
The Adams spectral sequence was invented as a tool for computing stable homo-

topy groups of spheres, and more generally the stable homotopy groups of any space.

Let us begin by explaining the underlying idea of this spectral sequence.

As a first step toward computing the set [X, Y] of homotopy classes of maps

X→Y one could consider induced homomorphisms on homology. This produces a

map [X, Y]→Hom(H∗(X),H∗(Y)) . The first interesting instance of this is the notion

of degree for maps Sn→Sn , where it happens that the degree computes [Sn, Sn]
completely. For maps between spheres of different dimension we get no information

this way, however, so it is natural to look for more sophisticated structure. For a

start we can replace homology by cohomology since this has cup products and their

stable outgrowths, Steenrod squares and powers. Changing notation by switching the

roles of X and Y for convenience, we then have a map [Y ,X]→HomA(H
∗(X),H∗(Y))

where A is the mod p Steenrod algebra and cohomology is taken with Zp coefficients.

Since cohomology and Steenrod operations are stable under suspension, it makes

sense to change our viewpoint and let [Y ,X] now denote the stable homotopy classes

of maps, the direct limit under suspension of the sets of maps ΣkY→ΣkX . This has

the advantage that the map [Y ,X]→HomA(H
∗(X),H∗(Y)) is a homomorphism of

abelian groups, where cohomology is now to be interpreted as reduced cohomology

since we want it to be stable under suspension.

Since HomA(H
∗(X),H∗(Y)) is just a subgroup of Hom(H∗(X),H∗(Y)) , we are

not yet using the real strength of the A module structure. To do this, recall that

HomA is the n = 0 case of a whole sequence of functors ExtnA . Since A has such a

complicated multiplicative structure, these higher ExtnA groups could be nontrivial and

might carry quite a bit more information than HomA by itself. As evidence that there

may be something to this idea, consider the functor Ext1
A . This measures whether

short exact sequences of A modules split. For a map f :Sk→S` with k > ` one can

form the mapping cone Cf , and then associated to the pair (Cf , S
`) there is a short

exact sequence of A modules

0→H∗(Sk+1)→H∗(Cf )→H∗(S`)→0

Additively this splits, but whether it splits over A is equivalent to whether A acts

trivially in H∗(Cf ) since it automatically acts trivially on the two adjacent terms in



2 Chapter 2 The Adams Spectral Sequence

the short exact sequence. Since A is generated by the squares or powers, we are

therefore asking whether some Sqi or Pi is nontrivial in H∗(Cf ) . For p = 2 this is

the mod 2 Hopf invariant question, and for p > 2 it is the mod p analog. The answer

for p = 2 is the theorem of Adams that Sqi can be nontrivial only for i = 1,2,4,8.

For odd p the corresponding statement is that only P1 can be nontrivial.

Thus Ext1
A does indeed detect some small but nontrivial part of the stable ho-

motopy groups of spheres. One could hardly expect the higher ExtnA functors to give

a full description of stable homotopy groups, but the Adams spectral sequence says

that, rather miraculously, they give a reasonable first approximation. In the case that

Y is a sphere, the Adams spectral sequence will have the form

Es,t2 = Exts,tA (H
∗(X),Zp) converging to πs∗(X)/non p torsion

Here the second index t in Exts,tA denotes merely a grading of ExtsA arising from

the usual grading of H∗(X) . The fact that torsion of order prime to p is factored

out should be no surprise since one would not expect Zp cohomology to give any

information about non-p torsion.

More generally if Y is a finite CW complex and we define πYk (X) = [ΣkY ,X] , the

stable homotopy classes of maps, then the Adams spectral sequence is

Es,t2 = Exts,tA (H
∗(X),H∗(Y)) converging to πY∗ (X)/non p torsion

Taking Y = S0 gives the earlier case, which suffices for the more common applica-

tions, but the general case illuminates the formal machinery, and is really no more

difficult to set up than the special case. For the space X a modest hypothesis is needed

for convergence, that it is a CW complex with finitely many cells in each dimension.

The Adams spectral sequence breaks the problem of computing stable homotopy

groups of spheres up into three steps. First there is the purely algebraic problem of

computing Exts,tA (Zp,Zp) . Since A is a complicated ring, this is not easy, but at least

it is pure algebra. After this has been done through some range of values for s and t
there remain the two problems one usually has with a spectral sequence, computing

differentials and resolving ambiguous extensions. In practice it is computing differ-

entials that is the most difficult. As with the Serre spectral sequence for cohomology,

there will be a product structure that helps considerably.

The fact that the Steenrod algebra tells a great deal about stable homotopy groups

of spheres should not be quite so surprising if one recalls the calculations done in

§1.3. Here the Serre spectral sequence was used repeatedly to figure out successive

stages in a Postnikov tower for a sphere. The main step was computing differen-

tials by means of computations with Steenrod squares. One can think of the Adams

spectral sequence as streamlining this process. There is one spectral sequence for all

the p torsion rather than one spectral sequence for the p torsion in each individual

homotopy group, and the algebraic calculation of the E2 page replaces much of the
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calculation of differentials in the Serre spectral sequences. As we will see, the first

several stable homotopy groups of spheres can be computed completely without hav-

ing to do any nontrivial calculations of differentials in the Adams spectral sequence.

Eventually, however, hard work is involved in computing differentials, but we will stop

well short of that point in the exposition here.

A Sketch of the Construction

Our approach to constructing the Adams spectral sequence will be to try to realize

the algebraic definition of the Ext functors topologically. Let us recall how Extn
R
(M,N)

is defined, for modules M and N over a ring R . The first step is to choose a free

resolution of M , an exact sequence

··· -→F2 -→F1 -→F1 -→F0 -→M -→0

with each Fi a free R module. Then one applies the functor HomR(−, N) to the free

resolution, dropping the term HomR(M,N) , to obtain a chain complex

···←HomR(F2, N)←HomR(F1, N)←HomR(F0, N)←0

Finally, the homology groups of this chain complex are by definition the groups

ExtnR(M,N) . It is a basic lemma that these do not depend on the choice of the free

resolution of M .

Now we take R to be the Steenrod algebra A for some prime p and M to be

H∗(X) , the reduced cohomology of a space X with Zp coefficients, and we ask

whether it is possible to construct a sequence of maps

X -→K0 -→K1 -→K2 -→···
that induces a free resolution of H∗(X) as an A module:

··· -→H∗(K2) -→H∗(K1) -→H∗(K0) -→H∗(X) -→0

Stated in this way, this is impossible because no space can have its cohomology a free

A module. For if H∗(K) were free as an A module then for each basis element α we

would have Sqiα nonzero for all i in the case p = 2, or Piα nonzero for all i when

p is odd, but this contradicts the basic property of squares and powers that Sqiα = 0

for i > |α| and Piα = 0 for i > |α|/2.

The spaces whose cohomology is closest to being free over A are Eilenberg-

MacLane spaces. The cohomology H∗(K(Zp,n)) is free over A in dimensions less

than 2n , with one basis element, the fundamental class ι in Hn . This follows from

the calculations in §1.3 since below dimension 2n there are only linear combinations

of admissible monomials, and the condition that the monomials have excess less than

n is automatically satisfied in this range. Alternatively, if one defines A as the limit

of H∗(K(Zp,n)) as n goes to infinity, the freeness below dimension 2n is automatic

from the Freudenthal suspension theorem. More generally, by taking a wedge sum of
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K(Zp,ni) ’s with ni ≥ n and only finitely many ni ’s below any given N we would have

a space with cohomology free over A below dimension 2n . Instead of the wedge sum

we could just as well take the product since this would have the same cohomology as

the wedge sum below dimension 2n .

Free modules have the good property that every module is the homomorphic

image of a free module, and products of Eilenberg-MacLane spaces have an analogous

property: For every space X there is a product K of Eilenberg-MacLane spaces and

a map X→K inducing a surjection on cohomology. Namely, choose some set of

generators αi for H∗(X) , either as a group or more efficiently as an A module, and

then there are maps fi :X→K(Zp, |αi|) sending fundamental classes to the αi ’s, and

the product of these maps induces a surjection on H∗ .

Using this fact, we construct a diagram

−−−−−−−−−−−→ −−−−−→ −−−−−→
X

XX

K0−−−−−−−−−−−−−→ K1−−−−−−−−−−−−−→ K −−−−−−−−−−−−−→2

1K0 =/

−−−−−→ −−−−−→
XX 2K1 1=/

−−−−−→ −−−−−→
XX 3K2 2 =/

. . .

by the following inductive procedure. Start with a map X→K0 to a product of

Eilenberg-MacLane spaces inducing a surjection on H∗ . Then after replacing this

map by an inclusion via a mapping cylinder, let X1 = K0/X and repeat the process

with X1 in place of X = X0 , choosing a map X1→K1 to another product of Eilenberg-

MacLane spaces inducing a surjection on H∗ , and so on. Thus we have a diagram of

short exact sequences

0

00 0

−−−−−−−−−−−−−→−−−−−−−−−−−−−→

0−−−−−→
−−−−−→

−−−−−→
−−−−−→

−−−−−→
−−−−−→−−−−−→

−−−−−→
−−−−−→

−−−−−→
−−−−−→

−−−−−→ . . .XH0 ( )∗ KH ( )∗
1−−−−−−−−−−−−−→ KH ( )∗

2−−−−−−−−−−−−−→ −−−−−−−−−−−−−→KH ( )∗

1XH ( )∗
2XH ( )∗

3XH ( )∗

The sequence across the top is exact, so we have a resolution of H∗(X) which would

be a free resolution if the modules H∗(Ki) were free over A .

Since stable homotopy groups are a homology theory, when we apply them to the

cofibrations Xi→Ki→Ki/Xi = Xi+1 we obtain a staircase diagram

- -

−−−→−−−→t 1+ t 1+Xπ −−−→ −→−→ −−−→Xπ X−−−→
−−→

−−→
−−−→

−−−→
−−→

−−→
−−−→

−−−→
−−→

−−→
−−−→ −−−→−−−−→t

s s 1+

sXπ −−−→ −→−−→ −−−→tXπ X

−−→−−→t 1 -t 1s 2

-s 1

-

s

s 2 -s 1

s 1+

s

-s 1

-s 1

Xπ -

t 1+ Kπ

tKπ

t 1Kπ −−−→ −−→−→ −−−→Xπ

t 1+ Kπ s 2+

s

s 1+t Kπ

-t 1Kπ

t 1+π

tπ

-t 1π X

and hence a spectral sequence. Since it is stable homotopy groups we are interested

in, we may assume X has been suspended often enough to be highly connected, say

n connected, and then all the spaces Ki and Xi can be taken to be n connected as

well. Then below dimension 2n the cohomology H∗(Ki) is a free A module and the
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stable homotopy groups of Ki coincide with its ordinary homotopy groups, hence

are very simple. As we will see, these two facts allow the E1 terms of the spectral

sequence to be identified with HomA groups and the E2 terms with ExtA groups,

at least in the range of dimensions below 2n . The Adams spectral sequence can be

obtained from the exact couple above by repeated suspension and passing to a limit

as n goes to infinity. In practice this is a little awkward, and a much cleaner and more

elegant way to proceed is to do the whole construction with spectra instead of spaces,

so this is what we will do instead.
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2.1 Spectra
The derivation of the Adams spectral sequence will be fairly easy once we have

available some basic facts about spectra, so our first task will be to develop these

facts. The theme here will be that spectra are much like spaces, but are better in a

few key ways, behaving more like abelian groups than spaces.

A spectrum consists of a sequence of basepointed spaces Xn , n ≥ 0, together

with basepoint-preserving maps ΣXn→Xn+1 . In the realm of spaces with basepoints

the suspension ΣXn should be taken to be the reduced suspension, with the basepoint

cross I collapsed to a point. The two examples of spectra we will have most to do

with are:

— The suspension spectrum of a space X . This has Xn = ΣnX with ΣXn→Xn+1

the identity map.

— An Eilenberg-MacLane spectrum for an abelian group G . Here Xn is a CW complex

K(G,n) and ΣK(G,n)→K(G,n+ 1) is the adjoint of a map giving a CW approx-

imation K(G,n)→ΩK(G,n+ 1) . More generally we could shift dimensions and

take Xn = K(G,m+n) for some fixed m , with maps ΣK(G,m+n)→K(G,m+
n+ 1) as before.

The idea of spectra is that they should be the objects of a category that is the natu-

ral domain for stable phenomena in homotopy theory. In particular, the homotopy

groups of the suspension spectrum of a space X should be the stable homotopy

groups of X . With this aim in mind, one defines πi(X) for an arbitrary spectrum

X = {Xn} to be the direct limit of the sequence

··· -→πi+n(Xn)
Σ-----→πi+n+1(ΣXn) -→πi+n+1(Xn+1)

Σ-----→πi+n+2(ΣXn+1) -→···
Here the unlabeled map is induced by the map ΣXn→Xn+1 that is part of the struc-

ture of the spectrum X . For a suspension spectrum these are the identity maps, so the

homotopy groups of the suspension spectrum of a space X are the stable homotopy

groups of X . For the Eilenberg-MacLane spectrum with Xn = K(G,m+n) the Freuden-

thal suspension theorem implies that the map ΣK(G,m+n)→K(G,m+n+ 1) in-

duces an isomorphism on ordinary homotopy groups up to dimension approximately

2(m+n) , so the spectrum has πi equal to G for i =m and zero otherwise, just as

for an Eilenberg-MacLane space.

The homology groups of a spectrum can be defined in the same way, and in this

case the suspension maps Σ are isomorphisms on homology. For cohomology, how-

ever, this definition in terms of limits would involve inverse limits rather than direct

limits, and inverse limits are not as nice as direct limits since they do not generally

preserve exactness, so we will give a different definition of cohomology for spectra.

For suspension spectra and Eilenberg-MacLane spectra the definition in terms of in-

verse limits turns out to give the right thing since the limits are achieved at a finite

stage. But for the construction of the Adams spectra sequence we have to deal with
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more general spectra than these, so we need a general definition of the cohomology a

spectrum. The definition should be such that the fundamental property of CW com-

plexes that Hn(X;G) is homotopy classes of maps X→K(G,n) remains valid for

spectra. Our task then is to give good definitions of CW spectra, their cohomology,

and maps between them, so that this result is true.

CW Spectra

For a spectrum X whose spaces Xn are CW complexes it is always possible to find

an equivalent spectrum of CW complexes for which the structure maps ΣXn→Xn+1

are inclusions of subcomplexes, since one can first deform the structure maps to be

cellular and then replace each Xn by the union of the reduced mapping cylinders of

the maps ΣnX0 -→Σn−1X1 -→··· -→ΣXn−1 -→Xn

This leads us to define a CW spectrum to be a spectrum X consisting of CW complexes

Xn with the maps ΣXn↩ Xn+1 inclusions of subcomplexes. The basepoints are

assumed to be 0 cells. For example, the suspension spectrum associated to a CW

complex is certainly a CW spectrum. An Eilenberg-MacLane CW spectrum with Xn a

K(G,m+n) can be constructed inductively by letting Xn+1 be obtained from ΣXn by

attaching cells to kill πi for i > m+n+ 1. By the Freudenthal theorem the attached

cells can be taken to have dimension greater than 2m+ 2n , approximately.

In a CW spectrum X each nonbasepoint cell eiα of Xn becomes a cell ei+1
α of

Xn+1 . Regarding these two cells as being equivalent, one can define the cells of X
to be the equivalence classes of nonbasepoint cells of all the Xn ’s. Thus a cell of X
consists of cells ek+nα of Xn for all n ≥ nα for some nα . The dimension of this cell

is said to be k . The terminology is chosen so that for the suspension spectrum of a

CW complex the definitions agree with the usual ones for CW complexes.

The cells of a spectrum can have negative dimension. A somewhat artificial ex-

ample is the CW spectrum X with Xn the infinite wedge sum S1 ∨ S2 ∨ ··· for each

n and with ΣXn↩ Xn+1 the evident inclusion. In this case there is one cell in every

dimension, both positive and negative. There are other less artificial examples that

arise in some contexts, but for the Adams spectral sequence we will only be concerned

with CW spectra whose cells have dimensions that are bounded below. Such spectra

are called connective. For a connective spectrum the connectivity of the spaces Xn
goes to infinity as n goes to infinity.

The homology and cohomology groups of a CW spectrum X can be defined

in terms of cellular chains and cochains. If one considers cellular chains relative

to the basepoint, then the inclusions ΣXn↩ Xn+1 induce inclusions C∗(Xn;G)↩
C∗(Xn+1;G) with a dimension shift to account for the suspension. The union C∗(X;G)
of this increasing sequence of chain complexes is then a chain complex having one G
summand for each cell of X , just as for CW complexes. We define Hi(X;G) to be the
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ith homology group of this chain complex C∗(X;G) . Since homology commutes with

direct limits, this is the same as the direct limit of the homology groups Hi+n(Xn;G) .
Note that this can be nonzero for negative values of i , as in the earlier example having

Xn =
∨
k S

k for each n , which has Hi(X;Z) = Z for all i ∈ Z .

For cohomology we define C∗(X;G) to be simply the dual cochain complex, so

Ci(X;G) is Hom(Ci(X;Z),G) , the functions assigning an element of G to each cell of

X , and H∗(X;G) is defined to be the homology of this cochain complex. This assures

that the universal coefficient theorem remains valid, for example.

A CW spectrum is said to be finite if it has just finitely many cells, and it is of

finite type if it has only finitely many cells in each dimension. If X is of finite type

then for each i there is an n such that Xn contains all the i cells of X . It follows that

Hi(X;G) = Hi(Xn;G) for all sufficiently large n , and the same is true for cohomology.

The corresponding statement for homotopy groups is not always true, as the example

with Xn =
∨
k S

k for each n shows. In this case the groups πi+n(Xn) never stabilize

since, for example, there are elements of π2p(S
3) of order p that are stably nontrivial,

for all primes p . But for a connective CW spectrum of finite type the groups πi+n(Xn)
do eventually stabilize by the Freudenthal theorem.

Maps between CW Spectra

Now we come to the slightly delicate question of how to define a map between CW

spectra. A reasonable goal would be that a map f :X→Y of CW spectra should induce

maps f∗ :πi(X)→πi(Y) , and likewise for homology and cohomology. Certainly a

sequence of basepoint-preserving maps fn :Xn→Yn forming commutative diagrams

as at the right would induce maps on homotopy groups, and also −−−−−→ −−−−−→−−−−−→Xn
n

XΣ
Σ

n 1+

n 1+

−−−−−→Yn YΣ n 1+

f fon homology and cohomology groups if the individual fn ’s were

cellular. Let us call such a map f a strict map, since it is not

the most general sort of map that works. For example, it would

suffice to have the maps fn defined only for all sufficiently large n . This would be

enough to yield an induced map on πi , thinking of πi(X) as lim--→πi+n(Xn) and πi(Y)
as lim--→πi+n(Yn) . If the maps fn were cellular there would also be an induced chain

map C∗(X)→C∗(Y) and hence induced maps on H∗ and H∗ .

It turns out that a weaker condition will suffice: For each cell eiα of an Xn , the map

fn+k is defined on Σkeiα for all sufficiently large k . Here each fn should be defined

on a subcomplex X′n ⊂ Xn such that ΣX′n ⊂ X′n+1 . Such a sequence of subcomplexes

is called a subspectrum of X . The condition that for each n and each cell eiα of

Xn the cell Σkeiα belongs to X′n+k for all sufficiently large k is what is meant by

saying that X′ is a cofinal subspectrum of X . Thus we define a map of CW spectra

f :X→Y to be a strict map X′→Y for some cofinal subspectrum X′ of X . If the

maps fn :X′n→Yn defining f are cellular it is clear that there is an induced chain map

f∗ :C∗(X)→C∗(Y) and hence induced maps on homology and cohomology. A map of

CW spectra f :X→Y also induces maps f∗ :πi(X)→πi(Y) since each map Si+n→Xn
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has compact image contained in a finite union of cells, whose k fold suspensions lie

in X′n+k for sufficiently large k , and similarly for homotopies Si+n×I→Xn .

Two maps of CW spectra X→Y are regarded as the same if they take the same

values on a common cofinal subspectrum. Since the intersection of two cofinal sub-

spectra is a cofinal subspectrum, this amounts to saying that replacing the cofinal

subspectrum on which a spectrum map is defined by a smaller cofinal subspectrum

is regarded as giving the same map.

It needs to be checked that the composition of two spectrum maps X f-----→Y g-----→Z
is defined. If f and g are given by strict maps on subspectra X′ and Y ′ , let X′′ be

the subspectrum of X′ consisting of the cells of the complexes X′n mapped by f to

Y ′n . Then X′′ is also cofinal in X′ and hence in X since f takes each cell eiα of X′n
to a union of finitely many cells of Yn , suspending to cells of Y ′n+k for some k since

Y ′ is cofinal in Y , and then fn+k takes Σkeiα to Y ′n+k so Σkeiα is in X′′n+k . Thus X′′ is

cofinal in X and the composition gf is a strict map X′′→Z .

The inclusion of a subspectrum X′ into a spectrum X is of course a map of

spectra, in fact a strict map. If X′ is cofinal in X then the identity maps X′n→X′n
define a map X→X′ which is an inverse to the inclusion X′↩ X , in the sense that

the compositions of these two maps, in either order, are the identity. This means that

a spectrum is always equivalent to any cofinal subspectrum.

For example, for any spectrum X the subspectrum X′ with X′n defined to beΣXn−1 ⊂ Xn is cofinal and hence equivalent to X . This means that every spectrum

X is equivalent to the suspension of another spectrum. Namely, if we define the

suspension ΣY of a spectrum Y by setting (ΣY)n = ΣYn , then a given spectrum X
is equivalent to ΣY for Y the spectrum with Yn = Xn−1 . It is reasonable to denote

this spectrum Y by Σ−1X , so that X = Σ(Σ−1X) . More generally we could define ΣkX
for any k ∈ Z by setting (ΣkX)n = Xn+k , where Xn+k is taken to be the basepoint if

n+k < 0. (Alternatively, we could define spectra in terms of sequences Xn for n ∈ Z ,

and then use the fact that such a spectrum is equivalent to the cofinal subspectrum

obtained by replacing Xn for n < 0 with the basepoint.)

A homotopy of maps between spectra is defined as one would expect, as a map

X×I→Y , where X×I is the spectrum with (X×I)n = Xn×I , this being the reduced

product, with basepoint cross I collapsed to a point, so that Σ(Xn×I) = ΣXn×I .
The set of homotopy classes of maps X→Y is denoted [X, Y] . When X is Si , by

which we mean the suspension spectrum of the sphere Si , we have [Si, Y ] = πi(Y)
since spectrum maps Si→Y are space maps Si+n→Yn for some n , and spectrum

homotopies Si×I→Y are space homotopies Si+n×I→Yn for some n .

One way in which spectra are better than spaces is that [X, Y] is always a group,

in fact an abelian group, since as noted above, every CW spectrum X is equivalent

to a suspension spectrum, hence also to a double suspension spectrum, allowing an

abelian sum operation to be defined just as in ordinary homotopy theory. The sus-
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pension map [X, Y]→[ΣX,ΣY] is a homomorphism, and in fact an isomorphism, as

one can see in the following way. To show surjectivity, start with a map f :ΣX→ΣY ,

which we may assume is a strict map. For clarity write this as f :X ∧ S1→Y ∧ S1 ,

consisting of map fn :Xn∧S1→Yn∧S1 . Passing to cofinal subspectra, we can replace

this by its restriction Σfn−1 :Σ(Xn−1 ∧ S1)→Σ(Yn−1 ∧ S1) . The parentheses here are

redundant and can be omitted. This map is independent of the suspension coordinateΣ , and we want it to be independent of the last coordinate S1 . This can be achieved

by a homotopy rotating the sphere ΣS1 by 90 degrees. So Σfn−1 is homotopic to a

map hn∧11, as desired, proving surjectivity. Injectivity is similar using X×I in place

of X .

The homotopy extension property is valid for CW spectra as well as for CW com-

plexes. Given a map f :X→Y and a homotopy F :A×I→Y of f ||A for a subspec-

trum A of X , we may assume these are given by strict maps, after passing to cofinal

subspectra. Assuming inductively that F has already been extended over Xn×I , we

suspend to get a map ΣXn×I→ΣYn↩Yn+1 , then extend the union of this map with

the given An+1×I→Yn+1 over Xn+1×I .
The cellular approximation theorem for CW spectra can be proved in the same

way. To deform a map f :X→Y to be cellular, staying fixed on a subcomplex A
where it is already cellular, we may assume we are dealing with strict maps, and that

f is already cellular on Xn , hence also its suspension ΣXn→Yn+1 . Then we deform

f to be cellular on Xn+1 , staying fixed where it is already cellular, and extend this

deformation to all of X to finish the induction step.

Whitehead’s theorem also translates to spectra:

Proposition 2.1. A map between CW spectra that induces isomorphisms on all ho-

motopy groups is a homotopy equivalence.

Proof: Without loss we may assume the map is cellular. We will use the same scheme

as in the standard proof for CW complexes, showing that if f :X→Y induces isomor-

phisms on homotopy groups, then the mapping cylinder Mf deformation retracts

onto X as well as Y . First we need to define the mapping cylinder of a cellular map

f :X→Y of CW spectra. This is the CW spectrum Mf obtained by first passing to

a strict map f :X′→Y for a cofinal subspectrum X′ of X , then taking the usual re-

duced mapping cylinders of the maps fn :X′n→Yn . These form a CW spectrum since

the mapping cylinder of Σfn is the suspension of the mapping cylinder of fn . Replac-

ing X′ by a cofinal subspectrum replaces the spectrum Mf by a cofinal subspectrum,

so Mf is independent of the choice of X′ , up to equivalence. The usual deformation

retractions of Mfn onto Yn give a deformation retraction of the spectrum Mf onto

the subspectrum Y .

If f induces isomorphisms on homotopy groups, the relative groups π∗(Mf ,X)
are zero, so the proof of the proposition will be completed by applying the following
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result to the identity map of (Mf ,X) : tu

Lemma 2.2. If (Y , B) is a pair of CW spectra with π∗(Y , B) = 0 and (X,A) is an

arbitrary pair of CW spectra, then every map (X,A)→(Y , B) is homotopic, staying

fixed on A , to a map with image in B .

Proof: The corresponding result for CW complexes is proved by the usual method

of induction over skeleta, but if we filter a CW spectrum by its skeleta there may

be no place to start the induction unless the spectrum is connective. To deal with

nonconnective spectra we will instead use a different filtration. In a CW complex the

closure of each cell is compact, hence is contained in a finite subcomplex. There is in

fact a unique smallest such subcomplex, the intersection of all the finite subcomplexes

containing the given cell. Define the width of the cell to be the number of cells in this

minimal subcomplex. In the basepointed situation we do not count the basepoint

0 cell, so cells that attach only to the basepoint have width 1. Reduced suspension

preserves width, so we have a notion of width for cells of a CW spectrum. The key

fact is that cells of width k attach only to cells of width strictly less than k , if k > 1.

Thus a CW spectrum X is filtered by its subspectra X(k) consisting of cells of width

at most k .

Using this filtration by width we can now prove the lemma. Suppose inductively

that for a given map f : (X,A)→(Y , B) , which we may assume is a strict map, we have

a cofinal subspectrum X′(k) of X(k) for which we have constructed a homotopy of

f ||X′(k) to a map to B , staying fixed on A ∩ X′(k) . Choose a cofinal subspectrum

X′(k + 1) of X(k + 1) with X′(k + 1) ∩ X(k) = X′(k) . This is possible since each

cell of width k + 1 will have some sufficiently high suspension that attaches only to

cells in X′(k) . Extend the homotopy of f ||X′(k) to a homotopy of f ||X′(k+ 1) . The

restriction of the homotoped f to each cell of width k + 1 then defines an element

of π∗(Y , B) . Since π∗(Y , B) = 0, this restriction will be nullhomotopic after some

number of suspensions. Thus after replacing X′(k + 1) by a cofinal subspectrum

that still contains X′(k) , there will be a homotopy of the restriction of f to the new

X′(k+1) to a map to B . We may assume this homotopy is fixed on cells of A , so this

finishes the induction step. In the end we have a cofinal subspectrum X′ of X , the

union of the X′(k) ’s, with a homotopy of f on X′ to a map to B , fixing A . tu

Proposition 2.3. If a CW spectrum X is n connected in the sense that πi(X) = 0 for

i ≤ n , then X is homotopy equivalent to a CW spectrum with no cells of dimension

≤ n .

In particular this says that a CW spectrum that is n connected for some n is ho-

motopy equivalent to a connective CW spectrum, so one could broaden the definition

of a connective spectrum to mean one whose homotopy groups vanish below some

dimension.
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Another consequence of this proposition is the Hurewicz theorem for CW spectra:

If a CW spectrum X is n connected, then the Hurewicz map πn+1(X)→Hn+1(X) is

an isomorphism. This follows since if X has no cells of dimension ≤ n then the

Hurewicz map πn+1(X)→Hn+1(X) is the direct limit of the Hurewicz isomorphisms

πn+1+k(Xk)→Hn+1+k(Xk) , hence is also an isomorphism.

Proof the Proposition: We can follow the same procedure as for CW complexes, con-

structing the desired CW spectrum Y and a map Y→X inducing isomorphisms on

all homotopy groups by an inductive process. To start, choose maps Sn+1+kα→Xkα
representing generators of πn+1(X) . These give a map of spectra

∨
αS

n+1
α →X induc-

ing a surjection on πn+1 . Next choose generators for the kernel of this surjection and

represent these generators by maps from suitable suspensions of Sn+1 to the cor-

responding suspensions of
∨
αS

n+1
α . Use these maps to attach cells to the wedge of

spheres, producing a spectrum Y 1 with a map Y 1→X that induces an isomorphism

on πn+1 . Now repeat the process for πn+2 and each successive πn+i . tu

Notice that if X has finitely generated homotopy groups, then we can choose

the CW spectrum Y to be of finite type. Thus a connective CW spectrum with finitely

generated homotopy groups is homotopy equivalent to a connective spectrum of finite

type.

Cofibration Sequences

We have defined the mapping cylinder Mf for a map of CW spectra f :X→Y , and

the mapping cone Cf can be constructed in a similar way, by first passing to a strict

map on a cofinal subspectrum X′ and then taking the mapping cones of the maps

fn :X′n→Yn . For an inclusion A↩X the mapping cone can be written as X∪CA . We

would like to say that the quotient map X ∪CA→X/A collapsing CA is a homotopy

equivalence, but first we need to specify what X/A means for a spectrum X and

subspectrum A . In order for the quotients Xn/An to form a CW spectrum we need

to assume that A is a closed subspectrum of X , meaning that if a cell of an Xn has

an iterated suspension lying in An+k for some k , then the cell is itself in An . Any

subspectrum is cofinal in its closure, the subspectrum consisting of cells of X having

some suspension in A , so in case A is not closed we can first pass to its closure before

taking the quotient X/A .

When A is closed in X the quotient map X ∪ CA→X/A is a strict map con-

sisting of the quotient maps Xn ∪ CAn→Xn/An , which are homotopy equivalences

of CW complexes. Whitehead’s theorem for CW spectra then implies that the map

X ∪ CA→X/A is a homotopy equivalence of spectra. (This could also be proved

directly.)

Thus for a pair (X,A) of CW spectra we have a cofibration sequence just like the

one for CW complexes:

A↩X -→X ∪ CA -→ΣA↩ ΣX -→···
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This implies that, just as for CW complexes, there is an associated long exact sequence

[A, Y]←------ [X, Y]←------ [X/A,Y]←------ [ΣA,Y]←------ [ΣX,Y]←------ ···
But unlike for CW complexes, there is also an exact sequence

[Y ,A] -→[Y ,X] -→[Y ,X/A] -→[Y ,ΣA] -→[Y ,ΣX] -→···
To derive this it suffices to show that [Y ,A]→[Y ,X]→[Y ,X ∪ CA] is exact. The

composition of these two maps is certainly zero, so to prove exactness consider a

map f :Y→X which becomes nullhomotopic after we include X in X ∪ CA . A null-

homotopy gives a map CY→X ∪ CA making a commutative square with f in the

following diagram:

−−→ −−→ −−→ −−→−−→ −−−−−→ −−−−−→
−−−−−→ −−−−−→ −−−−−→ −−−−−→

Y

A CAX X ΣA ΣX

Y −−−−−→CY −−−−−→ΣY ΣY

∪

11 11

f
i

Σf
Σi

We can then automatically fill in the next two vertical maps to make homotopy-

commutative squares. We observed earlier that the suspension map [Y ,A]→[ΣY ,ΣA]
is an isomorphism, so we can take the map ΣY→ΣA in the diagram to be a suspen-

sion Σg for some g :Y→A . Commutativity of the right-hand square gives Σf '
(Σi)(Σg) = Σ(ig) , and this implies that f ' ig since suspension is an isomorphism.

This gives the desired exactness.

If we were dealing with spaces instead of spectra, the analog of the exactness of

[Y ,A]→[Y ,X]→[Y ,X/A] would be the exactness of [Y , F]→[Y , E]→[Y , B] for a

fibration F→E→B . This exactness follows immediately from the homotopy lifting

property. Thus when one is interested in homotopy properties of spectra, cofibrations

can also be regarded as fibrations. For a cellular map f :A→X of CW spectra with

mapping cone Cf , the sequence [Y ,Σ−1(Cf )]→[Y ,A]→[Y ,X] is exact, so Σ−1Cf
can be thought of as the fiber of f .

The second long exact sequence associated to a cofibration, in the case of a pair

(A∨ B,A) , has the form

··· -→[Y ,A] -→[Y ,A∨ B] -→[Y , B] -→···
and this sequence splits, so we deduce that the natural map [Y ,A∨B]→[Y ,A]⊕[Y , B]
is an isomorphism. By induction this holds more generally for wedge sums of finitely

many factors.

Cohomology and Eilenberg-MacLane Spectra

The long exact sequences we have constructed can be extended indefinitely in

both directions since spectra can always be desuspended. In the case of the first

long exact sequence this means that for a fixed spectrum Y the functors hi(X) =
[Σ−i(X), Y] define a reduced cohomology theory on the category of CW spectra. The

wedge axiom hi(
∨
αXα) =

∏
αh

i(Xα) is obvious.
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In particular, we have a cohomology theory associated to the Eilenberg-MacLane

spectrum K = K(G,m) with Kn = K(G,m + n) , and this coincides with ordinary

cohomology:

Proposition 2.4. There are natural isomorphisms Hm(X;G) ≈ [X,K(G,m)] for all

CW spectra X .

The proof of the analogous result for CW complexes given in §4.3 of [AT] works

equally well for CW spectra, and is in fact a little simpler since there is no need to talk

about loopspaces since spectra can always be desuspended. It is also possible to give

a direct proof that makes no use of generalities about cohomology theories, analogous

to the direct proof for CW complexes. One takes the spaces Kn = K(G,m+n) to have

trivial (m + n − 1) skeleton, and then each cellular map f :X→K gives a cellular

cochain cf in X with coefficients in πm(K) = G sending an m cell of X to the

element of πm(K) determined by the restriction of f to this cell. One checks that

this association f, cf satisfies several key properties: The cochain cf is always a

cocycle since f extends over (m + 1) cells; every cellular cocycle occurs as cf for

some f ; and cf − cg is a coboundary iff f is homotopic to g .

The identification Hm(X;G) = [X,K(G,m)] allows cohomology operations to

be defined for cohomology groups of spectra by taking compositions of the form

X→K(G,m)→K(H,k) . Taking coefficients in Zp , this gives an action of the Steenrod

algebra A on H∗(X) , making H∗(X) a module over A . This uses the fact that com-

position of maps of spectra satisfies the distributivity properties f(g+h) = fg+fh
and (f + g)h = fh+ gh , the latter being valid when h is a suspension, which is no

loss of generality if we are only interested in homotopy classes of maps. For spectra

X of finite type this definition of an A module structure on H∗(X) agrees with the

definition using the usual A module structure on the cohomology of spaces and the

identification of H∗(X) with the inverse limit lim←-- H∗+n(Xn) since Steenrod opera-

tions are stable under suspension.

For use in the Adams spectral sequence we need a version of the splitting [Y ,A∨
B] = [Y ,A]⊕[Y , B] for certain infinite wedge sums. Here the distinction between

infinite direct sums and infinite direct products becomes important. For an infinite

wedge sum
∨
αXα the group [Y ,

∨
αXα] can sometimes be the direct sum

⊕
α [Y ,Xα] ,

for example if Y is a finite CW spectrum. This follows from the case of finite wedge

sums by a direct limit argument since the image of any map Y→∨
αXα lies in the

wedge sum of only finitely many factors by compactness. However, we will need cases

when Y is not finite and [Y ,
∨
αXα] is instead the direct product

∏
α[Y ,Xα] . There

is always a natural map [Y ,
∨
αXα]→∏

α[Y ,Xα] whose coordinates are obtained by

composing with the projections of
∨
αXα onto its factors.

Proposition 2.5. The natural map [X,
∨
i K(G,ni)]→∏

i[X,K(G,ni)] is an isomor-

phism if X is a connective CW spectrum of finite type and ni→∞ as i→∞ .
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Proof: When X is finite the result is obviously true since we can omit the factors

K(G,ni) with ni greater than the maximum dimension of cells of X without af-

fecting either [X,
∨
i K(G,ni)] or

∏
i[X,K(G,ni)] . For the general case we use a

limiting argument, expressing X as the union of its skeleta Xk , which are finite.

Let h∗(X) be the cohomology theory associated to the spectrum
∨
i K(G,ni) , so

hn(X) = [Σ−nX,∨i K(G,ni)] . There is a short exact sequence

0 -→ lim←-- 1hn−1(Xk) -→hn(X) λ-----→ lim←-- hn(Xk) -→0

whose derivation for CW complexes in Theorem 3F.8 of [AT] applies equally well to

CW spectra. The term lim←-- hn(Xk) is just the product
∏
i[X,K(G,ni)] from the finite

case, since the inverse limit of the finite products is the infinite product. So it remains

to show that the lim←-- 1 term vanishes.

We will use the Mittag-Leffler criterion, which says that lim←-- 1Gk vanishes for a

sequence of homomorphisms of abelian groups ··· -→G2
α2-----→G1

α1-----→G0 if for each k
the decreasing chain of subgroups of Gk formed by the images of the compositions

Gk+n→Gk is eventually constant once n is sufficiently large. This holds in the present

situation since the images of the maps Hi(Xk+n;G)→Hi(Xk;G) are independent of

n when k+ n > i . (When G = Zp these cohomology groups are finite so the groups

Gk are all finite and the Mittag-Leffler condition holds automatically.)

The proof of the Mittag-Leffler criterion was relegated to the exercises in [AT], so

here is a proof. Recall that lim←-- Gk and lim←-- 1Gk are defined as the kernel and cokernel

of the map δ :
∏
kGk→∏

kGk given by δ(gk) =
(
gk − αk+1(gk+1)

)
, or in other words

as the homology groups of the two-term chain complex

0→∏
kGk

δ-----→∏
kGk→0

Let Hk ⊂ Gk be the image of the maps Gk+n→Gk for large n . Then αk takes

Hk to Hk−1 , so the short exact sequences 0→Hk→Gk→Gk/Hk→0 give rise to a

short exact sequence of two-term chain complexes and hence a six-term associated

long exact sequence of homology groups. The part of this we need is the sequence

lim←-- 1Hk→lim←-- 1Gk→lim←-- 1(Gk/Hk) . The first of these three terms vanishes since the

maps αk :Hk→Hk−1 are surjections, so it suffices to show that the third term van-

ishes. For the sequence of quotients Gk/Hk the associated groups ‘Hk ’ are zero, so

it is enough to check that lim←-- 1Gk = 0 when the groups Hk are zero. In this case δ is

surjective since a given sequence (gk) is the image under δ of the sequence obtained

by adding to each gk the sum of the images in Gk of gk+1, gk+2, ··· , a finite sum if

Hk = 0. tu
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2.2 The Spectral Sequence

Having established the basic properties of CW spectra that we will need, we begin

this section by filling in details of the sketch of the construction of the Adams spectral

sequence given in the introduction to this chapter. Then we examine the spectral

sequence as a tool for computing stable homotopy groups of spheres.

Constructing the Spectral Sequence

We will be dealing throughout with CW spectra that are connective and of finite

type. This assures that all homotopy and cohomology groups are finitely generated.

The coefficient group for cohomology will be Zp throughout, with p a fixed prime. A

comment on notation: We will no longer have to consider the spaces Xn that make up

a spectrum X , so we will be free to use subscripts to denote different spectra, rather

than the spaces in a single spectrum.

Let X be a connective CW spectrum of finite type. We construct a diagram

−−−−−−−−−−−→ −−−−−→ −−−−−→
X

XX

K0−−−−−−−−−−−−−→ K1−−−−−−−−−−−−−→ K −−−−−−−−−−−−−→2

1K0 =/

−−−−−→ −−−−−→
XX 2K1 1=/

−−−−−→ −−−−−→
XX 3K2 2 =/

. . .

in the following way. Choose generators αi for H∗(X) as an A module, with at most

finitely many αi ’s in each group Hk(X) . These determine a map X→K0 where K0

is a wedge of Eilenberg-MacLane spectra, and K0 has finite type. Replacing the map

X→K0 by an inclusion, we form the quotient X1 = K0/X . This is again a connective

spectrum of finite type, so we can repeat the construction with X1 in place of X . In

this way the diagram is constructed inductively. Note that even if X is the suspension

spectrum of a finite complex, as in the application to stable homotopy groups of

spheres, the subsequent spectra Xs will no longer be of this special form.

The associated diagram of cohomology

0

00 0

−−−−−−−−−−−−−→−−−−−−−−−−−−−→

0−−−−−→
−−−−−→

−−−−−→
−−−−−→

−−−−−→
−−−−−→−−−−−→

−−−−−→
−−−−−→

−−−−−→
−−−−−→

−−−−−→ . . .XH0 ( )∗ KH ( )∗
1−−−−−−−−−−−−−→ KH ( )∗

2−−−−−−−−−−−−−→ −−−−−−−−−−−−−→KH ( )∗

1XH ( )∗
2XH ( )∗

3XH ( )∗

then gives a resolution of H∗(X) by free A modules, by Proposition 2.5.

Now we fix a finite spectrum Y and consider the functors πYt (Z) = [ΣtY , Z] .
Applied to the cofibrations Xs→Ks→Xs+1 these give long exact sequences forming

a staircase diagram
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- -

−−−→−−−→t 1+ t 1+Xπ −−−→ −→−→ −−−→Xπ X−−−→
−−→

−−→
−−−→

−−−→
−−→

−−→
−−−→

−−−→
−−→

−−→
−−−→ −−−→−−−−→t

s s 1+

sXπ −−−→ −→−−→ −−−→t Xπ X

−−→−−→t 1 -t 1s 2

-s 1

-

s

s 2 -s 1

s 1+

s

-s 1

-s 1

Xπ -

t 1+ Kπ

t K

YY Y Y Y

YYYYY

Y Y Y Y Y

π

t 1Kπ −−−→ −−→−→ −−−→Xπ

t 1+ Kπ s 2+

s

s 1+t Kπ

-t 1Kπ

t 1+π

tπ

-t 1π X

so we have a spectral sequence, the Adams spectral sequence. The spectrum Y plays

a relatively minor role in what follows, and the reader is free to take it to be the

spectrum S0 so that πYt (Z) = πt(Z) . The groups πYt (Z) are finitely generated when

Z is a connective spectrum of finite type, as one can see by induction on the number

of cells of Y .

There is another way of describing the construction of the spectral sequence

which provides some additional insight, although it involves nothing

more than a change in notation really. Let Xn = Σ−nXn and Kn =Σ−nKn . Then the earlier horizontal diagram starting with X can be

rewritten as a vertical tower as at the right. The spectra Kn are again

−−−−−−−−−−−→

−−−−−−−−−−−→

X K

−−−−−−−−−−−→

−−−−−−−−−−−→

X K

−−−−−−−−−−−→

−−−−−−−−−−−→

X K

0

1

2

1

2

...

wedges of Eilenberg-MacLane spectra, so this tower is reminiscent of a

Postnikov tower. Let us call it an Adams tower for X . The staircase

diagram can now be rewritten in the following form:

-

−−−→−−−→ t sXπ −−−→ −→−→ −−−→Xπ X−−−→
−−→

−−→
−−−→

−−−→
−−→

−−→
−−−→

−−−→
−−→

−−→
−−−→ −−−→−−−−→

s s 1+

sXπ −−−→ −→−−→ −−−→t s Xπ X

−−→−−→ t s
s 2Xπ -

t s 1+

t s 1+

+

Kπ s

K

YY Y Y Y

YYYYY

Y Y Y Y Y

π

t s 1
s 2 -s 1

-s 1-s 1

-s 1Kπ −−−→ −−→−→ −−−→Xπ

Kπ s 1+ s 2+

s

s

s 1+Kπ

Kπ

t s 1π

π

- -- t s--+t s 1-

- -- t s--t s 1+-

t s 1- -- t s--t s 1+-

t s 1π X

This has the small advantage that the groups πYi in each column all have the same

index i .
The E1 and E2 terms of the spectral sequence are easy to identify. Since Ks is a

wedge of Eilenberg-MacLane spectra Ks,i , elements of [Y ,Ks] are tuples of elements of

H∗(Y) , one for each summand Ks,i , in the appropriate group Hni(Y) . Since H∗(Ks)
is free over A this means that the natural map [Y ,Ks]→Hom0

A(H
∗(Ks),H

∗(Y)) is

an isomorphism. Here Hom0 denotes homomorphisms that preserve degree, i.e.,

dimension. Replacing Y by ΣtY , we obtain a natural identification

[ΣtY ,Ks] = Hom0
A(H

∗(Ks),H
∗(ΣtY )) = Homt

A(H
∗(Ks),H

∗(Y))

where the superscript t denotes homomorphisms that lower degree by t . Thus if we

set Es,t1 = πYt (Ks) , we have Es,t1 = Homt
A(H

∗(Ks),H
∗(Y)) .

The differential d1 :πYt (Ks)→πYt (Ks+1) is induced by the map Ks→Ks+1 in the

resolution of X constructed earlier. This implies that the E1 page of the spectral
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sequence consists of the complexes

0 -→Homt
A(H

∗(K0),H
∗(Y)) -→Homt

A(H
∗(K1),H

∗(Y)) -→···
The homology groups of this complex are by definition Exts,tA (H

∗(X),H∗(Y)) , so we

have Es,t2 = Exts,tA (H
∗(X),H∗(Y)) .

Theorem 2.6. For X a connective CW spectrum of finite type, this spectral sequence

converges to πY∗ (X) modulo torsion of order prime to p . In other words,

(a) For fixed s and t the groups Es,tr are independent of r once r is sufficiently

large, and the stable groups Es,t∞ are isomorphic to the quotients Fs,t/Fs+1,t+1

for the filtration of πYt−s(X) by the images Fs,t of the maps πYt (Xs)→πYt−s(X) ,
or equivalently the maps πYt−s(X

s)→πYt−s(X) .
(b)

⋂
n F

s+n,t+n is the subgroup of πYt−s(X) consisting of torsion elements of order

prime to p .

Thus we are filtering πYt−s(X) by how far its elements pull back in the Adams

tower. Unlike in the Serre spectral sequence this filtration is potentially infinite, and

in fact will be infinite if πYt−s(X) contains elements of infinite order since all the

terms in the spectral sequence are finite-dimensional Zp vector spaces. Namely Es,t1 =
Homt

A(H
∗(Ks),H

∗(Y)) is certainly a finite-dimensional Zp vector space, so Es,tr is as

well.

Throughout the proof we will be dealing only with connective CW spectra of finite

type, so we make this a standing hypothesis that will not be mentioned again.

A key ingredient in the proof will be an analog for spectra of the algebraic lemma

(Lemma 3.1 in [AT]) used to show that Ext is independent of the choice of free res-

olution. In order to state this we introduce some terminology. A sequence of maps

of spectra Z→L0→L1→··· will be called a complex on Z if each composition of

two successive maps is nullhomotopic. If the Li ’s are wedges of Eilenberg-MacLane

spectra K(Zp,mij) we call it an Eilenberg-MacLane complex. A complex for which

the induced sequence 0←H∗(Z)←H∗(L0)←··· is exact is a resolution of Z .

Lemma 2.7. Suppose we are given the solid arrows in a diagram

−−−−−−−−−−−→Z L0
0

−−−−−−−−−−−−−→ L1−−−−−−−−−−−−−→ L −−−−−−−−−−−−−→2
. . .

−−−−−−−−−−−→X K0−−−−−−−−−−−−−→ K1−−−−−−−−−−−−−→ K −−−−−−−−−−−−−→2
. . .

−−−−−→ −−−−−→f f
1

−−−−−→ f
2

−−−−−→ f

where the first row is a resolution and the second row is an Eilenberg-MacLane com-

plex. Then the dashed arrows can be filled in by maps fi :Li→Ki forming homotopy-

commutative squares.

Proof: Since the compositions in a complex are nullhomotopic we may start with an

enlarged diagram
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−−−−−−−−−−−→ −−−−−→
−−−−−→ −−−−−→ −−−−−→

−−−−−→
−−−−−→

Z

Z

L0 −−−−−−−−−−−−−→ L1−−−−−−−−−−−−−→ L −−−−−−−−−−−−−→2

L0/

−−−−−→
ZL1 1Z1 /

−−−−−→ . . .

−−−−−−−−−−−→X

X

K0 K1 K −−−−−−−−−−−−−→2

K0 / XK1 1X1 /

. . .

. . .

. . .

−−−−−→

−−−−−→f −−−−−→

−−−−−→

−−−−−→

−−−−−→

−−−−−−−−−−−−−→ −−−−−−−−−−−−−→
=

−−−−−→

Z2=

=

−−−−−→

X2=

where the triangles are homotopy-commutative. The map X→K0 is equivalent to a

collection of classes αj ∈ H∗(X) . Since H∗(L0)→H∗(Z) is surjective by assumption,

there are classes βj ∈ H∗(L0) mapping to the classes f∗(αj) ∈ H∗(Z) . These βj ’s

give a map f0 :L0→K0 making a homotopy-commutative square with f . This square

induces a map L0/Z→K0/X making another homotopy commutative square. The

exactness property of the upper row implies that the map H∗(L1)→H∗(L0/Z) is

surjective, so we can repeat the argument with Z and X replaced by Z1 = L0/Z and

X1 = K0/X to construct the map f1 , and so on inductively for all the fi ’s. tu

Proof of Theorem 2.6: First we show statement (b). As noted earlier, all the terms

Es,t1 = Homt
A(H

∗(Ks),H
∗(Y)) in the staircase diagram are Zp vector spaces, so by

exactness all the vertical maps in the diagram are isomorphisms on non-p torsion.

This implies that the non-p torsion in πYt−s(X) is contained in
⋂
n F

s+n,t+n .

To prove the opposite inclusion we first do the special case that π∗(X) is entirely

p torsion. These homotopy groups are then finite since we are dealing only with

connective spectra of finite type. We construct a special Eilenberg-MacLane complex

(not a resolution) of the form X→L0→L1→··· in the following way. Let πn(X) be

the first nonvanishing homotopy group of X . Then let L0 be a wedge of K(Zp,n) ’s
with one factor for each element of a basis for Hn(X) , so there is a map X→L0

inducing an isomorphism on Hn . This map is also an isomorphism on Hn , so on πn it

is the map πn(X)→πn(X)⊗Zp by the Hurewicz theorem, which holds for connective

spectra. After converting the map X→L0 into an inclusion, the cofiber Z1 = L0/X
then has πi(Z1) = 0 for i ≤ n and πn+1(Z1) is the kernel of the map πn(X)→πn(L0) ,
which has smaller order than πn(X) . Now we repeat the process with Z1 in place of

X to construct a map Z1→L1 inducing the map πn+1(Z1)→πn+1(Z1)⊗Zp on πn+1 ,

so the cofiber Z2 = L1/Z1 has its first nontrivial homotopy group πn+2(Z2) of smaller

order than πn+1(Z1) . After finitely many steps we obtain Zn+k with πn+k(Zn+k) = 0

as well as all the lower homotopy groups. At this point we switch our attention to

πn+k+1(Zn+k) and repeat the steps again. This infinite process yields the complex

X→L0→L1→··· .
It is easier to describe what is happening in this complex if we look at the associ-

ated tower ···→Z2→Z1→X where Zk = Σ−kZk . Here the first map Z1→X induces

an isomorphism on all homotopy groups except πn , where it induces an inclusion of

a proper subgroup. The same is true for the next map Z2→Z1 , and after finitely
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many steps this descending chain of subgroups πn(Z
k) becomes zero and we move

on to πn+1(X) , eventually reducing this to zero, and so on up the tower, killing each

πi(X) in turn. Thus for each i the groups πi(Z
k) are zero for all sufficiently large

k . The same is true for the groups πYi (Z
k) when Y is a finite spectrum, since a mapΣiY→Zk can be homotoped to a constant map one cell at a time if all the groups

πj(Z
k) vanish for j less than or equal to the largest dimension of the cells of ΣiY .

By the lemma the complex used to define the spectral sequence maps to the com-

plex we have just constructed. This is equivalent to a map of towers, inducing a

commutative diagram

XX 12 X −−−−−−−−−−−−−→−−−−−−−−−−−−−→−−−−−−−−−−−−−→. . .

XZ 12 Z −−−−−−−−−−−−−→−−−−−−−−−−−−−→−−−−−−−−−−−−−→. . .

−−−−−→ −−−−−→ ==
Y
iπ

Y
iπ

( )

( )

Y
iπ

Y
iπ

( )

( ) Y
iπ ( )

Y
iπ ( )

If an element of πYi (X) pulled back arbitrarily far in the first row, it would also pull

back arbitrarily far in the second row, but we have just seen this is impossible. Hence⋂
n F

s+n,t+n is empty, which proves (b) in the special case that π∗(X) is all p torsion.

In the general case let α be an element of πYn (X) whose order is either infinite

or a power of p . Then there is a positive integer k such that α is not divisible by pk ,

meaning that α is not pk times any element of πYn (X) . Consider the map X pk-----→X
obtained by adding the identity map of X to itself pk times using the abelian group

structure in [X,X] . This map fits into a cofibration X pk-----→ X -→ Z inducing a long

exact sequence ···→πi(X)
pk-----→πi(X)→πi(Z)→··· where the map pk is multipli-

cation by pk . From exactness it follows that π∗(Z) consists entirely of p torsion.

By the lemma the map X→Z induces a map from the given Adams tower on X to a

chosen Adams tower on Z . The map πYn (X)→πYn (Z) sends α to a nontrivial element

β ∈ πYn (Z) by our choice of α and k , using exactness of πYn (X)
pk-----→πYn (X)→πYn (Z) .

If α pulled back arbitrarily far in the tower on X then β would pull back arbitrarily

far in the tower on Z . This is impossible by the special case already proved. Hence

(b) holds in general.

To prove (a) consider the portion of the r th derived couple shown

in the diagram at the right. We claim first that if r is sufficiently

−−−→E −−−→r

Er

ri

rkts, Ar

−−−
−−−
−−−
→

Ar

−−−→Ar

−−−
−−−
−−−
→

Ar

large then the vertical map ir is injective. For nontorsion

and non p torsion this follows from exactness since the E
columns are Zp vector spaces. For p torsion it follows from

part (b) that a term As,tr contains no p torsion if r is

sufficiently large since As,tr consists of the elements

of As,t1 that pull back r − 1 units vertically.

Since ir is injective for large r , the preceding map

kr is zero, so the differential dr starting at Es,tr is

zero for large r . The differential dr mapping to Es,tr is also zero for large r since it
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originates at a zero group, as all the terms in each E column of the initial staircase

diagram are zero below some point. Thus Es,tr = Es,tr+1 for r sufficiently large.

Since the map kr starting at Es,tr is zero for large r , exactness implies that for

large r the group Es,tr is the cokernel of the vertical map in the lower left corner of

the diagram. This vertical map is just the inclusion Fs+1,t+1↩ Fs,t when r is large,

so the proof of (a) is finished. tu

Stable Homotopy Groups of Spheres

For a first application of the Adams spectral sequence let us consider the special

case that was one of the primary motivations for its construction, the problem of

computing stable homotopy groups of spheres. Thus we take X and Y both to be S0 ,

in the notation of the preceding section. We will focus on the prime p = 2, but we

will also take a look at the p = 3 case as a sample of what happens for odd primes.

Fixing p to be 2, here is a picture of an initial portion of the E2 page of the

spectral sequence (the musical score to the harmony of the spheres?):

0

0

1

2

3

4

5

6

7

8

9

10

11

12

1

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t s

s

-

h0h 2h
2
2h 3

2h

2
3h

3h 4h
2h 4h

The horizontal coordinate is t − s so the ith column is giving information about πsi .

Each dot represents a Z2 summand in the E2 page, so in this portion of the page

there are only two positions with more than one summand, the (15,5) and (18,4)
positions. Referring back to the staircase diagram, we see that the differential dr
goes one unit to the left and r units upward. The nonzero differentials are drawn

as lines sloping upward to the left. For t − s ≤ 20 there are thus only six nonzero

differentials, but if the diagram were extended farther to the right one would see many

more nonzero differentials, quite a jungle of them in fact.

For example, in the t − s = 15 column we see six dots that survive to E∞ , which

says that the 2 torsion in πs15 has order 26 . In fact it is Z32×Z2 , and this information

about extensions can be read off from the vertical line segments which indicate multi-



22 Chapter 2 The Adams Spectral Sequence

plication by 2 in πs∗ . So the fact that this column has a string of five dots that survive

to E∞ and are connected by vertical segments means that there is a Z32 summand of

πs15 , and the other Z2 summand comes from the remaining dot in this column. In the

t − s = 0 column there is an infinite string of connected dots, corresponding to the

fact that πs0 = Z , so iterated multiplication of a generator by 2 never gives zero. The

individual dots in this column are the successive quotients 2nZ/2n+1Z in the filtration

of Z by the subgroups 2nZ .

The line segments sloping upward to the right indicate multiplication by the el-

ement h1 in the (1,1) position of the diagram. We have drawn them mainly as a

visual aid to help tie together some of the dots into recognizable patterns. There is in

fact a graded multiplication in each page of the spectral sequence that corresponds to

the composition product in πs∗ . (This is formally like the multiplication in the Serre

spectral sequence for cohomology.) For example in the t− s = 3 column we can read

off the relation h3
1 = 4h2 . To keep the diagram uncluttered we have not used line

segments to denote any other nonzero products, such as multiplication by h2 , which

is nonzero in a number of cases.

The s = 1 row of the E2 page consists of just the elements hi in the position

(2i − 1,1) . These are related to the Hopf invariant, and in particular h1 , h2 , and h3

correspond to the classical Hopf maps. The next one, h4 does not survive to E∞ , and

in fact the differential d2h4 = h0h
2
3 is the first nonzero differential in the spectral

sequence. It is easy to see why this differential must be nonzero: The element of

πs14 corresponding to h2
3 must have order 2 by the commutativity property of the

composition product, since h3 has odd degree, and there is no other term in the E2

page except h4 that could kill h0h
2
3 . No hi for i > 4 survives to E∞ either, but this

is a harder theorem, equivalent to Adams’ theorem on the nonexistence of elements

of Hopf invariant one.

There are only a few differentials to the left of the t − s = 14 column that could

be nonzero since dr goes r units upward and r ≥ 2. It is easy to use the derivation

property d(xy) = x(dy) + (dx)y to see that these differentials must vanish. For

the element h1 , if we had drh1 = hr+1
0 then we would have d(h0h1) = hr+2

0 nonzero

as well, but h0h1 = 0. The only other differential which could be nonzero is d2

on the element h1h3 in the t − s = 8 column, but d2h1 and d2h3 both vanish so

d2(h1h3) = 0.

Computing the E2 page of the spectral sequence is a mechanical process, as we

will see, although its complexity increases rapidly as t−s increases, so that even with

computer assistance the calculations that have been made only extend to values of

t − s on the order of 100. Computing differentials is much harder, and not a purely

mechanical process, and the known calculations only go up to t − s around 60.

Let us first show that for computing Exts,tA (H
∗(X),Zp) it suffices just to construct
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a minimal free resolution of H∗(X) , that is, a free resolution

··· -→F2
ϕ2------------→F1

ϕ1------------→F0
ϕ0------------→H∗(X) -→0

where at each step of the inductive construction of the resolution we choose the min-

imum number of free generators for Fi in each degree.

Lemma 2.8. For a minimal free resolution, all the boundary maps in the dual complex

···←HomA(F2,Zp)←HomA(F1,Zp)←HomA(F0,Zp)←0

are zero, hence Exts,tA (H
∗(X),Zp) = Homt

A(Fs,Zp) .

Proof: Let A+ be the ideal in A consisting of all elements of strictly positive degree,

or in other words the kernel of the augmentation map A→Zp given by projection onto

the degree zero part A0 of A . Observe that Kerϕi ⊂ A+Fi since if we express an

element x ∈ Kerϕi of some degree in terms of a chosen basis for Fi as x =∑j ajxij
with aj ∈ A , then if x is not in A+Fi , some aj is a nonzero element of A0 = Zp and

we can solve the equation 0 =ϕi(x) =
∑
j ajϕi(xij) for ϕi(xij) , which says that the

generator xij was superfluous.

Since ϕi−1ϕi = 0, we have ϕi(x) ∈ Kerϕi−1 for each x ∈ Fi , so from the

preceding paragraph we obtain a formula ϕi(x) =
∑
j ajxi−1,j with aj ∈ A+ . Hence

for each f ∈ HomA(Fi−1,Zp) we have ϕ∗i (f (x)) = fϕi(x) =
∑
j ajf (xi−1,j) = 0

since aj ∈ A+ and f(xi−1,j) lies in Zp which has a trivial A module structure. tu

Let us describe how to compute Exts,tA (Z2,Z2) by constructing a minimal resolu-

tion of Z2 as an A module. An initial portion of the resolution is shown in the chart

on the next page. For the first stage of the resolution F0→Z2 we must take F0 to be a

copy of A with a generator ι in degree 0 mapping to the generator of Z2 . This copy

of A forms the first column of the table, which consists of the elements SqIι as SqI

ranges over the admissible monomials in A . The kernel of the map F0→Z2 consists

of everything in the first column except ι , so we want the second column, which rep-

resents F1 , to map onto everything in the first column except ι . To start, we need an

element α1 at the top of the second column mapping to Sq1ι . (We will use subscripts

to denote the degree t , so αi will have degree t = i , and similarly for the later gener-

ators βi, γi, ··· .) Once we have α1 in the second column, we also have all the terms

SqIα1 for admissible I lower down in this column. To see what else we need in the

second column we need to compute how the terms in the second column map to the

first column. Since α1 is sent to Sq1ι , we know that SqIα1 is sent to SqISq1ι . The

product SqISq1 will be admissible unless I ends in 1, in which case SqISq1 will be

0 because of the Adem relation Sq1Sq1 = 0. In particular, Sq1α1 maps to 0. This

means we have to introduce a new generator α2 to map to Sq2ι . Then SqIα2 maps to

SqISq2ι and we can use Adem relations to express this in terms of admissibles. For
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example Sq1α2 maps to Sq1Sq2ι = Sq3ι and Sq2α2 maps to Sq2Sq2ι = Sq3Sq1ι .
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Some of the simpler Adem relations, enough to do the calculations shown in the chart,

are listed in the following chart.

Sq1Sq2n = Sq2n+1 Sq3Sq4n = Sq4n+3

Sq1Sq2n+1 = 0 Sq3Sq4n+1 = Sq4n+2Sq1

Sq2Sq4n = Sq4n+2 + Sq4n+1Sq1 Sq3Sq4n+2 = 0

Sq2Sq4n+1 = Sq4n+2Sq1 Sq3Sq4n+3 = Sq4n+5Sq1

Sq2Sq4n+2 = Sq4n+3Sq1 Sq4Sq3 = Sq5Sq2

Sq2Sq4n+3 = Sq4n+5 + Sq4n+4Sq1 Sq4Sq4 = Sq7Sq1 + Sq6Sq2

Note that the relations for Sq3Sqi follow from the relations for Sq2Sqi and Sq1Sqi

since Sq3 = Sq1Sq2 .

Moving down the s = 1 column we see that we need a new generator α4 to map

to Sq4ι . In fact it is easy to see that the only generators we need in the second column

are α2n ’s mapping to Sq2nι . This is because Sqi is indecomposable iff i = 2n , which

implies inductively that every SqIι except Sq2nι will be hit by previously introduced

terms, while Sq2nι will not be hit.

Now we start to work our way down the third column, introducing the minimum

number of generators necessary to map onto the kernel of the map from the second

column to the first column. Thus, near the top of this column we need β2 mapping to

Sq1α1 , β4 mapping to Sq3α1+Sq2α2 , and β5 mapping to Sq4α1+Sq2Sq1α2+Sq1α4 .

One can see that things are starting to get more complicated here, and it is not easy

to predict where new generators will be needed.

Subsequent columns are computed in the same way. Near the top, the structure

of the columns soon stabilizes, each column looking just the same as the one before.

This is fortunate since it is the rows, with t− s constant, that we are interested in for

computing πst−s . The most obvious way to proceed inductively would be to compute

each diagonal with t constant by induction on t , moving up the diagonal from left

to right. However, this would require infinitely many computations to determine a

whole row. To avoid this problem we can instead proceed row by row, moving across

each row from left to right assuming that higher rows have already been computed.

To determine whether a new generator is needed in the (s, t − s) position we need to

see whether the map from the (s−1, t−s+1) position to the (s−2, t−s+2) position

is injective. These two positions are below the row we are working on, so we do not

yet know whether any new generators are required in these positions, but if they are,

they will have no effect on the kernel we are interested in since minimality implies

that new generators always generate a subgroup that maps injectively. Thus we have

enough information to decide whether new generators are needed in the (s, t − s)
position, and so the induction can continue.

The chart shows the result of carrying out the row-by-row calculation through

the row t − s = 5. As it happens, no new generators are needed in this row or the
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preceding one. In the next row t−s = 6 one new generator β8 will be needed, but the

chart does not show the computations needed to justify this. And in the t−s = 7 row

four new generators α8 , β9 , γ10 , and δ11 will be needed. The reader is encouraged

to do some of these calculations to get a real feeling for what is involved. Most of the

work involves applying Adem relations, and then when the maps have been computed,

their kernels need to be determined.


