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Consider the space C = C(n, k; d1, · · · , dk) of all configurations of k disjoint labeled

Euclidean spheres S1, · · · , Sk in R
n of dimensions d1, · · · , dk which are unlinked in the

sense that the hemispheres they bound in the upper half-space of Rn+1 bounded by R
n are

all disjoint. For circles in R
3 this is equivalent to the usual notion of unlinked. Since

the hemispheres are uniquely determined by their boundaries, this means that C can

also be regarded as the configuration space of disjoint labeled hemispheres of specified

dimensions in Euclidean half-space with boundaries on the boundary of the half-space.

Another viewpoint is as a configuration space of disjoint hyperbolic planes of specified

dimensions in hyperbolic n-space.

Configurations in C can be quite complicated, and the goal of this paper is to provide

two ways to simplify them, as a preliminary step to understanding the homotopy type

of C. The first simplification method generalizes a technique in [1] which treated the

special case of circles in R
3. This involves associating a non-negative real number to each

configuration that gives a measure of its complexity, and then proving that C deformation

retracts onto the subspace of configurations of complexity less than a given number c > 0.

The arguments are a straightforward generalization of those in [1].

The second simplification method involves deforming each configuration in C so that

its spheres can be separated by a collection of codimension one spheres disjoint from each

other and from the spheres in the configuration. A space SC of separated configurations

will be defined, and it will be shown that the projection SC → C forgetting the separating

spheres is a homotopy equivalence. This answers a question asked by James Griffin who

needed such a result for a project to compute the homology of C.

The two simplification methods work equally well for the subspace U of C consisting

of “untwisted” configurations in which each sphere of dimension di lies in a (di + 1)-plane

parallel to the standard R
di+1 ⊂ R

n. By sending each sphere to the plane containing it,

translated to the origin, we obtain a natural projection from C to a product of Grassmann

manifolds G(n, di + 1) of (di + 1)-planes in R
n, with the fiber of this projection being U:

U −→ C −→ G(n, d1 + 1)× · · · ×G(n, dk + 1)
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It is not clear whether this projection is a fibration, but we will show that it is at least a

quasifibration. It has a section given by placing the various spheres inside disjoint n-balls

in R
n and taking all possible rotations of the spheres within these balls.

One might hope that the quasifibration is at least homologically a product, but this

is not generally true since the inclusion of the fiber does not always induce an injection on

homology. For example in the case of circles in R
3 the map H1(U) → H1(C) has nontrivial

kernel when k ≥ 2.

Reducing Complexity

First we define a notion of “complexity” for configurations in C generalizing the one

used in [BH] for configurations of unlinked circles in R
3. For each sphere Si in a configu-

ration in C let its hull be the closed n-dimensional ball in R
n having the same center as

Si and twice the radius. Define the complexity of a configuration (S1, · · · , Sk) in C to be

the maximum ratio ri/rj of the radii of pairs of distinct spheres Si and Sj whose hulls

intersect, with ri ≤ rj . If no two hulls intersect then the complexity is defined to be zero.

Configurations of low complexity thus have the property that whenever two spheres

in the configuration are near each other, one sphere is much smaller than the other one.

One can think of this in terms of astronomy, with the spheres being regarded as celestial

bodies, so that low complexity means that the spheres form systems of planets orbiting a

much larger sun, with much smaller moons orbiting the planets, and so on. Thus one has

an ordered hierarchy of spheres.

For a constant c > 0 let C
c be the subspace of C consisting of configurations of

complexity less than c. Define the subspace U
c of U similarly.

Theorem 1.1. For each c > 0 the inclusions C
c →֒ C and U

c →֒ U are weak homotopy

equivalences.

Proof. The same method will work for both C and U. The starting point is the idea

of deforming a configuration (S1, · · · , Sk) in C by the canonical shrinking introduced by

Freedman and Skora in [2] which we now describe. By the definition of C the spheres Si

bound disjoint hemispheres in the upper half of Rn+1. The canonical shrinking is obtained

by intersecting these hemispheres with the hyperplanes xn+1 = t for t increasing from 0

to infinity. Thus each sphere Si shrinks through concentric spheres until it degenerates to

a point and disappears. We do not want it to disappear entirely so we will have to modify

the canonical shrinking to achieve this.

Before doing this we should check that the configurations of spheres produced during

the canonical shrinking still lie in C, so the hemispheres they bound remain disjoint.
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Suppose on the contrary that two of these hemispheres intersect at some interior point.

(The spheres themselves remain disjoint since the original hemispheres were disjoint.)

Choose two vertical two-dimensional planes in R
n+1 containing the intersection point and

intersecting the two original hemispheres in semicircles. Putting the center of one of these

semicircles at the origin in R
2 we would have a configuration like that in the figure below,

with the semicircle the upper half of the circle x2 + y2 = r2 for some r.

At time t during the canonical shrinking the new hemisphere would intersect the plane in

a semicircle with base at height y = t, the upper half of the circle x2 + (y − t)2 = r2 − t2.

A point on this upper semicircle has coordinates (a, t+
√
r2 − t2 − a2). Similarly, in the

other vertical plane a point on the upper semicircle has coordinates (A, t+
√
R2 − t2 −A2).

We claim that if
√
r2 − t2 − a2 <

√
R2 − t2 −A2 when t = 0 then this inequality holds for

all t. But this is obvious just by squaring both sides. Thus if the two upper semicircles are

disjoint when t = 0 they will be disjoint for all t, so the hemispheres stay disjoint during

the canonical shrinking.

Returning now to the overall plan, the main difficulty we face is that if we keep the

radius of a sphere Si a small positive number rather than letting it go all the way to zero

and disappear, other shrinking spheres Sj may bump into it and we may have to move it

out of the way to avoid such collisions. The challenge is to do this in a way that varies

continuously with the original configuration.

Ignoring the problem of disappearing spheres, note that the canonical shrinking de-

creases complexity monotonically (in the weak sense) since the radii of smaller spheres

decrease faster than the radii of larger spheres, and hulls that initially intersect can be-

come disjoint as the shrinking progresses, but they cannot suddenly begin to intersect

when they were disjoint before. As a very special case, if all the spheres Si have the same

radius then they shrink until their hulls are disjoint so the complexity decreases to zero

before the spheres disappear.

There will be two main steps to the process of modifying the canonical shrinking. In
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the first step we show how to deal with a single initial configuration, and in the second

step we show how to combine these modified shrinkings so that they vary continuously

with the initial configuration.

Step 1. Consider a configuration (S1, · · · , Sk) in C. Let X1 be the union of the spheres

Si of largest radius, X2 the union of the spheres of next largest radius, and so on for

X3, X4, · · ·. Let Yi = X1 ∪ · · · ∪Xi. The time parameter in the isotopies we construct will

be denoted by u with 0 ≤ u <∞. Let ui be the time when the canonical shrinking reduces

the spheres in Xi to a point, so u1 > u2 > · · ·.
By induction on i we will construct an isotopy Φi

u of Yi that decreases the complexity

of the configuration Yi so that it approaches zero as u goes to infinity. To begin we let

Φ1
u be the canonical shrinking applied to the spheres in X1 for u ≤ u′1 < u1 where u′1

is chosen close enough to u1 so that the hulls of all the spheres in Φ1
u′

1

(X1) are disjoint.

Then for u ≥ u′1 we slow down the canonical shrinking of the spheres in X1 so that their

radius r1(u) stays positive for all u. Having defined Φ1
u on X1 we extend Φ1

u to an ambient

isotopy Φ
1

u of Rn in the standard way. Namely, the isotopy gives a tangent vector field

to Φ1(X1 × [0,∞)) in R
n × [0,∞) whose second coordinate is 1 and we extend this to

a smooth vector field on R
n × [0,∞) with the same property and whose first coordinate

vanishes outside a small neighborhood of Φ1(X1 × [0,∞)). The flow associated to this

extended vector field gives the extended isotopy Φ
1

u on R
n.

Next we extend Φ1
u to an isotopy Φ2

u defined on the spheres in X2 as well as those

in X1. For a sphere in X2 we let Φ2
u be the canonical shrinking for u ≤ u′2 < u2 for u′2

close enough to u2 so that the hulls of the spheres in Φ2
u′

2

(X2) are disjoint. For u > u′2

we will specify the position of a sphere in Φ2
u(X2) by specifying three things: its radius

r2(u), its center, and the (d + 1)-dimensional plane containing the sphere, where d is its

dimension. The center of a sphere in X2 is constant for u ≤ u2 and thereafter we let

it move by the ambient isotopy Φ
1

u of Rn. The centers of different spheres in Φ2
u2
(X2)

are distinct so they remain distinct as they move under this ambient isotopy. The planes

containing spheres in X2 and passing through their centers can be chosen to vary in any

smooth way for u ≥ u2 as the center moves under the ambient isotopy. For example we

could let them move parallel to themselves. This will guarantee that configurations in U

remain in U. Finally, we choose the smooth radius function r2(u) to be small enough so

that the ratio r2(u)/r1(u) approaches zero monotonically as u increases and so that the

hulls of the spheres in X2 remain disjoint for all u ≥ u2. Having defined Φ2
u on Y2, we then

extend Φ2
u to an ambient isotopy Φ

2

u of Rn as before.

The construction of subsequent isotopies Φi
u of Yi is done inductively by the same
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procedure used to construct Φ2
u from Φ1

u. We choose the radius functions ri(u) small

enough so that the ratios ri(u)/rj(u) for i > j go to zero monotonically with increasing u

and so that ri(u)/rj(u) ≪ ri′(u)/rj′(u) for u ≥ ui and for all j < i and j′ < i′ < i.

From the construction of the isotopy it is clear that the complexity becomes small for

large u since the hulls of spheres in Φi
u(Xi) are disjoint for u ≥ ui while for spheres in Xi

and Xj for i > j the ratio ri(u)/rj(u) approaches zero as u increases.

We claim that complexity decreases monotonically during the isotopy. Since the ratios

ri(u)/rj(u) for i > j decrease monotonically, the only way that complexity could increase

would be if the hulls of two spheres intersect for some u value after having been disjoint

for slightly smaller u values. This does not happen under the canonical shrinking nor can

it happen if both spheres belong to the same Xi by the way we choose ri(u). Suppose

it happens for spheres Sp in Xi and Sq in Xj with i > j, so Sp is smaller than Sq. At

the time the two hulls begin to intersect, the center of at least one of Sp and Sq must be

moving. This motion is caused by the center being ‘pushed’ by a sphere Sq′ in Xj′ as a

result of the isotopy extension process. Here j′ < i if Sp is being pushed and j′ < j if

Sq is being pushed. The pushing takes place in a small neighborhood of Sq′ , and thus in

the interior of the hull of Sq′ . We cannot have Sq′ = Sq since if Sq was pushing Sp their

hulls would already be intersecting contrary to our assumption that they are coming into

contact after being disjoint. If Sq′ is pushing Sq then their hulls must intersect so since

both rj(u)/rj′(u) and rj′(u)/rj(u) are greater than ri(u)/rj(u), the collision of the hulls

of Sp and Sq has no effect on complexity. On the other hand, if Sq′ is pushing Sp then the

hull of Sq′ , which is much larger than Sp, must intersect Sq and hence also the hull of Sq

during the collision, so in this case too the complexity is unaffected by the collision. This

finishes the argument that complexity decreases monotonically.

Step 2. We now show that the relative homotopy groups πl(C,C
c) are zero for each l ≥ 0

by doing a parametrized version of the shrinking isotopy. Note first that C
c is an open

subset of C since complexity is upper semicontinuous, meaning that small perturbations of

a given configuration in C cannot produce large increases in the complexity, although they

can produce large decreases when two hulls that just touch are perturbed to be disjoint.

An element of πl(C,C
c) is represented by a map f : (Dl, ∂Dl) → (C,C

c) of the form

f(t) = (S1(t), · · · , Sk(t)). After a small homotopy of f we can assume that the radii of

the spheres Si(t) are piecewise linear functions of t, so they are linear on the simplices of

some triangulation of Dl. Here we are using the fact that C
c is open in C to assure that

if the homotopy is small enough, the configurations over ∂Dl will still lie in C
c. After a

suitable subdivision of the triangulation of Dl the ordering of the spheres Si(t) by size will
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be constant on the interior of each simplex of Dl, and when one passes to the boundary of

a simplex all that happens to this ordering is that some inequalities among radii become

equalities.

For a fixed t ∈ Dl we showed in Step 1 how to construct an isotopy Φtu of the

configuration (S1(t), · · · , Sk(t)) decreasing its complexity monotonically. The construction

makes strong use of the ordering of the spheres Si(t) by size which allowed us to construct

Φtu as the final isotopy in a finite sequence of isotopies Φi
tu. Over an open simplex σ of

the subdivision of Dl where the size ordering is fixed we can arrange that Φtu depends

continuously on t ∈ σ. To see this, observe that the numbers ui are continuous functions of

t and we can choose the radius functions ri(t, u) to vary continuously with t. The isotopy

extensions Φ
i

tu can be chosen continuously since they just depend on extending certain

vector fields.

The construction of Φtu over σ can be extended continuously over a neighborhood of

σ in Dl by using the same partition of the configurations (S1(t), · · · , Sk(t)) into the sets Xi

throughout this neighborhood. Previously the radius functions ri(u) were the same for all

spheres inXi, but now these spheres can have different sizes so in order for the size ordering

of the spheres in Φtu(Xi) to be independent of u we will need different radius functions for

different spheres. One way to choose these is to start with a radius function ri(t, u) for t ∈ σ

and extend this to a neighborhood of σ via functions of the form ri(p(t), u− ρ(t)) where p

projects the neighborhood onto σ and ρ(t) shifts the u-parameter to make ui(p(t)) + ρ(t)

the value of u when the sphere shrinks to a point under the canonical shrinking.

Now we construct inductively a sequence of deformations of the given map f :Dl → C

to make its image lie in C
c, staying in C

c over ∂Dl where it already lies in C
c. Suppose

inductively that we have already deformed f to take a neighborhood Ni−1 of the (i− 1)-

skeleton of Dl into C
c. For an i-simplex σ let σ′ be a slightly shrunk copy of σ contained in

the interior of σ and with ∂σ′ contained in Ni−1. Choose a function ψ :Dl → [0,∞) whose

support is contained in a neighborhood of σ′ where the deformation Φtu from the preceding

paragraph is defined and whose values are large enough on a smaller neighborhood of σ′

so that if we perform the deformation Φtu for u ≤ ψ(t) then this deforms f to have image

in C
c in the union of Ni−1 with a neighborhood of σ. After repeating this for the other

i-simplices we then proceed inductively to the higher dimensional simplices. ⊔⊓

In the proof of Theorem 1.1 we showed how to construct a homotopy of f :Dl → C

decreasing the complexity to be as small as we like. The construction can be made so that

it yields a family with an additional buffer property : the hull of each sphere is disjoint

from all other spheres in the configuration of equal or larger radius. For a single initial
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configuration this holds if the radius functions ri(u) are chosen small enough. In the

parametrized setting we used damping functions ψ(t) to fit together the various shrinking

isotopies, and the point to observe is that if one starts with a configuration satisfying the

buffer property, then this continues to hold during the shrinking isotopy provided that the

radius functions ri(t, u) are chosen small enough.

Let us now show how to obtain the quasifibration described in the introduction:

U → C → G(n, d1 + 1)× · · · ×G(n, dk + 1)

Proposition 1.2. The projection C → G(n, d1+1)×· · ·×G(n, dk+1) is a quasifibration.

Proof. To show the quasifibration property it suffices to verify the homotopy lifting prop-

erty for homotopies ft :D
l → G(n, d1 + 1) × · · · × G(n, dk + 1) that are stationary for

t ∈ [0, ε] for some ε > 0, with a given lifting f̃0 for t = 0. The idea is to perform the

complexity-reducing deformation of f̃0 in the proof of Theorem 1.1, compressed into the t

interval [0, ε], to obtain configurations whose spheres can then be rotated according to the

homotopy ft.

In the shrinking process of Theorem 1.1 we used isotopy extension to determine where

the centers of spheres move, and once the spheres were small we could specify their radii and

we could choose deformations of their spanning planes. In the present situation we choose

these deformations so that the spanning planes are fixed or move parallel to themselves

during the shrinking process until the shrinking has been completed for all the spheres for

all parameter values in Dl, say for u ≤ u0. We compress the time interval [0, u0] to [0, ε].

Then for t ≥ ε we continue the shrinking process beyond u = u0 and use the rotations of

the spanning planes specified by the homotopy ft. ⊔⊓

Separating Spheres

There is another way of avoiding complicated configurations of spheres that is ex-

pressed in terms of separation by codimension-one spheres. Let us say that a system of

codimension-one spheres E1, · · · , El in R
n separates a configuration (S1, · · · , Sk) in C if the

spheres Ej are disjoint from each other and from each Si and there is at most one Si in

each component of Rn − ∪jEj , which is equivalent to saying that each pair of spheres Si

is separated by some Ej . We also require that for each Ej there is at least one sphere Si

in each component of Rn − Ej . Define a space SC of separated sphere configurations to

consist of all configurations (S1, · · · , Sk) in C together with unordered systems E1, · · · , El

of separating spheres for (S1, · · · , Sk) and weights w1, · · · , wl in (0, 1] associated to the
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spheres E1, · · · , El. We allow the number of separating spheres to vary by allowing spheres

Ej to be deleted when their weights go to zero, provided that the remaining E-spheres with

nonzero weights still separate (S1, · · · , Sk). To define the topology on SC we start with

the configuration spaces of systems with a fixed number l of separating spheres Ej and

corresponding weights wj in [0, 1], with the requirement that the E-spheres with nonzero

weights separate the S-spheres. For a fixed number m we then take the quotient space

of the disjoint union of these configurations spaces with l ≤ m separating spheres, with

identifications corresponding to deleting spheres of weight zero. Then we take the direct

limit as the number m goes to infinity.

In the definition of SC we required each sphere Ej to have at least one sphere Si on

each side of it. Omitting this condition replaces SC by a larger space that deformation

retracts to it by letting the weights of the spheres Ej not satisfying this condition go to

zero. The condition is thus fairly harmless, and has the virtue of excluding “separating

spheres” that do not actually separate the spheres Si.

As a slight generalization, we can choose some subset A of the indices 1, · · · , k and

only require that the spheres Ej separate the spheres Si for i ∈ A. For simplicity we use

the same notation SC for this generalization.

Replacing C by the subspace U of untwisted sphere configurations we can then have

an analogous space SU of separated untwisted configurations, which is just U ∩ SC.

Theorem 1.3. The projections SC → C and SU → U forgetting the separating spheres

and their weights are weak homotopy equivalences.

Proof. To show that the projection p : SC → C induces isomorphisms on all homotopy

groups πl it suffices to show the following: Given a map F : ∂Dl → SC and a map f :Dl → C

which equals pF on ∂Dl then there exist homotopies Ft : ∂D
l → SC of F = F0 and

ft :D
l → C of f = f0 with pFt = ft for all t, such that F1 extends to a map F1 :D

l → SC

with pF1 = f1 on Dl. There will be four steps to the construction. The first two steps

produce homotopies ft and Ft and the second two arrange the desired compatibility over

∂Dl.

Step 1. Deforming the given f :Dl → C as in the proof of Theorem 1.1 gives a homotopy

ft of f = f0 whose final family f1 has small complexity and satisfies the buffer property.

For a fixed configuration f1(x) in the family f1 consider the part of the hull of a sphere Si

of f1(x) consisting of codimension one spheres concentric with the boundary sphere of the

hull and lying between Si and the boundary sphere. We call these spheres shell spheres.

If the complexity is small compared to the number of spheres in f1(x) then among the

shell spheres for Si there will always be some that are disjoint from the hulls of all smaller
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spheres Sj . These shell spheres will also be disjoint from all the spheres Sj of equal or

larger radius by the buffer property. If we choose at least one of these shell spheres for

each Si with i ∈ A then we claim that this gives a separating system of E-spheres for the

given configuration. To see this, observe first that these shell spheres are disjoint from the

spheres Si by construction, and they are disjoint from each other since for each pair of

spheres Si 6= Sj , if these two spheres have the same size then their hulls are disjoint, and

if one is larger than the other, say Si is larger than Sj , then the shell sphere for Si was

chosen disjoint from the hull of Sj and hence also from all shell spheres for Sj . Finally,

observe that the chosen shell spheres separate all the spheres Si with i ∈ A since the shell

spheres for Si separate Si from all Sj ’s of equal or larger size.

This was for a fixed configuration f1(x) in the family f1. For small perturbations

of x we can vary the shell spheres continuously giving new separating systems of shell

spheres for the perturbed configurations. Thus we can choose functions φx :D
l → [0, 1]

supported in a neighborhood of x in which the shell spheres vary continuously, and these

φx’s can be taken to be PL in some triangulation of Dl. By compactness a finite number

of the interiors of their supports cover Dl. Relabeling these φx’s as φj , we can use them

as weights for the corresponding shell spheres. As the configurations f1(x) vary with x,

some of the chosen shell spheres for a given Si might merge, but this can be avoided by

specifying that the radii of the chosen shell spheres are always rational multiples of the

radii of the associated spheres Si. This guarantees that these ratios are locally constant

since the weight functions φj were chosen to be PL, with locally connected support sets.

Thus we have a map F1 :D
l → SC with pF1 = f1.

Step 2. First we deform the given map F : ∂Dl → SC so that the weights of the E-

spheres of F (x) are PL functions of x in the following way. For each x ∈ ∂Dl choose a PL

function ωx : ∂D
l → [0, 1] that is positive at x and vanishes outside a neighborhood of x in

which all the E-spheres in F (x) have positive weights. We regard ωx as assigning a new

weight to the E-spheres in F (x). As x varies over ∂Dl the interiors of the supports of the

functions ωx cover ∂Dl, and by compactness this cover has a finite subcover. Relabeling the

resulting finite set of ωx’s as ωj , we obtain a new system of weighted E-spheres by taking

the spheres corresponding to each ωj and summing the weights ωj when the same sphere

occurs for more than one ωj . For each x ∈ ∂Dl the new E-spheres with positive weights

give a subsystem of the original E-spheres which is still a separating system. Letting the

old weights go to zero while the new weights go from zero to
∑

j ωj gives a homotopy of

F to a new map with PL weight functions without changing the map f = pF .

After this preliminary deformation of F we now want to apply the shrinking process in
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the preceding theorem to the union of the spheres in the systems f(x) and the E-spheres in

F (x). This certainly works for a fixed value of x, but as x varies over ∂Dl some E spheres

appear and disappear as their weights go to zero, so we need to modify the shrinking

process to take this into account. Since the weight functions are PL we can triangulate

∂Dl so that over each open simplex of the triangulation there is a fixed set of E-spheres

varying only by isotopy. Some of these can disappear at the boundary of the simplex if

their weights become zero.

A handle structure on ∂Dl can be associated to the triangulation of ∂Dl in the usual

way, where 0-handles are neighborhoods of vertices of the triangulation and i-handles are

attached inductively to a neighborhood of the (i− 1)-skeleton to form a neighborhood of

the i-skeleton. We will construct the deformation Ft as a sequence of deformations over

neighborhoods of the i-handles by downward induction on i.

The first step is to deform F by applying the shrinking process over a neighborhood

of the (l − 1)-handles, damping this deformation down to zero near the boundary of the

neighborhood, with the full deformation performed over the (l − 1)-handles themselves.

The (l− 1)-handles are contained in the interiors of (l− 1)-simplices, so the E-spheres are

varying only by isotopy and none are appearing or disappearing.

For the induction step of extending the shrinking over an i-handle corresponding to

an i-simplex σ, we first deform F (as modified by the previous steps in the induction) in

a neighborhood of the i-handle by decreasing the weights of all E-spheres except those

that live over σ until these weights are zero over a smaller neighborhood of the i-handle,

damping the deformation down to zero at the boundary of the larger neighborhood. The

remaining E-spheres with nonzero weights still form a separating system since this was

true over σ, and eliminating E-spheres in this way does not increase complexity or destroy

the buffer property. After doing this deformation of weights, we perform the shrinking

isotopy over a small neighborhood of the i-handle, damping it down to zero outside the

handle. This finishes the induction step in the construction of the deformation Ft.

Step 3. By assumption we have pF0 = f0 and we need to arrange that pFt = ft for

all t. We will do this by inserting a collar on ∂Dl in Dl and placing a family of shrinkings

in this collar connecting pFt and ft. Let us parametrize points in this collar by pairs

(x, s) ∈ ∂Dl × I where for s = 0 we have the shrinkings pFt and for s = 1 we have the

shrinkings ft. To begin, we use these same shrinkings for s near 0 and 1, respectively, then

we damp these shrinkings down as we move away from s = 0 and s = 1. After performing

these damped shrinkings we have a map ∂Dl× I → C and we can do the shrinking process

for this family of configurations. Damping this down at s = 0 and s = 1, we then have the

10



desired family of shrinkings on the collar interpolating between pFt and ft.

Step 4. For the new ft produced in Step 3 we can apply the procedure in Step 1 to

construct a lifting F1 of f1 with pF1 = f1. This yields shell spheres that serve as E-

spheres for the sphere configurations f1(x). It remains to construct one more homotopy

that changes these shell spheres to the E-spheres in F1 without changing f1. Recall that

the deformation Ft in Step 2 involved shrinking the given E-spheres as well as the given

spheres Si. This means that if we apply the method in Step 2 to choose shell spheres for

the spheres Si as well as the E-spheres of the family F1, these will be disjoint from the

E-spheres in the family F1. Forgetting the shell spheres for the E-spheres of F1, we can

then construct a homotopy of F1 letting the weights of the given E-spheres go to zero

while increasing the weights of the new shell spheres from zero to their specified values.

The shell E-spheres we have just constructed for the family f1 over ∂Dl may not agree

with the shell E-spheres constructed earlier over Dl, but we can just shift weights from

one system of shell spheres to the other to get the final homotopy needed to finish the

proof for the case of C. The same proof works for U since the only time the spheres Si

were moved was when the complexity-reduction process was applied, and this works in U

as well as C. ⊔⊓
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