
components of R% — P,(v). The blocks P (v) are partially ordered by setting
P(v) < P(y) if P(y) C P(y). If P(v) is defined over the simplex o of J,, let
V,(v) be a disc neighborhood of P(y), varying smoothly with ¢ € o, and let
v,(Y) be a nonvanishing vector field on V,(y) transverse to P,(y), also varying
smoothly with ¢ € ¢, and satisfying the compatibility condition that if P (y)
P (v') fort € o’ C do then v (y) = 7,(Y") on V(7). (We may assume V,(y) C
V,(Y") for t € 0’.) Such vector fields »(v) can be constructed inductively over
skeletons of J,. For convenience, V,(v) may be chosen so that dV,(v) consists of
two transversals to »,(v), meeting in two points x,(v) and x ().

By flowing along trajectories of »,(y), we can construct a shrinking of the
tongue P, () which restricts to shrinkings of the tongues of P,(v). By doing this
construction inductively over skeletons of 9|, we may arrange that the shrinking
of P, (y’) restricts to the shrinking of P,(y) when P(y) C P_(y’) and t € ¢’ C do.
Let 7,(v) be the unit tangent vector field of the chosen shrinking of P (v),
determined by orienting P,(y) as in Section 9. We may extend 7,(y) to be
defined on V,(v), not just on P (v), with 7(y) = 7,(y") on V(y) if P (y) C
P (y)and t € ¢’ C do. By choosing carefully the shrinkings of tongues of P,(v),
i.e., the rates of flow along trajectories of »,(y), we may assume:

(3) For t € 0 — do, 7,(y) is C* except at cusps of tongues of P (y). We
may assume also that for ¢ € o — do, all integral curves of 7,(y) in V,(y) which
meet P (y) enter V (v) at x_ (v) and exit at x_ (y).

Let 6,(v) be the vector 7,(v) at x_ (y). We may suppose this depends
piecewise linearly on the parameter . We now deform the 7,(y)’s so that:

(4) 7,(v) — () = 0,(v) — 6,(y) on V() if P(y) < P (y). Here the sub-
traction of unit vectors in R? is carried out by regarding them as angles formed
with the x-axis. To achieve (4) we proceed inductively over skeletons of ;. Over
a given simplex of J; we modify 7,(y), assuming 7,(y) has already been modified
for all P(v) < P,(y) with r # q, by deforming 7,(y) near the maximal V,(vy)’s in
P () so that (4) holds not just at the points x, (v), but on the discs V,(v). After
doing this, (3) has to be weakened to the statement that 7,(y) is C* except at
cusps of tongues of P, (v) and of blocks P,(y) < P,(y). However, the following is
still true for t € o — do:

(5) 7,(v) has unique local trajectories through all points of Pq('y) except:

(a) cusps of tongues of P, (v),
(b) cusps of tongues of P,(y) with P(y) < P(v) and 26,(v) = 26,(y).
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For P(v) < P(v), let X, = {¢|26,(y) = 26,(y)} and let J, be a subdivision
of I, such that all these sets X , are subcomplexes. Fix a simplex o of ¥,, and
con51der t € 0 — do. For P (v) defined over g, let I () be the set of maximal
P(v)’s, r # g, such that P(y) < P(v) and 20,(y) = 20 (V). Let T be a (closed)
tongue of P (y). Define T to be T minus the interiors of those P(y)'s with
P(y) € 9N (y) Let T be the quotient of T obtained by identifying, for each
tongue P, (y) C T with P(y) € O (v), pairs of free and  attaching edge points of
P(y) which lie on the same trajectory of »,(y). Thus Tisa tongue, and 7.(y)
defines a vector field 7 (v) on T tangent to 9T and with unique local trajectories
through non-cusp points of T. It is not hard to see that T has a shrinking with
7,(y) as tangent field. That is, the free-edge curves of this shrinking are made up
of free-edge curves of the earlierchosen shrinking of T near 97T, and integral
curves of 7 (y) away from d7T. (The modification of 7,(y) to obtain (4) occurred
only in the interior of T.) The free edges of the various stages of this shrinking of
T we shall call trajectories of 7,(v) in T, even though they may not be connected
if T is not connected. The shnnkmg of T we may assume depends continuously
on t € ¢ — do, and may be extended by continuity to a shrinking for ¢ € do as
well: The trajectories of 7 (y) extend continuously over do since 7,(y) extends
continuously, and we can obtam shrinkings of T from these trajectories of 7 ()
by specifying that the area of T decrease at a given rate, depending contmuously
ont € 0. So at t € do, the limiting monotone family of trajectories of 7 (y) has
no gaps, hence forms a shrinking of T.

Now we restrict againtot € 0 — 80 The trajectories of 7 (v) in T pull back
naturally to trajectories of 7,(v) in T the finitely many trajectories of 7 (v)
containing the images of the dP.(y)’s for P(y) € M ,(v) pull back to pairs of
trajectories of 7,(y) in T which bifurcate at cusps of the P.(v)’s. By continuity,
we can again extend the trajectories of 7,(y) to be defined over do. The union of
the bifurcating trajectories of 7,(y) determines a subdivision of T, at least for
fixed t € 0. However, as t varies over o, these subtongues of T may not form a
family of tongue structures on T because, locally in o, it may not be possible to
attach these subtongues in a single order. An example of this is indicated in
Figure 10.2, with o = [0, 1].

|3( P(K)
3\ S T \/F\/ 0 o) /3
1

t<t0 t=t0 t>t()

Ficure 10.2
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To resolve this problem, consider the sets Y, , of ¢ € o such that, for P,(y)
and P,(v) inA@ILq(y) with r; # r,, both P, (v) and P,(v) meet the same trajectory
of 7(y) in T. We may assume all such sets Y, ., are subcomplexes of ¢ (for all
o € J,) and subdivide J, to a triangulation ¥ in which the Y, ., s are subcom-
plexes. Then for o a 51mp1ex of 9, the bifurcating trajectories of 7,(Y) in T do
determine a family of subdivisions of T over o. Further, the shnnkmgs of the
tongues T yield naturally shrinkings of the tongues in this family of subdivisions
of T, except for the P(y)’s with P(y) € I (7).

Define inductively families of tongue blocks P,(y) over the simplices of J
by letting P,(v) be the union of:

(a) the boundaries of all the subtongues (just constructed) of the tongues T
of P,(v),

(b) all P/(v)’s with P(v) € I, (v).

Each P, () is contained in a maximal P/(y), which we define to be Q,(v). We
have constructed shrinkings of the tongues of all the Q,(y)’s. These satisfy the
conditions of the proposition. O

The shrinkings of the tongues of the blocks Q,(y) which we have con-
structed may be only C?, not C*, since their tangent fields 7.(y) were only C°.
Later we will observe how to return easily to the C* category.

11. The main construction: Local form

In this section we consider a family 2(y) with common faces A,..., A , as
in Section 8, defined over a simplex of 9. The main goal is a procedure for
constructing n-parameter deformations Z(s,,..., s,), 0 < s; < 1, of the cofac-
tors 2' = 2¥(0,..., 0) of (). Since = itself depends on a parameter ¢, we will
really be constructing families 2i(s;,. .., s,). But for convenience we continue to
drop the parameter ¢ from the notation. Also for notational convenience, let us
label the 2*’s so that 2 > 27 implies i < j. (Order of cofactors was defined
in § 8) It will turn out that Z(s,,...,s,) will depend only on
variables s; with 2/ < 3% in particular, 3¥(s),..., s,) will be independent of
Spreevs i

The construction of the families Z(s;,..., s,) is made by an inductive
process, which we now describe formally. First, Z"(0,.. ., 0, s,) is constructed as
a shrinking of =" to its face A ,. This means:

(a) =%0,...,0) =

(b)y £%0,...,0,1) =

(c) A, C 2"(0,..., 0,s,)for0<s, <1

(d) £%0,...,0,s,) — int(A,) for 0 < s, < 1 is a smooth disc bounded by
A, ,which moves across 2" by monotone isotopy (rel A ) from =" — int(A ) to
A, as s, goes from O to 1.



A PROOF OF THE SMALE CONJECTURE 597

If 3" < 2%, i # n, then =" — int(A,) € ¢, and 2¥(0,..., 0, s,) is specified by
the conditions ="(0,...,0,s,) — int(A,) € 20,...,0,s,) and = — 3" C
240,...,0,s,). If =" « 2%, we set 2Y0,...,0,s,) = =

The induction step is to extend families 2(0,.. ., 0, Sitlrrees §,) to families
=io,..., 0, Speees s,,). To simplify notation we abbreviate (0,..., 0, Spp Sivloer e
s,) to (s;). Assume inductively that 27(0) is an embedded sphere containing A s
which is smooth except possibly at corners of =/ and at circles dA; C 3/, and
assume also:

(D) If 27 < 3, j# i, then S7(0) N Z¥(0) = Z/(0) — int(A)).

Then 2/(s;), 0 < s; < 1, is constructed as a shrinking of 2/(0) to A, As in
the case j = n, this shrinking determines, via (1), an isotopy Z'(s ;) of 34(0) for
each 3' > 37, i = j. If Z' # 21, we let Z'(s;) be independent of s It should be
clear that the induction hypotheses continue to hold, with j replaced by j— 1.

To carry out the induction step we need C(Z7(0)) to be a disc with tongues,
with C(A)) as initial disc, and we need a shrinking of C(2/(0)) to C(A j)» so that
the Addendum to Lemma 6.1 will apply to give a shrinking of 27(0) to A j As the
example in Section 7 shows, even at the first step of the induction process, if we
choose the shrinking of C(2") to C(A,) carelessly, the disc with tongues
structure on C(Z"~!) may be destroyed, so we would be unable to continue the
construction.

By Proposition 9.1 we have the tongue pattern P(y), which is the disjoint
union of tongue blocks P(v). After Proposition 10.1, there are inclusions
P(y) = Q.(v), r=1(q). Each type I or II tongue T of a contour C(Z7, A j) (or
C(EO) if j = 0) has #(3T) contained in a unique tongue block P (v), hence also
in a well-defined Q,(y). The tongues of Q,(y) induce naturally a subd1v131on of T
into tongues which project homeomorphically to tongues of Q,(y). We say these
subtongues of T lie in the q block. Doing this for all tongues T, we obtain a
disc-with-tongues structure which we call C(Z/(0,. .., 0)), subdividing C(Z/, A ).
The tongues of C(2/(0,..., 0)) are partitioned into blocks, one block for each
P (y). These blocks are partlally ordered according to the nesting relations
among the corresponding P (v)’s. Since different P, ,(Y)’s are disjoint, we see that
the tongues of C(Z/(0,.. O)) can be attached in an order in which tongues in
smaller blocks attach after tongues in larger blocks.

At the same time that we construct inductively the families 2'(sy,..., s,),
we shall also construct inductively families of tongue blocks Qi(s;,..., s,) D
Qi(0,...,0) = Q,(y) for 0 < i < n, whose tongues are segments of the tongues
of Q.(y), that is, differences between stages in the shrinkings of the tongues of
Q,(y) chosen in Proposition 10.1. The inductive hypotheses are (again abbreviat-
ing (0,..., 0, s, S]+1, o5 8,) to(s):

2 F or each i> O C(Z4(0)) has a disc-with-tongues structure, with C(A;)
as initial disc if i > 0, the tongues being partitioned into blocks, one block for
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each P (y), such that:
(a) For each tongue T of this structure in the g™ block, #(T) is a
tongue in Q}(0), r = r(q).
(b) The tongues of C(Zi(0)) can be attached in an order in which
tongues in smaller blocks attach after tongues in larger blocks.
(3) Qi0) € Qi(0) < QX0 if Ti < B < 5

Lemma 11.1. A disc-with-tongues structure satisfying (2a) is unique, pro-
vided its initial disc is prescribed. In particular, its partition into blocks is unique.

Proof. By induction on the number of tongues, it suffices to show that a
last-attached tongue T in one structure satisfying (2a) is also a tongue in any
other structure satisfying (2a). By the transversality condition of Proposition 10.1,
dT projects into a unique Q;(0). A small arc of the free edge of T must also be an
arc of free edge points in a tongue 7" in any other tongue structure. By (2a) and
the transversality condition, 9T’ C Q}(0), hence 7(9T’) = w(9T). Since T was a
last-attached tongue, this implies T’ = T. m|

With a disc-with-tongues structure on C(Z7(0)) satisfying (2), the shrinkings
of the tongues of blocks Q,(y) restrict to shrinkings of the tongues of Q/(0),
which lift to shrinkings of the tongues of C(2/(0)). We shrink C(2/(0)) to C(A )
via Lemma 6.3, then lift this to the shrinking Ef(s) of 2i(0) to A, using
Addendum 6.2. Define Qf(s) by adding to Q/(0) the projections of the free
edges of the tongues of C(Ef (s;)) in the g™ block (i.e., tongues of C(Ef(s )
which are subtongues of tongues of C(Z1(0)) in the g™ block), for all g such that
r=r1r(q). If 2> 3 we set Q,(s]) = Q{0) U Qrf(s]), and if 3' » 3/ we set
Q;(s;) = Q/(0). Thus (3) continues to hold with j — 1 in place of j.

It remains to check that the induced deformation Z'(s;) of Z'(0) is such that
(2) continues to hold with j— 1 in place of j. If = # =/, then 2(s;) and each
Qi(s ;) are independent of s;; so this is automatic. If 3¢ > Zithere are two cases
according to whether A, splits 3! as a sum or a difference. In the sum case, the
tongues of C(Z/(0)) are also tongues of C(Z(0)). The shrinking C(Zi(s)))
induces a shrinking of C(Z¢(0)), and the result is clear.

In the difference case it suffices to consider, as in the proof of Lemma 6.1,
the case that a single tongue T of C(2/(0)), in the g™ block, say, is shrinking
during the interval [0, s,], and that no other tongue of C(21(0)) attaches to the
subtongue T’ C T Wthh shrinks away during [0, s,]. In C(Z* '(0)) there are then
two continuous sheets T and T~ adjacent to T’, above and below respectively,
with 7(T*) = #(T~) = cl(#(T’)). T* and T~ meet only at points with the same
a-image as the free edge of T".
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Lemma 11.2. One of the following two alternatives holds:

(@) Int(T*) and int(T") are the interiors of tongues T, and T, of C(Z(0)) in
a block labelled q’ with r(q’) = r(q).

(b) One of int(T"),int(T™) is the interior of a tongue T, of C(2¥(0)) in a
block q’ with (q’) = r(q), and the other is disjoint from all tongues of C(Z*(0))
in the q"™ or smaller blocks.

In both cases, T, attaches along T*N T~ .

Proof. It suffices by continuity to consider a t#-value in the interior of the
given simplex of &, so that the transversality condition of Proposition 10.1 holds.
Consider the process of building C(Z‘(0)) by attaching tongues as in condition
(2b). By transversality, the configuration of the two sheets T* and T~ meeting
along T"N T~ can arise only when some tongue T, in a ¢'® block with
r(q’) = r(q) is attached, with TN T~ as its attaching edge. No tongues
attached after T} can contribute to T* or T~ . This is clear for tongues projecting
homeomorphically to tongues of Q(0). And for tongues projecting to other
Q,(0)’s, the transversality condition implies that the last-attached such tongue
contributing to T would have to have a cusp in int(T'), violating the continuity of
the sheet T.

Thus T; coincides with T*~ T~ or T~ — T*, say T*— T~ , and T~ is
disjoint from all tongues in blocks smaller than the q’® block. If int(7~) meets a
tongue T, in the g’ block, then int(7,) must coincide with int(T~) since no
tongue in the g’ or any larger block can attach to int(7},), by (2). O

As 3/(0) shrinks to Z/(s)), {(0) expands, changing C(Z'(0)) by pinching
together successively larger segments of T* and T~ containing 7N T~ . In case
(b) of Lemma 11.2, we are pinching T to the union of the initial disc of C(Z'(0))
with tongues of larger blocks, and clearly the given disc-with-tongues structure on
C(Z'(0)) passes down to a disc-with-tongues structure on the quotient C(Z(s;)),
all tongues projecting homeomorphically except T), and attaching in the same
order (satisfying (2b)) as in C(Z{(0)). This quotient tongue structure on C(Zi(s Pl
then subdivides to a tongue structure satisfying (2a) also.

In case (a) of Lemma 11.2, if T*N T~ is the free edge of T,, then T} must
attach after T,. If T* N T~ is the attaching edge of T,, then there is no difference
between T, and T, for our purposes, so that we may as well assume that in an
order of attaching as in (2b), T| attaches after T,. Now the rest of the argument
in case (a) of Lemma 11.2 is just the same as in case (b).

This completes the inductive step in the construction of the families
Z¥(sy,-.-» 5,). We note that these families 2'(s,,. .., s,) are independent of the
particular labelling of the cofactors ¢ we chose, satisfying the condition that
2! > 3iimplies i < j by the uniqueness property in Lemma 11.1.
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A mild extension of the process of constructing the families 2'(s,,..., s,)
will be needed, in which each s; ranges over [0,2] rather than [0, 1]. At the
inductive step of constructing the families Z'(s;), we have 27(1) = A . As s, goes
from 1 to 2 we replace A; by two parallel copies of itself, above and below at
distance (s; — 1) - 8(dA ), for 8(—) as defined in Section 2. If A is, say, a lower
face of X7 then the lower of the two diverging copies of A j gives an isotopy
Ei(sj), 1 <5;<2, of each 24(1) with 2* > 24, and the upper of the two copies
of A, gives an isotopy Si(s ;) of the disc i) =A j These isotopies are vertical
motion, so contours are unaffected, and by the arguments already given we can
continue the construction with jreplaced by j— 1.

For 0 < s; < 1, the shrinking 2(s;) of 2/(0) gives an isotopy A (s;) of the
disc A;(0) = 2/(0) — int(A}) across 2/(0) to A;= A (1), rel A, By a small
perturbation of this isotopy, using collars, we may assume A ;(s;) N Zi(0) = oA j
for 0 <s; < 1. The disc A(s;) splits 2/(0) into the sum of Zi(s;) and a
complementary factor which we call 2 ,(s;). When s; =0, 2.(0) is just the disc
A ;(0); but for s; > 0, 2 (s;) is an embedded sphere. We have 2 (1) = 2(0), and
we can easily extend 2,(s;) to be defined also for 1 < s; < 2 by just replacing
A; C Z,(1) with a parallel copy of itself, above or below according to whether A;
is a lower or upper face of 2, at distance (s; — 1) - §(dA ;). We define 2 ,(sy,.. .,
s,) to be E].(sj), independent of s,..., Si—1

Finally, for use in Section 13, define Z,(¢,,..., t,) for t; € (- L1}, j=
1,..., n, to be the family 2 (s,,..., s,), where t;= 1- S (This notation is of
course ambiguous if specific values are assigned to the variables. But only the
new families 2 (¢,,..., t,) will be used hereafter, so there should be no confu-
sion.)

12. The main construction: Global form

We apply the “blowing-up” operation described at the end of Section 4 to
the triangulation J of Proposition 10.1. Thus to each i-simplex o'/ of ¥ is
associated a handle H'i = D X D*~%, Via the map h: S*¥ — S* collapsing each
ball {x} X D*~* ¢ H' to a point h(x) € 0%, each family =,(y) associated to the
g, before blowing up and defined over a simplex o/ pulls back to a family Zi{(y)
defined for t € H'i c h™ (o). Similarly, the tongue blocks Q,(y) and their
shrinkings obtained in Proposition 10.1 pull back to tongue blocks Q}{y) with
chosen shrinkings, defined for ¢t € H'/,

A handle structure associated to J in the same way as { H'/} but with smaller
¢;’s we refer to as a contraction of { H').

LemMa 12.1. After contracting { H'7}, we may assume the shrinkings of the
tongues of the Q}{y)’s satisfy the following compatibility condition: If o'l is a
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face of 67, then for each inclusion Q7 (y") = Qi{y), the chosen shrinkings of
the tongues of Q!7(y’) restrict to the chosen shrinkings of tongues of Qi) ( for
t e Hin HT).

Proof. Let {V'i) be a system of small open neighborhoods of a contraction
(hi7y of {H'). We may suppose each Q!{y), with the given shrinkings of its
tongues, is defined over V. By induction on i we may assume compatible
shrinkings have been constructed over all V¥/"’s with i’ < i. These compatible
shrinkings can be composed sequentially as in Lemma 6.3 to give shrinkings of
the tongues of each Q/{y) over the V¥4"’s, i’ < i. These new shrinkings for
tongues of Q}{y) have the same tangent line fields as the given shrinkings, by
Proposition 10.1 and induction. So by the remarks preceding Proposition 10.1,
we can deform the given shrinkings so that they agree with the new ones on
slightly smaller neighborhoods V7. This is the induction step. Finally, we
restrict the compatible shrinkings obtained over the neighborhoods V'/ to the
contracted handles h'/ C V', O

We note that the compatible shrinkings of the tongues of each Q}{(y) given
by Lemma 12.1 may be assumed still to be independent of the second coordinate
in the handle H'i = D' x D*~, Using these shrinkings, we apply the procedure
of Section 11 to construct deformations =(s,,..., s,) of the cofactors =! of all
families Sii(y), t € HY. If t € H'' N H'Y' with ¢'/ C do'7, so that each factor
SV ¢ 2¥'(y’) corresponds to a factor ! C Zi{y), then we obtain, at least
formally, a deformation 2!(s,,..., s,/) from the deformation =i(s,,...,s,) by
specialization—setting the appropriate variables s, equal to 0 or 2, according to
whether in passing from =¥(y) to 27'(y’) the corresponding common face A, of
Sii(y) is deleted from =ii(y), or splits 2}/(y) into two components, respectively.

ProposiTioN 12.2. After contracting { H'), we may construct deformations
SU(sy,. .., s,) for the cofactors =} of all families Z;{(y), t € H', satisfying:

Ift € Hiin H' with o' C do'7', and =!' c Zi¥'(y’)
(*)  corresponds to = C Zii(y), then the deformation 2L (s,,. .., s,/)

is obtained from =\(s,,..., s, ) by specialization.

Proof. This is done inductively over the handles H*/, with decreasing i. For a
given H'= D'x D*"!, suppose inductively that compatible deformations
S(sy,.. .5 8,) of cofactors =!' C =i¥(y’) have already been constructed for
t € DI X gD*# near each o'/ D o' It is important to observe that such
deformations =!(s,,..., s,) are in fact specialized deformations =!(sy,..., s,)
constructed with respect to H', For, by Lemma 12.1, the only effect of passing
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from a higher-index handle H¥/" to H'/ is to subdivide tongue structures. (The
reader should recall the procedure of § 11 to be convinced of this. In fact, this is
the reason why we must use decreasing i in the induction, rather than increasing
i, which is more natural for specialization.) We may suppose these specialized
deformations =!(s,,..., s,) are defined not just for t € D' X dD*~¢, but for t in
a radial collar on D* X dD*~* in D' X D*~¢, simply by making them indepen-
dent of the radial parameter in this collar. This is possible since we have blown
up the original family g,, making it independent of this radial parameter, and
also the shrinkings in Lemma 12.1 are independent of this radial parameter.

To extend over H'/ itself we make a secondary induction. First, near
o'l N H', we construct deformations Z(s,,..., s,) of cofactors =! C Zi{(y), as
in Section 11; there is no problem with compatibility here since o'/ is disjoint
from D' X dD*~i. Next, consider a simplex o’/ meeting H'/, with i’ =i + 1.
Near ¢'7" N [0 U (D' X dD*")] we already have deformations =!(s,,..., s,)
specialized according to ¢'7’. To extend these specialized deformations over a
neighborhood of 6”7 N H'iin H'i, we could carry out the procedure of Section
11 if we had relative forms of Lemmas 6.1 and 6.3. But it is easier to use a simple
tapering process, as follows.

Constructing the deformations =!(s,,. .., s,) in Section 11 was an inductive
process: first the families =/(0,..., 0, s, ), then the families =4(0,..., 0, s,,_;, s,),
etc. We can view this process as taking place during a time interval s € [0, 1], by
choosing a function ¢;": {1,2,. .., n} = (0, 1) such that $X(I) < ¢;}(m)if Z! < =",
then extending each Z0,..., 0, Sji1s- s 8y) 1O =o,..., 0, Spevs Sy)
by shrinking =/(0,..., 0, Sit1se -+ S,) to A; during the time interval
[$X(j), ¥(j) + €], for small enough e. The tapering process referred to above
consists of restricting the previously chosen construction of the deformations
SYsy- .., 8,) (specialized according to 0°7") to a time interval [0, s(¢)], where
s(¢) has support near o/ U (D’ X dD*7") and s(¢) = 1 in a smaller neighbor-
hood of ¢’/ U (D* X dD*%). Then on the interval [s(¢),1] we continue afresh
the construction of the specialized deformations =!(s,,..., s,) for t near 67" in
H'i, This has the effect of eliminating the need for relative forms of Lemmas 6.1
and 6.3.

Having taken care of (i + 1)-simplices meeting H'/, we proceed in the same
way with (i + 2)-simplices, etc. Thus the process can be completed over H'.
When all handles H'/ have been treated, we replace { H/} by a sufficiently small
contraction of itself, and we obtain the compatibility condition ( *). O

The number & in Section 2 can be chosen small enough so that a set
Zy(e) X [~ 1,1] meets a handle H'/ only if the corresponding simplex o'l is
contained in Z(¢). Likewise we may assume H'/ N (Y(e) X [— 1,1]) # @ only
if o'l C Y(e).
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13. Construction of g,,: S5, — =¢,

The machinery is all ready now to complete the proof. The first step is to
construct the family =¢,, mimicking S5,. For a handle H/ as in Section 12,
consider a family 3}/(y) defined for t € H'i For each edge e, of y we
have o' C Zy(e,) X [— 1,1}, and we can extend the product structure
Zy(e)) X [— 1,1] to Zy(e;) X R D HY. For t € Zy(e;) X {r), let:

T if |r]<1
tl= 1 if 1‘>1
-1 if r<-1.

In case y has a base vertex, we obtain =¢, in two steps:

(1) Take the disjoint union of all 2(t,,..., t,) as e, ranges over edges of y
and identify their common faces A, (t,...,t,), for ¢, > 0. (In general these
factors Z,(t;,..., t,) can have intersections in R® besides the obvious ones
consisting of a common face A, (¢,,..., ¢,) which is the intersection of the two
factors containing it.)

(2) For the “shock wave” effect of Figure 3.4, subdivide Z,(¢,,..., t,) for
t, < 0 by adjoining the disc A/(¢t,,..., 7(¢;), t;415.--» t,), Where 7 [— 1,0] —
[0, 1] is chosen appropriately. Or more precisely, take the small vertical deforma-
tion of this disc obtained from the small vertical (ambient) isotopy of the disc
A, € Z(ty,..., t,) as t; goes from O to — 1.

In case v has a base edge, the procedure is just the same except that Figure
3.3 serves as the model for choosing the deformations A(¢,,..., t,) of the face
A, corresponding to the base edge of v.

This defines Z¢, for ¢ € H", By the constructions of Section 12, the result
depends only on ¢, not HY., So we obtain Z¢,, well-defined and varying
continuously with ¢ € Sk,

Next we construct foliations ®,, on Z¢,. For factors of =¢, not corresponding
to polar factors of S, we have already at hand shrinkings of these factors
2/(ty,..., t,) to their preferred faces A,(¢;,...,t,) as part of the process of
constructing Z,(t,,..., t,). So for such factors we let ®,, be transverse to the
stages of the shrinking. And for factors 2(¢,,..., ¢,) of Z¢, corresponding to
polar factors of Sj, we know from Section 11 that their contours retain
disc-with-tongues structures with varying (¢,,..., t,); so by the same methods we
can obtain shrinkings of these factors to points, lifting shrinkings of their contours
to points in their initial discs. And again we take ®,, transverse to these
shrinkings. We can take ®,, to be a standard pole at its singularity in a factor
So(ty--., t,) since the shrinking of this factor can be chosen to end with a
standard family of concentric spheres.
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We remark that the degrees of differentiability lost in Section 10, where we
got only C! shrinkings, can now be recovered. For @, can easily be chosen to be
C*, since it is required only to be transverse to a continuous family of tangent
planes. Then having ®,,C* we can perturb the family =¢, to be C*®, staying
transverse to @,,.

Since Diff( D2rel dD?) is contractible, there are no obstructions to construct-
ing a family of diffeomorphisms S,, = =,, agreeing with g, on S,, N S, and
then extending to a family of diffeomorphisms g,,: S5 — Z¢,. We may suppose
that when a common face D between factors of S, contains a pole of F,,, and
hence is a union of leaves of F,,, then ®,, agrees with g,,(F,,) on g,,(D).
Further, by modifying our choice of ®,, if necessary (still keeping it transverse to
the same shrinkings) we may use contractibility of Diff(D2rel dD?) again to
assure that whenever two points of a factor of Sf; are joined by a leaf of F,,, then
their images under g,, are joined by a leaf of ®,,.

With these relations between F,, and ®,, there is, clearly, a family of
homeomorphisms g,,: Sf, - =¢, extending g,, and taking F,, to ®,,, which are
diffeomorphisms on factors (smoothness at corners can easily be arranged by
modeling ®,, on F,, there) and vary continuously with ¢ in the C* topology.
Thus the hypotheses of Proposition 4.1 are satisfied, and the theorem is proved.

Appendix. Some equivalent forms of the Smale Conjecture

As is well-known and easily shown, Diff(S") = O(n + 1) X Diff(D"rel dD")
for any n. Hence the Smale Conjecture Diff(S®) = O(4) is equivalent to:

(1) Diff(D3rel dD3) = *.

We can see that (1) is equivalent to the theorem of this paper, as follows.
The theorem can be restated as asserting that for the (smooth) embedding spaces
Emb(D3,R3) and Emb(S% R®), the restriction map p: Emb(D?3 R3) —
Emb(S2, R®) induces a surjection on , for all k. From the diagram

Emb(D",R") Emb(S"~1,R")

SN

GL(n,R)

[

we see that p is injective on 7, (for any n). Here the lower left arrow is “evaluate
derivative at a point”, clearly a homotopy equivalence, and the lower right arrow
is “evaluate derivative at a point and adjoin the normal vector.” Also, p is a
fibration whose fiber is just Diff(D"rel dD"). So Diff(D3rel dD3) = * if and
only if p is surjective on all 7,’s.

According to a theorem of Morlet (see [6] for discussion and references),
Diff(D"rel dD") = Q"*}PL(n)/O(n)) for any n. So (1) is equivalent to:
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(2) PL(3) = O(3).

A consequence of this (see [6] again) is:

(3) Diff(M3rel IM3) = PL(M3rel dM>) for any 3-manifold M?®, where

PL(Mrel dM) is the simplicial group of PL. homeomorphisms M — M fixed on
oM.
Of course, (3) implies (1) when M3 = D3, (In (2) and (3) one could just as well
take the category TOP instead of PL. The implication (1) = Diff(M3rel IM3) =
TOP(M?3rel IM?3) goes back to Cerf [3], and was the starting point for Morlet’s
work.)

We return to the C* category for the next several forms of the Smale
conjecture.

(4) The space of smoothly embedded 2-spheres in R® is contractible.

This space is the orbit space Emb(S2 R®)/Diff(S2). Since Diff(S%) = O(3),
contractibility of this orbit space is equivalent to the map p above being a
homotopy equivalence.

From the fibration

Diff(D? rel dD3) —» Emb(D?3, D3rel $2) - Emb(D?2, D*rel D?)
i I
Diff( DPrel dD?) *

where D" = D7U D", DN D" = D"}, and $% ' = DN S""!, we see that
Diff( D3rel dD3) = @ Emb(D?, D3rel dD?). So (1) is equivalent to:

(5) Emb(D?2, D3rel dD?) is contractible.

Next consider the fibration

Emb(D2, D3rel dD?) - Emb(D?, D3rel S}) — Emb(D", D*reldD")

i
*

According to [5], (adapted to the smooth category as in [7]), the inclu-
sion  Emb(D2, D3 — D? rel dD?) — Emb(D?2, D3rel 3D?) is a homotopy
equivalence. The smaller of these two spaces can be identified with
Emb(D2, D3rel dD?). Hence

Emb(D?, D3rel dD?) = Q@ Emb(D*, D3rel dD'),

and (5) is equivalent to:
(6) The identity component of Emb(D!, D3rel dD') (consisting of the
unknotted arcs) is contractible.
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(It follows from the Smale Conjecture and [5] that the other components of
Emb(D!, D3rel D) are aspherical, though their 7,’s can be quite non-trivial.)
There is an easy homotopy equivalence

Emb(S!, $%) = Emb(D?, D3rel 9D') X O(4),/0(2),

quite similar to Diff(S3) = Diff(D3rel dD*) X O(4). Since Diff(S') = O(2), this
yields

Emb(S?, $3)/Diff(S') = Emb(D*, D3rel aD') x O(4) /(0O(2) X O(2));

hence (6) is equivalent to:
(7) The space of smoothly embedded unknotted circles in S deformation
retracts onto the space of great circles in S* (i.e., O(4) /0(2) X O(2)).

We leave to the reader proofs that the following statements are all equiva-
lent to the Smale Conjecture:
(8) Diff(S2 X D'rel 9) = QO(3).
(9) Diff(S! X D2rel 9) = *.
(10) Emb(S2, $2 X R) = O(3).
(11) Diff(S%2 X R) = O(3) x O(1).
(12) Emb(S?, S X R%) = O(2).
(13) Diff(S! x R?) = O(2) X O(2) X 20(2).
(14) The space of smooth 2-spheres in S® deformation retracts onto the
subspace of great 2-spheres.
(15) The space of smooth unknotted circles in R* deformation retracts onto
the subspace of great circles in S2.
(16) PL(S3) = O(4) (or TOP(S3) = O(4)).
(17) The PL (or TOP) versions of (4), (7), (8), (10), (11), (14), (15).

Unr1versiTy oF CALIFORNIA, oS ANGELES
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